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Interfacial reaction rates and free energy of cubic clusters 

 
J. LEPINOUX 

 
LTPCM (UMR 5614 CNRS), INPG 

BP75, Domaine Universitaire de Grenoble 
38042 St Martin d’Hères, France 

 
 

ABSTRACT 

 
A new formulation of interfacial reaction rates for clusters in binary alloys is 

presented. It accounts for the matrix structure and the topological properties of 
cluster at the atomic scale. It is shown that the probabilities per unit time that a 
solute atom be captured or released by a cluster are functions of the partition 
function but also of a transition function. The principles of calculation of these 
functions are general but only the case of cubic clusters is treated here (results can 
be used for L12 clusters in f.c.c. matrices). Calculations has been done exactly for 
small clusters (size<10), then following a Monte Carlo sampling method at 
intermediate size as a function of temperature and the interaction energy (a 
material characteristic). Finally, it is shown that generic results can be 
extrapolated at higher cluster size in a large range of temperature and / or 
interaction energy.  

 

Keywords: Clusters, Cluster Dynamics, Precipitation, Free Energy, Monte Carlo 
 
 

§ 1. INTRODUCTION 

 
Cluster dynamics is a simple and elegant numerical method mostly developed by Binder 

and co-workers (Binder et al. 1974, Binder and Stauffer 1976, Binder 1977) to predict 
nucleation and growth of clusters in a solid solution. For complete reviews on this field see 
for instance Martin (1978), Wagner and Kampmann (1991). Martin (to be published) has 
recently revisited the classical theory of nucleation and its links with cluster dynamics. The 
foundations of cluster dynamics are briefly recalled in appendix A of the present paper. An 
interesting feature of this method is that the fundamental equations can be used to describe 
clusters composed of solute atoms as obtained in segregation (Mathon et al. 1997) or 
electrodeposition (Berthier et al. 2004), or point defects in irradiated materials (Christien and 
Barbu 2004). Generally speaking, the simplicity and the versatility of this technique make it a 
popular alternative for treating situations that are difficult to address with standard mean field 
methods or with atomistic methods. Note that although in materials science cluster dynamics 
is mostly used to model precipitation phenomena, it can be seen as a particular application of 
a more general method, say “class dynamics” (i.e. where each class is a multiple of the unit 
class), likely to be applied to a wide range of situations in various fields.  

The specificity of the cluster dynamics addressed here is the definition of the 
coefficients involved in the master equation. In precipitation, the evolution of clusters is 
controlled by two very different mechanisms: interfacial exchanges between the clusters and 
the surrounding matrix and long distance diffusion (here long distance means a distance of the 
order of the half distance between clusters, much larger than the cluster size). There are 
mainly two distinct methods for combining these effects in the literature: 
(i) the classical one, often based on the Waite model (1958), using only one pair of 
coefficients for a given size of cluster (e.g. Clouet et al. 2005), 
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(ii) a recent one, proposed by Kelton (2000), using two pairs of coefficients, one for 
exchanges between the clusters and the surrounding matrix (i.e. the well-defined zone around 
a  cluster where atoms can be captured or released, referred as the “shell” in Kelton’s work) 
and another pair for exchanges between the shell and the rest of the matrix. One of the main 
interests of the latter formalism is that it clearly separates both mechanisms allowing them to 
be treated independently. However, apart from this difference in the treatment of the coupling 
between the short range and the long range effects, the physical basis of the approach 
proposed by Kelton are the same than those of earlier classical works (e.g. Kelton et al. 1983), 
in particular the way to account for the free energy of clusters in interfacial exchange rates. A 
common concern in the literature is precisely that the description of free energy based on the 
capillary approximation is correct for large clusters but it is obviously too rough an 
approximation for small clusters. In addition all clusters are taken spherical whatever their 
size, the lattice structure or the temperature. 

Thus the main goal of this paper is to propose a more rigorous definition of these 
interfacial exchange rates, by examining in detail the processes of capture and release of 
solute atoms by clusters, at the atomic scale. In order to get the values of these coefficients 
two computing methods have been developed: 

- an exact method which gives the solution in a polynomial form but which can be 
applied only to small clusters (<10 atoms) 

- a Monte Carlo method which can be applied to medium size clusters (few hundreds 
atoms), giving accurate results but for a given material each run is related to a given 
temperature. Thus, in order to build a generic solution several runs are necessary at various 
temperatures then results have to be fitted to be extrapolated at higher sizes and interpolated at 
other temperatures in the explored range. 

Although the model and the calculation procedures can be applied to any 
crystallographic structures, for the sake of simplicity, the present paper focus on the simple 
cubic structure but results can be applied to L12 clusters;  
 
 

§ 2. DEFINITIONS AND NOTATIONS 

 
This section aims at defining step by step the notations used in the following of this 

work. The situation considered is a binary system composed of Nb solute atoms B in a matrix 
A (Na+Nb=constant) and interaction energies limited to first neighbours. With Eaa, Ebb and Eab 

the pair energies, Z the coordination of the lattice, the potential energy of the system writes: 
 

ab

AB

bb

B

aa

A W
N

E
N

ZE
N

ZW
222

++=  (1) 

 
Wab is the interaction energy parameter defined as: 
 

( )bbaaabab EEEW +−= 2  (2) 

 
Now considering a given arrangement of the Nb solute atoms, their energy can be defined by 
reference to the equivalent combination of pure media A and B as: 
 

( ) [ ]ababnn WNWWU
2

1
0 =−=  (3) 
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Nab is the number of bonds AB, or in a2 units (a being the lattice parameter), it is also the total 
interface area between atoms B and atoms A. For n=1, i.e. for an isolated solute atom, 
equation (3) simplifies:  
 

2/1 abZWU =  (4) 

 
Combining equations (3-4) one can write the change in energy when n isolated solute atoms 
assemble to form a connected cluster of size n: 
 

( )nZNWnUUU ababnn −=−=∆  
2

1
1  (5) 

 
Considering a given cluster, a change in shape (i.e. in Nab) gives rise to a change of its energy: 
 

ababn NWU δδ  
2

1
=  (6) 

 
Equations (5-6) show that for a given structure (i.e. Z) the key parameter is the interaction 
energy parameter Wab, whatever the individual values of the different bond energies are, and 
that the cluster energy can always be decomposed into a volume term (proportional to n) and 
a general surface term (proportional to Nab). With these notations one can define the partition 
function Qn of a cluster of size n, from which the free energy Fn is derived 
( ( )nBn QLogTkF  −=  with Bk  the Boltzman factor and T the temperature). The sum over all 

distinct configurations of size n can be simplified by grouping configurations according to 
their level of energy (i.e. according to their shape factor Nab). With dn,j the number of 
configurations of energy Un,j the partition function writes: 
 

*1,

,     n

BB

jn

j

jnn Q
Tk

nU
Exp

Tk

U
ExpdQ 








−=








−= ∑  (7) 

 

Note that a reduced partition function *
nQ  is defined in equation (7) by factorising the 

dependence on U1; its interest will appear in the next section. For now, the important point to 

remark is that *
nQ  depends only on the relevant values of Z and of the ratio (Tw/T) posing 

Tw=(Wab/2kB) independently of the lattice (for the present purpose, using Tc, the critical 
temperature of the lattice as usually done in Ising models would not provide any advantage): 
 

( ) 















−−=







 ∆
−= ∑∑

T

T
nZNExpd

Tk

U
ExpdQ w

jab

j

jn

B

jn

j

jnn     ,,

,

,
*  (8) 

 
Note that equations (5-8) apply also to ordered clusters provided that interactions are limited 
to second neighbours. In this situation, the interaction terms Wab and Nab deal with second 
neighbours instead of first neighbours.  
 

 

§.3. INTERFACIAL REACTION RATES 

 
3.1. What is a cluster? 

First of all it is necessary to clearly define what a cluster is (figure 1). A cluster of size 
n is obviously based on a core of n connected B atoms. But if this usual definition is sufficient 
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for approaches considering space as a continuum, it is inappropriate if one wants to examine 
the reaction processes at the atomic scale. Indeed, if the number of connected B atoms has a 
well-defined value it necessarily implies that these B atoms are surrounded by an exclusion 
layer of A atoms, further referred to as the first shell. Each site of this first shell is linked to 
the cluster by at least one bond. An important consequence of this definition is that there is no 
direct interaction between a cluster and other B atoms in the matrix. Another consequence is 
that small size clusters are mainly constituted of their first shell, i.e. the role of their “surface” 
(constituted of Nab {100} facets) is considerably enhanced. When the cluster size increases 
some A cavities, i.e. local deviations to stoechiometry, can be present. Of course, such sites do 
not participate in the exchanges between the cluster and the matrix. This definition is still 
incomplete to address dynamical evolution of clusters; for that, it is necessary to surround 
again the cluster by a second layer, which will be referred to as the second shell. This most 
outer shell is formed by the first neighbours of the first shell not belonging to the cluster core. 
If the nature of the atom occupying a given site of the first shell changes from A to B, the 
considered site becomes immediately part either of the second shell if previously part of the 
cluster core (i.e. it is a release event) or of the cluster if previously part of the second shell 
(i.e. it is a capture event). Thus, each event of absorption or emission modifies the local 
configuration of both shells. Note that figure 1 is a simplified representation of a cluster; in 
fact, to perform calculations presented in section 5 it is necessary to examine the cluster 
topology in more details and distinguish various status of atomic sites. However these 
considerations as well as other technical details are not essential for the present paper and will 
be reported elsewhere. 
 

- insert figure 1 about here - 
 

3.2. Changes induced by transitions 
The solute concentrations in the second shell around a cluster and in the rest of the 

matrix are obviously of the same order of magnitude, then for dilute solutions the probability 
to find a solute atom in the second shell of a cluster is rather low except for macroscopic 
sizes. By consequence, it is reasonable to neglect possible interactions between such atoms 
and other solute atoms located either in the matrix or in the same shell. Thus the probability 
that a cluster captures and releases a solute atom can be decomposed into two independent 
contributions: (i) one related to the change of energy and (ii) one related to the change of 
entropy of its second shell, as proposed by Kelton (2000). This section aims at better defining 
the energy contribution; the entropy contribution is needed only for coupling interfacial 
reactions with the long distance diffusion to build a complete model of cluster dynamics and 
will be presented in a next paper. To make this distinction clearer, in the present paper, the 
terms capture and release will be preferred instead of the terms emission and absorption, 
respectively, which refer to the complete processes.  

Considering the change of energy arising from the capture or the release of an atom by a 
cluster simply means comparing two states of the micro-system constituted of n+1 solute 
atoms either in the form of a cluster of size {n+1} or a cluster of size {n} plus one 
disconnected atom. With notations introduced in the previous section, the generic expression 
of this variation of energy writes: 
 

( ) ( ) ( ) ( ) ( )[ ]ZnNnNWUUUUU
j

ab

i

abab

j

n

i

n

j

n

i

n −−+=∆−∆=+− ++ 1 
2

1
111  (9) 

 
It is important to note that here U refers to the energy of a particular configuration of 

the considered cluster (namely i and j for the clusters of size {n+1} and {n} respectively). 
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A further simplification can be done by introducing cluster

bondsN , the number of bonds between the 

cluster and the site involved in the transformation, i.e. the site whose nature is to be changed. 
From equation (6) it comes:  
 

ab

cluster

bonds

j

n

i

n WNUU −=∆−∆ +1  (10) 

 
 

3.3. Elementary transition probability 
To associate a transition probability (per unit time) with a difference of energy 

between states {n}+{1} and {n+1}, for the sake of simplicity, the classical kinetic Ising 
model is adopted. Consider two states, say i and j, such that the change of state of the system 
defined above can be considered as a single event. The energies associated with these two 
valleys Ui and Uj are separated by a saddle point of total height Esaddle. In the case Ui=Uj=U0, 
it is assumed that Esaddle-U0 is always equal to the height of the diffusion barrier entering in 
the diffusion coefficient. Assuming that Esaddle depends on both initial and final states U0 is 
now replaced by the average energy (Ui+Uj)/2 and finally the change in energy takes the well-
known form: 
 

( ) ( ) ( ) 2/2/ ijdiffusionidiffusionjiji UUEUEUUU −+=−++=∆ >−  (11) 

 
The symetrical transition probability associated with jiU >−∆  writes: 

 








 −
−=>−

kT

UU
ExpP

ij

ji
 2

 ν  (12) 

 
where the frequency ν is related to the diffusion coefficient by the relation ν=λD/a

2, λ is a 
geometrical parameter depending on the crystallographic structure of parameter a (Philibert 
1991) and D is the diffusion coefficient of a B atom in the pure A matrix of the form: 

)/(0 TkEExpDD Bdiffusion−= .  

This probability should not be directly compared with the last atomic jump probability 
in kinetic Monte Carlo simulations (KMC) in which atoms diffuse by exchange with a 
vacancy. Indeed, the “meso-event” described by equation (12) involves several “micro-
events” at the atomic scale. Then the respective results for the global event may differ or 
exactly coincide depending on the lattice, the diffusion coefficient model and other choices in 
particular the description of the saddle point energy. Similarly, equation (11) is not the only 
acceptable choice for present calculations; for instance choosing a constant Esaddle by analogy 
to what is often done in KMC simulations (e.g. Soisson and Martin, 2000) is another simple 
solution which leads to similar results. And if justified, more elaborated choices are certainly 
possible as in KMC simulations (for a recent review see Bellon, 2003) but should be 
developed case by case for specific situations.  
 

 
3.4. From individual transition probabilities to average interfacial reaction rates 
Applying this transition model to the two levels of energy entering in equation (12) 

leads to a pair of symmetrical expressions for capture and release of a specific B atom, 
respectively: 
 

{ } { } { }( ) 















+








=







 −−
−=+←+ +

T

T
NExp

a

D

Tk

UUU
ExpjninP

wcluster

bonds

B

injn

ji  
 2

 1,,1
2

1,,10 λ
ν  (13) 
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 −−
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T
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D

Tk

UUU
ExpjninP

wcluster

bonds

B

injn
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 2

 1,,1
2

1,,10 λ
ν  (14) 

 
Keeping in mind the final goal, i.e. we want to refer to a cluster only through its size, it 

means that equations (13-14) have to be averaged over all possible transitions starting from all 
possible initial configurations (only transitions differing by one atom are considered). At this 
point it is necessary to introduce another feature. As it can be seen in figure 1, a site of the 

first shell “applying” for capture is likely to be linked to shell

bondsN  = 1 to (Z-1) sites of the second 

shell, which probability of occupancy by a B atom is Xshell, the local atomic concentration in B 

atoms in the second shell. Similarly, shell

bondsN  represents the number of bonds between a B atom 

of a cluster « applying » for release and the first shell, i.e. it represents the number of sites 
towards the release can take place. Thus, the general form of the capture and release rates 

writes respectively shell

nnnnn XPP  0
1,1, ++ =  and 0

,1,1 nnnn PP ++ =  (the equivalent of shell

nX  for the 

cluster is by definition equal to 1) where the capture and release factors 0
1, +nnP  and 0

,1 nnP +  are 

the quantities to evaluate as generalisation of equations (13-14): 
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+
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  1 1
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in
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in
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nn

Tk

U
Expd

Tk

UUU
ExpN

Tk

U
Expd

nnP ν  (16) 

 
There are two ways to consider this pair of equations. The simplest one is to use the fact 

that by definition they are thermal averages and then can be computed using a Monte-Carlo 
procedure. With help of equations (13-14), one can write:  

 

)(

0
1,  

n

wcluster

bonds

shell

bondsnn
T

T
NExpNP ∑ 
















+=+ ν  (17) 

 

)1(

0
,1  

+

+ ∑ 















−=

n

wcluster

bonds

shell

bondsnn
T

T
NExpNP ν  (18) 

 
Subscripts (n) and (n+1) mean that the averages have to be calculated on ensembles of 
configurations of size (n) and (n+1) respectively. Indeed, this form is well appropriated for a 
statistical evaluation of these two functions; this situation will be described in the next 
section.  
 

To get a tractable analytical solution for small clusters it is better to remark that the 
denominators of these expressions are the respective partition functions for cluster sizes n and 
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(n+1), as defined in equation 7. An additional simplification appears if these expressions are 
rewritten using notations introduced in equation (8): 
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P ν  (20) 

 
In both equations the double sum in the numerator runs over all possible transitions 

between the set of distinct configurations of state {n} and the set of all obtainable 
configurations of state {n+1} in the first case, and between the set of distinct configurations of 
state {n+1} and the set of all obtainable configurations of state {n} in the second case. To 
simplify, say that for reason of symmetry (or reversibility) the numerators of these two 
equations are strictly equal. This can be readily checked for the simplest possible transition, 
i.e. between states 1 and 2 of the cubic lattice. Starting from the unique configuration of state 
1 there are 6 (i.e. Z) ways to form a 2-atoms cluster. But this set of 6 configurations is in fact 
constituted of 3 distinct configurations (aligned along <100> directions) appearing each twice. 
The reverse transition consists to go from these 3 distinct configurations of state 2 towards 
state 1 by releasing a B atom. For each of these 3 configurations, 2 different B atoms can be 
removed, then again, one can formed 6 (here identical) configurations of the final state. 

The generalization of this simple case requires the definition of another characteristic of 
clusters which is very important to perform the Monte Carlo calculations reported in the next 
section: the number of B atoms which can be removed from a cluster of size (n+1) such that it 
results in a cluster of size n defines the degeneracy factor Dg(n+1). In the capture process 
described by equation (19), the new atom can necessarily be removed without breaking down 
the cluster, thus for a given configuration of size (n+1) the degeneracy factor Dg(n+1) is the 
number of ways to obtain this configuration from all possible configurations of size n. And 
for the configuration of size (n+1) it is also the number of obtainable configurations of size n 
(in the simple example depicted above, Dg(2)=2). Therefore, numerators of equations (19) 
and (20) are only two ways to write the same quantity which will be referred to as the 
transition function Tn,n+1 between states {n} and {n+1} with the remarkable property Tn,n+1 = 

Tn+1,n :  
 

∑∑ 








 ∆+∆
−= +

+
i B

jninshell

ibonds

j

jnnn
Tk

UU
ExpNdT

2
 ,,1

,,1,  (21) 

 
The advantage of defining this function is that to calculate the capture and release 

probabilities it is the only function to compute in addition to the (reduced) partition function 
*
nQ . The equality Tn,n+1 = Tn+1,n allows for the calculation to be based on the capture 

mechanism, avoiding the complexity of the release mechanism. Finally, with Eqns. (8, 19-21) 
the capture and release probabilities write respectively: 
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shell
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The ratio of these two probabilities takes a form similar to a well-known equation in classical 
cluster dynamics (equation A6): 
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shell
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nn
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,1

1,
   (24) 

 
When the gas of clusters is at equilibrium, X

shell=X1 (the solute concentration in the 
matrix) whatever the size of clusters, then these probabilities verify the “detailed balance”. 
However, using X

shell instead of X1 as in the classical scheme is likely to lead to different 
dynamical behaviour. Indeed, instead of implicitly assuming the interface area around a 
cluster being at equilibrium, with present coefficients, the system has to couple a local 
equilibrium and a global equilibrium by adjusting the concentration in the second shell. As a 
consequence, this concentration, normalized by the monomer concentration in the matrix, is 
expected to be a function of both cluster size and time, as obtained by Kelton (2000).  
 
 

§ 4. EXACT SOLUTION FOR SMALL SIZE CLUSTERS 

 
Starting from the 1-atom cluster (the first parent configuration), the list of its first Z 

neighbours is built. Then for each member of this list, a 2-atoms cluster (one of the Z child 
configurations) is built and compared with the list of validated 2-atoms clusters. If it is found 

to be a copy of a configuration already present in the list it contributes only to T12, not to *
2Q  

otherwise a new entry is appended to the list of 2-atoms clusters. The energy and the number 
of first neighbours are noted for each validated configuration. In addition, to compute the 

function Tn,n+1 it is also necessary to note the energy of its parent and shell

bondsN . As most of the 

computing time is spent in the comparison of newly formed configurations with the list in 
construction, some basic tests are performed to save time: the dimensions of the enclosing 
box, the energy level and the number of first neighbours are first compared with values 
already accepted. If all these tests are positive, the only safe way to check if the current 
configuration is a new one or not is to compare this configuration to the referred one, atom 
per atom. Finally all configurations are arranged according to their level of energy. The same 
operations are then applied to the next value of n, the number of B atoms in the cluster, i.e. for 
each parent configuration all possible child configurations are built and examined. Due to the 
exponential growth of the total number of configurations (see the last column in table 1), on a 
common workstation this exhaustive method can be applied only up to n=9 for the cubic 
structures. One more value can be reasonably obtained but except maybe with massive 
computing resources the following values will remain out of reach still for some time. 
Actually even if it would be technically possible to compute few more values, the effort is 
questionable. It is more efficient to develop a robust Monte-Carlo algorithm with help of the 
present values as guidelines.  
 

Three quantities have been calculated for the cubic structures as functions of the energy 
ratio (Tw/T), independently of individual values of bond energies and the temperature: the 
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partition functions *
nQ  (table 1), the number of sites in the first shell Nsh1 (table 2) and the 

transition function Tn,n+1 (table 3). The same calculation can also provide the number of sites 
in the second shell and other quantities if necessary. The average energy can be easily 

obtained from the expression of *
nQ . 

Coefficients dn,k found in tables (1-3) can be used to express results as polynomial 
series of the factor ϕ =Exp(Tw/T), a common form in the Ising models literature (Domb 1974): 

 

∑ −+−=
k

knTable

knn dQ   )11(21 
,

* ϕ  (25) 

 

( ) *)11(21 
,

2 
,1   /    )( n

k

knTable

kn

Table

kn QddnNsh ∑ −+−= ϕ  (26) 

 

∑ +−
+ =

k

knTable

knnn dT )1(23 
,1, ϕ  (27) 

In table 1, for a given state (line) the levels of energy (columns) are arranged from the 
left to the right in the decreasing order; this also corresponds to decreasing numbers of 
distinct configurations. One can see that the numbers of the lowest energy configurations do 
not follow any logic progression, contrarily to the total number of configurations (column 
“total”) which increases very quickly. This particularity explains the sudden deviations 
observed at low temperature in MC calculations (see next section) while all results exhibit 
smooth variations at high or even medium temperature.  
 

- tables 1-3 about here - 
 

§ 5. MONTE CARLO CALCULATIONS FOR MEDIUM SIZE CLUSTERS 

 
5.1. Calculation principles 

For cluster sizes larger than 9, Monte Carlo calculations were performed to determine as 
accurately as possible the numbers of sites in the first and second shells, as well as the capture 
and release probabilities. According to the present model, if one only needs to know the 
values of the exchange rates at a given temperature and in a limited range of cluster size 
(typically 1-100), the free energy itself is no longer necessary as in classical models. But like 
for exact calculations, available computing power necessary limits the cluster size for which 
such calculations can be performed in a reasonable amount of time. Beyond this size it is 
necessary to extrapolate Monte Carlo results, this is where the knowledge of the ratio 

**
1 / nn QQ +  (from which the free energy can be deduced), which can be readily obtained as the 

ratio ( )0
,1/

0
1, nnnn PP ++ , becomes very helpful. Furthermore the knowledge of this quantity can 

provide the free surface energy, a quantity directly utilisable by classical approaches. Another 
reason to calculate this quantity for the cubic structure was the possibility to compare with the 
pioneering work of Jacucci et al. (1983) and Perrini et al. (1984a,b). Using the Monte-Carlo 
technique of “overlapping distributions” (Bennett 1976) to compute the free energy of clusters 
up to 20 units (20 solute atoms if one considers segregation) in a 3D cubic lattice, for the first 
time these authors were able to provide reliable input data for cluster dynamics. In practice, 
this method is based on the sampling of two functions: the number of A, B atoms linked to the 
cluster by a number Nb of bonds. For small clusters the value Nb=1 is the only possible 
choice, then other values become possible as the cluster size increases. Bennet (1976) 
indicated how to obtain optimal results when several values of Nb are available but Perrini et 

al. (1984a,b) did not find any advantage in using larger values of Nb for this problem, thus 
only the value Nb=1 was used here to compare with results obtained by these authors. In the 
general case, with present notations, the key equation of this method writes: 
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where bN

nB 1+  and bN

nA  are respectively the number of B and A atoms linked to the cluster by 

Nb bonds; the term (Z-2Nb) can be derived from equation (6). The complete algorithm to 
compute 0

1, +nnP  and 0
,1 nnP +  is rather complex and will be described elsewhere. Only the general 

principles of these MC calculations is briefly indicated, knowing that the basic principle is 
now very classical: the space of configurations for a given size of cluster is explored by 
exchanging a B atom with an A atom. In the present work only useful transitions (i.e. such that 
the result of a permutation of atoms A and B is a cluster of size n) are considered. No other 
restriction was imposed in the choice of the pair of A-B atoms, i.e. this process should not be 
confused with the true release and capture events described by equations (19-20). The 
transition is accepted according to a Glauber criterion based on the change of energy of the 
cluster due to its change of shape (cf. equation 6). For a cluster of size n, n successive 
iterations define a Monte Carlo step per site (MCS). The six functions mentioned above are 
evaluated every Lmcs MCS, such that Lmcs is larger or equal to 1 to avoid correlations 
between successive configurations. Using Lmcs=10 gives an accuracy approximately three 
times better than with Lmcs=1 for a computing time approximately 6 times larger. Between 
2n 105 and 10n 105 iterations were performed each run depending on Lmcs and (Tw/T). 

Comparing with exact values at small cluster sizes, the accuracy of calculations was 
estimated from the dispersion of more than 50 runs. Best results were obtained for Nsh1, due 
to its limited range of variation: about 10-4, and only weakly dependent on temperature. The 
least accurate results were obtained for 1

1+nB , a quantity of small magnitude but important 

dispersion and sensible to the temperature: from 2 10-3 at (Tw/T) ≤ 1.25 to 2 10-2 at (Tw/T)=2. 
Low temperatures require special care due to the risk of over-sampling configurations of 
lowest energies, otherwise the increasingly large real deviations appearing when temperature 
decreases could also induce important numerical errors. Nevertheless it is impossible to 
prevent a severe drop of the accuracy at low temperature, except by averaging at least 10 runs. 
This was not found justified because when the accuracy starts to seriously decrease, for 
(Tw/T) ≥ 1.25, the ratio between the respective magnitudes of real variations and numerical 
fluctuations increases quickly from few units up to 10 or more at (Tw/T)=2; thus curiously, 
the influence of numerical errors decreases while the accuracy decreases too.  

The accuracy of the ratio **
1 / nn QQ +  being the sum of relative errors on either 1

nA  and 

1
1+nB  or 0

1, +nnP  and 0
,1 nnP +  is by consequent better with the latter method than with the 

“overlap distribution” method by a factor 2 approximately, whatever the temperature, due to 

the relatively poor estimation of 1
1+nB . Based on the estimation of 0

1, +nnP  and 0
,1 nnP + , the 

accuracy of the ratio **
1 / nn QQ +  was found better than 10-3 at high temperature but only of 1.5 

10-2 for the lowest temperature, which is still convenient. Extensive analysis of results for 
n=50 did not reveal any trend of the accuracy with the cluster size, compared to its 
temperature sensibility, the accuracy of the algorithm used in this work appears to be 
independent on the cluster size.  
 

5.2. Extrapolation of MC results for large size clusters 
Computations have been performed for 8 values of (Tw/T) in the range [0.75 – 2.0]; 

results obtained for (Tw/T)=0.5 are so different and believed to be of poor interest for the 
purpose of precipitation that they will not discussed here. To fix ideas, if one is interested in 
L12 clusters in aluminium alloys, the main range of interest for (Tw/T) is typically [1.0 – 1.5] 
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with a possible extension up to 1.75; other values have been computed to help the general 
understanding and in case it would be useful for other materials or other physical properties. 
For these 8 values of (Tw/T) the calculations has been done up to n=100. In addition, for 
(Tw/T) in the range [0.75 - 1.25], where the accuracy remains stable, two pairs of cluster sizes 
were also explored: (199-200) and (399-400), to check the validity of predictions based on the 
main curve (1-100). Generally speaking, the higher the temperature the smoother the obtained 
curves, whatever the considered quantity. On the contrary, when the temperature decreases, 
some fluctuations start to appear, first for small cluster sizes and vanish slowly when the size 
increases. For (Tw/T)=1, these fluctuations are typically of the same magnitude than the 
computing ones then they increase slowly up to (Tw/T)=1.25. For lower temperatures, the 
magnitude of these fluctuations continues to increase but faster and faster; for (Tw/T)=1.5 
curves exhibit a regular wavy shape which apparently persists while n increases. Finally, for 

(Tw/T)=2 huge variations, in particular of the ratio **
1 / nn QQ +  (figure 7), can be observed. 

These fluctuations are normal consequences of the discrete nature of the atomic lattice and in 
present the case of the low value of Z (cf. section 4). For these reasons, results for sizes (399-
400) at low temperature would be more confusing than useful; to be relevant one should 
compute a long sequence of consecutive values, instead of only two values. According to the 
evolution observed from medium temperature toward low temperature this expensive 
calculation does not seem justified. On the other hand, at high temperature, the size range (1-
100) seems too short to fully capture the asymptotic behaviour. Indeed, the behaviour at small 
cluster sizes is a transient regime whose length increases with temperature, which is likely to 
induce interpretation errors. A consequence of these real fluctuations is that the apparent 
accuracy of the fitting procedure, i.e. the envelope of residuals (the difference between 
computed and analytical values) can be much greater than the estimated numerical accuracy. 

Reporting raw results of MC calculations as done in Perrini et al. (1984b) for all 
quantities and temperatures investigated here is of course not possible. In addition to various 
graphical representations, to be further used, calculation results need to be fitted with simple 
functions, if possible. As for any data, fitting MC results has to satisfy several conditions, in 
particular: 

1) If the fit results are to be extrapolated to large size clusters, they should be 
predictive, i.e. a fit built in a range of n values should be able to correctly predict 
values not taken into account out of this fit range.  

2) fit expressions should use a minimum of parameters to limit their non linearity, in 
particular the variation of these parameters should be as regular as possible so that 
results can be interpolated at various temperatures between nodes in the explored 
range. 

As already mentioned most curves exhibit a transient regime at low cluster sizes then 
reach an asymptotic regime. Thus in practice, depending on the required degree of accuracy 
and simplicity, it might be necessary to provide two fits, one for small cluster sizes (including 
or not the sizes for which the exact solution is known) and another one for larger clusters. The 
difficulty for high temperatures arises from the length of the transient stage and also from the 
fact that semi-empirical laws giving a good description of results from low to medium 
temperature are not always relevant at high temperature. Fitting results at low temperature 
faces another difficulty. Indeed, the fluctuations observed along the curves are likely to 
severely influence the fitting procedure. For (Tw/T)=2 the relevance of fitting results becomes 
even questionable in itself. To conclude about this question, the hope to fit any of the 
quantities computed here with a universal law relevant at all temperatures and all cluster sizes 
should be abandoned.  

Figure 2 demonstrates the efficiency of the fitting procedure used in this work, in 
particular for the difference of free energy F(n)-F(n-1) following an expression proposed by 
Perrini et al. (1984b): 
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( )( ) ( )( ) ( ) dnLnnLncnnbnnanFnF +−−+−−+−−=−− )1()(11)1()( 3/13/13/23/2  (29) 

 
Here, a, b, c and d were considered as adjustable parameters. 
 

- insert figure 2 about here - 
 

5.3. The effective interaction surface 
As mentioned in section 5.1 the highest accuracy was obtained for Nsh1 due to its 

moderate dispersion. Figure 3 and 4 present the variations of Nsh1 and Nsh2 respectively, in 
the range of cluster size (1-100) for all temperatures investigated in this work. These two 
functions present similar behaviours and only Nsh1 was analyzed in details. It can be 
remarked that curves related to the (Tw/T)=1 and (Tw/T)=1.5 (the main range of interest for 
precipitation in aluminium alloys) define a very narrow region. For (Tw/T)=2, important 
fluctuations are present but the curve still fluctuates within this region, at least in this range of 
cluster size.  

To compare the evolution of Nsh1 with the classical approximation used in cluster 
dynamics, assuming spherical clusters whatever their size, figure 5 shows the same results 
than figure 3 but extended up to n=400 as well as the solutions for cubic and spherical 
clusters, assuming that clusters have always a stoechiometric composition. In first 
approximation, Nsh1 follows the same power law than the cube- or sphere-solutions. However 
note that all curves are clearly distinct from the sphere-solution although this solution seems 
to be an asymptote at macroscopic sizes; but an accurate fit of Nsh1 reveals a more complex 
reality. Although the dispersion of curves for the different temperatures is very low, fitting 
accurately Nsh1 or Nsh2 to predict their behaviour at large cluster sizes requires to distinguish 
two regions: low cluster sizes (n<30±5) and larger sizes (tables 4 and 5). Both regions can be 
easily fitted with the same expression but with different parameter values: 

 

( )cnbnanNsh       )( 3/13/2 ++=  (30) 

 
The asymptotic behaviour of Nsh1 for very large clusters is given by the parameter a in 

equation (30) or A2 in table 4; its evolution with (T/Tw) is plotted in figure 6. The result could 
not be guessed from a simple visual examination of figures 3 and 5. 
 

- insert figures 3-5 about here - 
 

- insert tables 4-5 about here - 
 

- insert figure 6 about here - 
 

According to figure 6, the surface of macroscopic clusters is minimum around 
(Tw/T)=1.125 for which it is close to that predicted by the sphere-solution, and increases 
almost up to the value corresponding to the cube-solution when the temperature either 
increases or decreases. The evolution of Nsh2 at large cluster sizes (table 5) as well as other 
quantities to be further discussed confirms the existence of two distinct behaviours in the 
(Tw/T) range (0.75 – 2.0). At higher temperature, equation (30) seems inappropriate to 
accurately describe the observed behaviour even for small to medium clusters. For instance, 
the last point in figure 6, for (Tw/T)=0.75, was obtained by fitting the obtained curve only 
from n=80 and including the pairs of data at (199,200) and (399,400). The same procedure 
applied to Nsh2 revealed the same trend, i.e. the coefficient of the term in n2/3 increases and the 
coefficient of the term in n1/3 decreases. In fact this apparently odd evolution of Nsh1 and Nsh2 
results from two different causes. When the temperature increases, although the shape of large 
clusters is certainly more spherical than at low temperature, an increasing number of 
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configurations can include “cavities” in volume or even more probably “quasi cavities” in 
surface, the energy cost of such defects decreasing. Thus for a given number of solute atoms 
the effective volume and surface of the cluster increase mostly because of the roughness of 
the surface. On the contrary, decreasing the temperature drives the cluster composition toward 
stoechiometry but enhances the contribution of lowest energy configurations whose shape is 
almost cubic: the best example is the isolated configuration for n=8 (cf. table 1) which is a 
perfect cube. Therefore the increasing surface of large clusters when temperature decreases 
reflects mostly the evolution of the cluster shape as observed in KMC simulations (Clouet et 
al., 2004) or in electron microscopy (Marquis and Seidman, 2001) for L12 clusters of Al3Sc. 
Imagine that the Markov chain of visited configurations for a given size of cluster during 
sampling is transformed into a movie, each image being associated with one of these 
configurations. At low temperature, one would have the impression of watching the frozen 
image of a cubic cluster with sharp interfaces. On the contrary, at high temperature the 
impression would be to watch a more spherical cluster but with very diffuse and always 
fluctuating interfaces, as a consequence of the exploration of a large number of various 
shaped configurations. 

 
5.3. The free energy 

The free energy derived from the ratio *
1

* / −nn QQ  can be directly obtained from the 

sampling of 0
1, +nnP  and 0

,1 nnP +  (equations 17-18) or alternatively from the simplest sampling of 
1
nA  and 1

1+nB  as already done in Jacucci et al. (1983) and Perrini et al. (1984a,b). Figure 7 

presents the obtained results for the eight reported values of (Tw/T). The most striking feature 
of this figure is the behaviour obtained for (Tw/T)=2 which contrasts with the monotonous 
behaviour obtained in the range (0.75 – 1.25). Note that the first peaks are still obvious for 
(Tw/T)=1.5 and can be guessed even for (Tw/T)=1.375. Again, the origin of these peaks 
explains easily with table 1. When temperature becomes very low, the probability to find a 
cluster in a configuration differing from the lowest energy configuration decreases very 
quickly, i.e. only the last column in table 1 has to be considered. According to equation (25), 
the energy associated with this configuration (a function of both n and k in table 1) can be 
very close or very different from the next and the previous ones. Large clusters exhibit a more 
regular behaviour but fundamentally their behaviour is not different from that of small 
clusters. In particular, the sudden drops are related to single values of n, while the following 
increase are related to several successive values of n, exactly like for small clusters; the 
periodicity of these inversed peaks increases linearly with n, at least while n<100.  

 
- insert figure 7 about here - 

 

The ratio *
1

* / −nn QQ  can be directly used but for further analysis it is preferable to 

transform it into a difference of free energy as reported in figure 8; to improve clarity the 
curve for (Tw/T)=2 is not reported. The values of the fit parameters are reported in table 6 for 
two regions, up to n=40 for the first one and from n=30 for the second one. For (Tw/T)=1.25 
the simplest capillary approximation F(n)=a

2 σ n
2/3 (here a is the lattice parameter and σ is 

the average surface free energy) gives almost the same quality of fit than the more complex 
equation (29). For (Tw/T)=0.875 it is still possible to obtain an acceptable fit using equation 
(29) provided that the value n=200 is also accounted for, otherwise the deviation is about 1% 
for the last value, which is small in itself but not acceptable to represent the asymptotic 
behaviour of large clusters. Finally for (Tw/T)=0.75 the fitting range should be moved toward 
much larger value of n, as it can be guessed from figure 8. For low temperatures real 
fluctuations are too large to be reduced by any regular fitting function; one has to accept the 
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use of an average and regular function disregarding these fluctuations otherwise it is no longer 
possible to interpolate present results at intermediate temperatures.  
 

- insert figure 8 about here – 
 

- insert table 6 about here - 
 

A widely used quantity in macroscopic models is the average surface free energy σ 
defined as the ratio of the free energy and the surface of the equivalent spherical and isotropic 
cluster containing n solute atoms, i.e. F(n)=σ (36π)

1/3
 n

2/3. As long as the free energy can be 
described with only one parameter, i.e. when (Tw/T) ≥ 1.125, this definition of σ is a very 
convenient convention and is given by parameter A2 in table 6 without any ambiguity. If it is 
well appropriated to describe the behaviour observed at medium temperatures, describing the 
free energy at (Tw/T)=2 with only one parameter as done in table 6 amounts to ignore the 
large fluctuations (cf. figure 5); although, in first approximation, their periodicity increases 
linearly with the cluster size, their influence on precipitation kinetics is still unknown. On the 
other hand, at high temperature, due to the need of additional terms to accurately describe 
F(n) up to rather large cluster sizes, σ is only the asymptotic limit of F(n)/(36π)

1/3
 n

2/3 for 
macroscopic clusters. This need of three parameters for (Tw/T)≤ 1 and the additional need to 
account for the data at n=200 for (Tw/T)=0.875, as well as the fact that equation (29) 
describes results for low sizes but with a different set of parameters values, strongly suggest 
that even at (Tw/T) ≤ 1 the fitting range should be translated towards higher values of n to 
correctly describe F(n) with only one parameter as at lower temperature. And in this case the 
obtained value is likely to differ from the reported value of A2 in table 6 by few percents. 
Keeping in mind these limitations at extreme temperatures, the obtained values for parameter 
A2 (table 6) were used to derive the average free surface energy of Al3Zr and Al3Sc L12 
clusters using inter-atomic potential developed by Clouet et al. (2004) then compared with the 
values reported by these authors following a completely different procedure, briefly 
summarized here. The surface energies σ100, σ110 and σ111 of planes {100}, {110} and {111} 
respectively, were first established using the Bragg-Williams approximation which partly 
accounts for the non stoechiometry of cluster surfaces. Then a Wulff construction was applied 
to find the equilibrium shape of clusters at a given temperature as well as the average free 
surface energy. The comparison (figure 9) shows a good convergence between the two 
estimations for T<650K but between this temperature and the melting temperature, present 
results gives σ values decreasing more quickly. The convergence at low temperature and the 
increasing difference at high temperature between the two methods are absolutely not 
surprising. The method used in Clouet et al. (2004) allows for an effective decrease of σ100 
with temperature to be accounted for (otherwise the obtained curves would be much flatter), 
but this decrease might be underestimated at high temperatures due to the increasing non-
stoechiometry of clusters. In addition, the Wulff construction is well adapted to low 
temperatures, characterized by the configuration of lowest energy, but at high temperature this 
procedure is likely to overestimate the contribution of these low energy configurations. On the 
contrary, at low temperature the two methods necessarily give very similar results, the 
absolute asymptote at 0K being given by a perfectly cubic cluster with {100} facets (σ100 = 
Wab/2), which leads to σ=(6/π)1/3 Wab; for the parameter A2 in table 6 this corresponds to the 
maximum value of 3.  
 

- insert figure 9 about here – 
-  

Knowing [F(n)-F(n-1)] and F(1), F(n) can be built by recurrence as done in Perrini et 

al. (1984b). It is important to note that fitting F(n) leads to poor results compared to a direct 
fit of the effectively computed quantity [F(n)-F(n-1)] (after some transformation) as done 
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above. Intuitively, according to the relation between the ratio *
1

* / −nn QQ  and the exchange 

rates, a better correlation is expected between F(n) and Nsh1(n), than between F(n) and n2/3. 
This correlation is shown in figure 10. The obtained curves can be fitted with a good accuracy 
by the semi-empirical expression, consistent with equations (29-30): 

 
cnNshLnbnNshanF ++= ))(( )( )( 11  (31) 

 
The lower the temperature, the more linear the relation between F(n) and Nsh1(n) 

(table 7). Contrary to the evolution of [F(n)-F(n-1)], the fluctuations of F(n) versus Nsh1(n) at 
(Tw/T)=2 are smooth and of low amplitude which confirms the high correlation between these 
two quantities. Although a long transient regime can be observed for (Tw/T)=0.75, it was 
possible to get an acceptable fit for available data. At high temperatures the evolution of the 
leading coefficient (a) in table 7 is very regular (figure 11) and is consistent with the fast 
decrease of σ at high temperatures in figure 9. At low temperature it goes through a maximum 
at (Tw/T)=1.25 then decreases very slightly as a consequence of the increase of Nsh1. The 
same quantity can be obtained combining σ and the leading term of Nsh1(n) (table 4 and 
figure 6); figure 11 shows some differences (up to 6%) between these two estimations but the 
two curves have the same shape with a maximum at (Tw/T)=1.25. In addition, at low 
temperature they both converge toward the absolute asymptote associated with perfectly cubic 
clusters. When temperature tends toward zero, the entropy contribution to free energy 
vanishes thus F(n) converges toward the mean energy <E(n)> which is always equal to 
<Nab> Wab/2 (equation 3), therefore if the cluster shape tends toward a cube of faces {100}, 
it implies that Nsh1 and Nab tend toward 6n

2/3 thus the low temperature asymptote in figure 11 
is ½.  

The differences between the two curves in figure 11 show that the asymptotic 
behaviour of a given function at large cluster size can hardly be estimated from the value of 
the leading term of the function used to fit it if this one is not limited to a single term as for 
[F(n)-F(n-1)] at low temperature (table 6). This is not related to the accuracy of the fitting 
procedure or the choice of the function but to the fact that the value of the leading factor for a 
given function is necessarily influenced by the secondary terms; this can be easily checked by 
changing these additional terms in the fitting function. An accurate value of σ can be obtained 
only because [F(n)-F(n-1)] converges quickly with n, except when (Tw/T) ≤ 1 approximately, 
but the derivative of other functions converge more slowly. Although this might be a 
coincidence, note that in figure 11 the asymptote ½ cuts the curves in the (Tw/T) range (1-
1.125), which corresponds very well to the bound between high and low temperature 
behaviours (figure 6).  

- insert figures 10-11 about here – 
 

- insert table 7 about here - 
 

5.5. The exchange rate factors 

It is reminded that the factors 0
,1 nnP +  and 0

1, +nnP  (equations 17-18) are the only calculated 

quantities in this work which depend on the choice adopted for the elementary transition 
probability (see section 3.3); note however that their ratio does not depend on this choice, the 
free energy is a property of clusters, only the kinetic factors can depend on this choice. Note 
also that these coefficients being dependent on the structure of the second shell, strictly 

speaking, using the present values of 0
,1 nnP +  and 0

1, +nnP  for L12 precipitates is only an 

approximation, contrarily to Nsh1(n) and F(n) which are fully correct; the influence of this 
approximation will be examined in a next paper.  
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Although 0
,1 nnP +  (figure 12) is a quantity varying very regularly, no convenient fitting 

expression was found. It is more efficient to fit 0
1, +nnP  (figure 13) then to use the accurate fit of 

[F(n)-F(n-1)] and equation (24). Concerning the capture factor 0
1, +nnP  (figure 13), although 

fitting each curve in figure 13 was possible, no predictive solution was found unlike for F(n) 
or Nsh1(n). In fact figure 13 seems rather odd, in particular the spectacular evolution from 

(Tw/T)=1.5 to (Tw/T)=2 and like F(n), 0
1, +nnP is better understood when plotted against Nsh1 

(figure 14) instead of n. Within this representation, good fits of 0
1, +nnP  can be obtained with 

expression: 
 

( ) ( ) dNshbNshLncNshaTTwExpP nn        )( 1  / / 111
0

1, +++=+ ν  (32) 

 
- insert figures 12-13 about here - 

 

Thus, in first approximation the relation between 0
1, +nnP  and Nsh1 is linear, like for the free 

energy. Disregarding the large fluctuations characteristic (Tw/T) ≥ 1.5, the values of 
parameters a, b, c and d reported in table 8 show that the lower the temperature the better the 
linear approximation. For (Tw/T)=1.5 the ratio between minimum and maximum values of a 
fluctuation is still close to 1 and the curve can be reasonably replaced by the monotonous 
curve given by equation (32) but for (Tw/T)=2 this ratio is larger than 2, thus fitting with 
equation (31) or any other monotonous function does not make sense. According to tables (1-
3), considering n=7 for the maxima and n=8 for the minima, the ratio of the normalized rate 

factor 0
1, +nnP  tends toward Exp(2Tw/T)/22 when T tends toward 0K. This order of magnitude 

seems compatible with the wide oscillations at larger cluster sizes.  

To summarize, starting from low temperature, 0
1, +nnP
 

slightly decreases when 

temperature increases while 0
,1 nnP +  increases. Accounting for the respective normalization 

factors applied to figures 12-14 does not change the relative positions of the different curves. 
But accounting for the thermally activated diffusion coefficient is likely to inverse the order 
of curves versus (Tw/T) in figure 13-14. 

 
- insert figure 14 about here - 

 
- insert table 8 about here – 

 

This (approximately) linear relation between the capture rate factor 0
1, +nnP  and Nsh1 is 

the equivalent of the linear relation in classical cluster dynamics between the global 
absorption rate and the surface of the cluster, considered spherical. However, in the present 

model, both the active surface for capture Nsh1 and the proportionality factor between 0
1, +nnP  

and Nsh1 are functions of the lattice structure and the key parameter (Tw/T). In first 
approximation (the larger the cluster size, the better the approximation), equation (22) can be 
rewritten as follow: 
 

shell

nnn Xn
T

Tw
ExpP       2/3

n 1, 















≈+ λν  (33) 

Similarly, using equation (24), the release rate can be rewritten as:  
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*

1

*
2/3

n 1, 
























+

≈+
n

n

nn
Q

Q
n

T

Tw
ExpP λν  (34) 

 

 nλ is here the parameter a in equation (32) and table 8 multiplied by the coefficient of the 

term in n2/3 of Nsh1 (A2 in table 4), i.e. it is the limit for large values of n of 3/20
1, / nP nn + . The 

pre-factor [λn Exp(Tw/T)] is shown in figure 15, in the represented range of (Tw/T) it follows 
a parabolic law with the maximum value at (Tw/T)=1.5 equal to about 5 times the minimum 
value at (Tw/T)=0.75. In the main range of interest, for (Tw/T) between 1 and 1.5, the central 
value and its variation are about 110 ± 55. It should be noted that in other models, including 
Kelton’s work, this pre-factor is constant with temperature. 
 

- insert figure 15 about here - 
 
 

§ 6. Conclusion 

 
A self-coherent definition of interfacial reaction rates in binary alloys for which 

interactions can be described with an atomic potential limited to the first neighbours (or 
second neighbours for ordered clusters), and exchanges are limited to capture and release of 
monomers, has been proposed. It does not require the usual arguments needed by classical 
cluster dynamics to be derived, in particular equation (A6), but it verifies this well-known 
condition at equilibrium (the only assumption is that the density of monomers is everywhere 
the same at equilibrium). Decoupling explicitly the interface mechanisms from the long range 
diffusion as proposed by Kelton (2000) allows for the development of a framework whose 
key parameter is the ratio (Tw/T=Wab/2kbT), for a given lattice structure. Within this 
framework the complete definition of a cluster includes two shells in addition to its core; the 
first shell is the effective collecting surface. A transition function Tn,n+1 has been defined and 
enters in the definition of both the capture and the release probabilities. The application of 
present results obtained for the cubic lattice concerns mostly L12 clusters but the main 
characteristics of the model as well as the numerical methods can be applied to any 
crystallographic structure. 

 
For small clusters, up to n=9, results (the effective surface, the partition and the 

transition functions) were obtained exactly and expressed as analytical functions of the factor 
(Tw/T). For larger clusters a classical Monte-Carlo sampling technique has been applied to 
evaluate the number of sites in the two shells and the exchange rates with a high accuracy 
except at low temperature. The estimation of the difference of free energy [F(n)-F(n-1)] has 
been performed following two methods: first as already done by Jacucci et al. (1983) and 
Perrini et al. (1984a,b), and second from the direct estimation of the capture and release 
factors. It was found that the second method is about twice more accurate than the first one, 
whatever the size of clusters and the temperature.  

 
The present model stresses the role of the effective cluster surface for interfacial 

exchanges compared with the usual surface of the equivalent sphere. Its analysis revealed that 
for a given cluster size it changes with temperature according to two different mechanisms. In 
At low temperature, the average cluster shape tends to be cubic with sharp interfaces, while at 
high temperature it tends to be more spherical but with diffuse interfaces. All properties of 
clusters, as well as their numerical estimation, are highly influenced by these two effects. For 
instance, at low temperature the estimations of the free surface energy σ of L12 clusters of 
Al3Zr and Al3Sc are in excellent agreement with those obtained by Clouet et al. (2004) with 
classical methods, at their best at low temperature, but the present calculations give a much 
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faster decrease of σ at high temperature. The asymptotic value for large clusters of the pre-
factor common to the capture and release rates was found to be temperature dependent instead 
of being constant as in other models.  

 
Except at low temperature, all computed quantities can be fairly well fitted with simple 

analytical laws, making possible their extrapolation up to large cluster sizes (at least much 
larger than actually needed to model the first stages of precipitation kinetics) and interpolated 
at intermediate temperatures (the accuracy of this procedure can always be improved by 
additional computations at other temperatures). In return this should open the door to the 
application of cluster dynamics to complex thermal treatments but the price to pay for the end 
user will be the choice of a relevant inter-atomic potential, exactly as for doing KMC 
simulations. Generally speaking, this kind of approach cannot pretend to preserve all the 
richness of KMC simulations Instead it should be considered as a complementary approach or 
in some cases an alternative for situations difficult to investigate with KMC simulations due 
to unreasonable computing time, typically low saturated solutions and / or complex thermal 
pathways. 
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Appendix A: Classical cluster dynamics 

 
The aim of this appendix is to introduce the bases of classical cluster dynamics to the 

reader not familiar with this formalism. For a more complete discussion and applications, see 
a recent work by Clouet et al. (2005); other examples can be found for instance in Mathon et 
al. (1997). In its simplest form, only monomers (1-atom clusters) are mobile. The capture of 
monomers can be decomposed in two steps: (i) long distance diffusion and (ii) interface 
reactions. In problems controlled by the long range diffusion, the reaction time is neglected 
compared to the diffusion time which authorizes to encapsulate the two mechanisms in a pair 
of so-called emission and absorption rates (also called evaporation and condensation rates), 
namely α and β. The kinetics of the clusters population is then described by a simple master 
equation: 
 

( ) ( ) )( )()()( )()( )()( 1111 tCtttCttCttC nnnnnnnn βαβα +−+= −−++
&  (A1) 

 
)(tCn  is the atomic concentration of the class n (clusters of n solute atoms).  

 
There is almost no discussion in the literature about the definition of β. Although there 

are various ways to obtain the expression of β, basically they all lead to the same result; here 
only the simplest one is indicated. Assuming that absorption is diffusion controlled, by 

reference to the simple case of a hollow sphere of radius Rn and surface 24 nn RS π=  embedded 

in a quasi infinite matrix of atomic concentration X1(t) at its outer limit, it comes: 
 

)()( 1 tX
R

SD
t

n

n

n 








Ω
=β  (A2) 

 
Ω is the atomic volume. Physically, Sn is related to the interfacial process, i.e. it is the 
collecting surface, while Rn arises from the (long range) diffusion process. On the contrary, 
the definition of α is not trivial. It is based on the fact that at equilibrium (symbol “~”) α has 
to satisfy the rule of “detailed balance”: 
 

nnnn CC
~~~~

11 βα =++  (A3) 

 
The equilibrium concentrations are well approximated by a simple expression derived from 
Frenkel’s work (1955): 
 

( )
kT

nFFExpCC nn
n

1
1

~~ −−≈  (A4) 

 
Fn is the free energy of a cluster of size n. Combining these equations leads to: 
 








 −−

Ω
≈









Ω
= +

+

+
kT

FFF
Exp

R

SD

C

CC

R

SD nn

n

n

n

n

n

n

n

11

1

1
1 ~

~α  (A5) 

 
Following an argument formulated by Katz and Spaepen (1978) it is well accepted that 

emission is a property of the cluster and thus α can always be taken equal to its value at 
equilibrium given by the above equation. Finally the ratio of the two coefficients writes: 
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 +

+ kT

FFF
ExptXt nn

n

n 11
1

1

 )()(
α
β

 (A6) 

This expression shows the importance of an accurate estimation of the free energy Fn in 
classical cluster dynamics: indeed, it is the only size dependent parameter which contains 
some information about the material and the temperature. And in practice, using the classical 
capillary approximation, the problem is most often reduced to the estimation of the 
macroscopic surface free energy. This relative poorness is the price to pay for the extreme 
simplicity and versatility of this method. 
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Tables and tables captions 

 

 

Cubic structure 
n/k 1 2 3 4 5 6 Total 

1 1      1 

2 3      3 

3 15      15 

4 83 3     86 

5 486 48     534 

6 2967 496 18    3481 

7 18748 4368 378 8   23502 

8 121725 36027 4854 306  1 162913 

9 807381 288732 51030 5544 159 24 1152870 

 

Table 1. dn,k coefficients to compute the reduced partition function *

nQ  (equation (25)). 

 

 

Cubic structure 
n/k 1 2 3 4 5 6 

1 6.0000      

2 10.0000      

3 13.2000      

4 16.2651 16.0000     

5 19.2840 18.5000     

6 22.2952 21.1855 20.6667    

7 25.2961 23.9945 23.1111 22.0000   

8 28.2847 26.8759 25.7231 24.6667  24.0000 

9 31.2617 29.7883 28.4755 27.2338 26.4528 26.0000 

 

Table 2. dn,k coefficients to compute the number of sites in the first shell Nsh1 (equation (26)). 

 

 

Cubic structure 
k/n 1 2 3 4 5 6 7 8 

1 30 126 738 4638 30528 207378 1439588 10109808 

2   48 504 4008 29808 218868 1603470 

3    168 2988 33924 327684 2935506 

4     240 4104 45816 438626 

5      1260 28260 390408 

6      72 3240 56046 

7       552 23460 

8       0 2016 

9       24 456 

10        0 

11        72 

 

Table 3. dn,k coefficients to compute the transition function Tn,n+1 (equation (27)). 
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(Tw/T) A1 B1 C1 A2 B2 C2 

0.875 5.006 8.501 -9.88 5.1647 5.3786 -0.97 

1.000 4.483 8.661 -8.71 4.9837 4.9680 -1.98 

1.125 4.534 7.171 -6.49 4.9734 4.2771 -1.75 

1.250 4.729 5.595 -4.54 5.0536 3.4886 -1.15 

1.375 4.946 4.259 -3.05 5.2150 2.5098 -0.27 

1.500 5.206 2.903 -1.63 5.3414 2.0108 -0.29 

2.000 5.864 -0.107 +1.31 5.7654 0.3954 +0.35 

 

Table 4: Fit parameters for Nsh1 with equation (30). First and second sets are convenient for n<40 and n>35, 

respectively. 

 

 

(Tw/T) A1 B1 C1 A2 B2 C2 

0.875 1.2628 41.4585 -35.58 4.6741 17.6958 5.824 

1.000 2.3904 31.0168 -19.18 4.6680 16.6951 3.270 

1.125 3.4003 23.9055 -9.67 4.7766 15.6034 2.782 

1.250 4.2825 18.4781 -2.90 4.9079 14.8083 2.431 

1.375 4.6440 16.5143 -1.10 5.2418 12.7474 4.831 

1.500 4.8937 15.4403 -0.49 5.6280 10.5026 7.654 

2.000 4.9590 14.9827 +0.21 7.0228 1.86919 20.98 

 

Table 5: Fit parameters for Nsh2 with equation (30). First and second sets are convenient for n<40 and n>35, 

respectively. 

 

 
(Tw/T) A1 B1 C1 A2 B2 C2 

0.875 2.082 3.367 -2.379 2.236 0.860 -0.717 

1.000 2.305 3.312 -1.980 2.446 1.427 -0.9393 

1.125 2.466 3.019 -1.617 2.697 ≈ 0.0 ≈ 0.0 

1.250 2.580 2.744 -1.362 2.800 0.0 0.0 

1.375 2.549 3.769 -1.765 2.870 0.0 0.0 

1.500 2.487 4.881 -2.217 2.917 0.0 0.0 

2.000    2.957 0.0 0.0 

 

Table 6 : Fit parameters for [F(n)-F(n-1)]/Wab versus n with equation (29). The first and second sets are 

convenient for n ≤ 40 and n ≥ 30, respectively. Parameter d was set equal to 0 and in the second range 

parameters b and c are necessary only at high temperatures.  

 

 

(Tw/T) a b c 

0.750 0.3532 -8.2484 27.388 

0.875 0.4298 -3.8602 10.057 

1.000 0.4796 -2.6436 5.666 

1.125 0.5116 -2.0836 3.969 

1.250 0.5275 -1.6351 2.840 

1.375 0.5271 -0.8157 0.561 

1.500 0.5232 -0.2618 -0.746 

2.000 0.5126 +0.5021 -2.254 

 

Table 7: Parameters for fitting (F(n)/Wab) versus Nsh1(n) with equation (31). 
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(Tw/T) a b c d 

0.750 2.5049 11.441 0.0199 -24.32 

0.875 3.8053 4.440 -0.0164 -8.78 

1.000 4.5328 1.676 -0.0259 -5.36 

1.125 5.6790 -3.998 -0.0420 2.75 

1.250 6.0866 -3.809 -0.0448 2.30 

1.375 6.6842 -4.945 -0.0517 0.92 

1.500 6.9655 -0.591 -0.0618 -21.34 

 

Table 8: Fit parameters for the capture rate factor 
0

1, +nnP normalized by ν Exp(Tw/T) as a function of Nsh1 

following equation (32).  
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Figure 1: An example of cluster, here of planar shape on a cubic lattice and formed of 6 solute 

atoms (size=6). Connected sites occupied by solute atoms constitute the cluster core. Sites linked 

to any site of the cluster core and not occupied by a solute atom constitute the first shell, part of 

the definition of the cluster. Sites linked to the first shell and not belonging to the cluster core 

define the second shell, occupied either by matrix atoms or by solute atoms. A change of 

configuration, redefines the shape of the cluster core and its two shells. 
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Figure 2: A typical example of the fit procedure applied in this work. The plotted quantity (dotted lines and 

circles) represents the residuals (i.e. the differences between computed and approximating analytical values) 

from the fit of F(n)-F(n-1) with equation (29) for (Tw/T)=1.25, a value for which real fluctuations are still 

comparable with numerical ones. The pair of convergent curves represents the data to fit multiplied by ± 0.5%,  a 

value adjusted to approximately nest the observed deviations in the fitted range from n=23 to n=100 (vertical 

dashed lines); the predicted value for n=400 is excellent. 
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Figure 3: The number of sites in the first shell versus the cluster size for different values of (Tw/T). All curves 

share the three first points (6, 1), (10, 2) and (13.2, 3) (cf. Table 2). 
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Figure 4: The number of sites in the second shell versus the cluster size for different values of (Tw/T).. 
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Figure 5: The global behaviour of the number of sites in the first shell versus the cluster size for different values 

of (Tw/T). The solutions corresponding to spherical and cubic clusters have been added. The latter is the plain 

line appearing in second position starting from the bottom left corner or from the upper right corner, crossing 

most calculated curves in the middle of the figure. 
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Figure 6: The asymptotic evolution of Nsh1, i.e. the coefficient of the term n
2/3

. The top and the bottom of the 

figure correspond respectively to a cubic and a spherical cluster (i.e. 6 and (36π)
1/3

), assumed stoechiometric.  

 

 

 

 

 

 

Page 26 of 31

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

10 100
Cluster size

10

100

Q
*

(n
)/

Q
*

(n
-1

)

0.75
0.875
1.00
1.125
1.25
1.375
1.50
2.00

 
 

 

Figure 7: 
*

1

* /
−nn QQ versus the cluster size n for different values of (Tw/T). Exact values from n=1 to n=9, MC 

calculations from n=10 to n=100 plus n=200 and n=400 for (Tw/T) in the range [0.75 - 1.25]. The two first 

values are common to all temperatures. 
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Figure 8: [F(n)-F(n-1)] normalized by Wab versus the cluster size (n) for different values of (Tw/T). Exact values 

for n=2 to n=9, MC values from n=10 to n=100, n=200 and n=400 in the range (Tw/T)= 0.75 – 1.25. 
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Figure 9: Comparison between the average free surface energy obtained from present results and the values 

reported by Clouet et al. (2004) for Al3Zr and Al3Sc L12 clusters. From left to right, plotted points 

correspond to the (Tw/T) range (2.0 – 1.0) in table 6 (here a is the lattice parameter). 
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Figure 10: The free energy normalized by Wab versus the number of sites in the first shell for different values of 

(Tw/T), the cluster size varying from 1 to 100. 
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Figure 11: Asymptotic behaviour of (F(n)/Wab) / Nsh1(n)  for large clusters. Plain curve: parameter a in table 7. 

Dashed curve: σ, i.e. A2 in table 6, over A2 in table 4. Plain horizontal line: asymptote at 0K. 
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Figure 12: The release rate factor
0

,1 nnP
+

 normalized by ν Exp(-Tw/T) versus the cluster size for different values 

of (Tw/T). The normalized values for n=2 and 3 are independent on temperature.  
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Figure 13: The capture rate factor
0

1, +nnP normalized by ν Exp(Tw/T) versus the cluster size for different values of 

(Tw/T). The normalized values for n=2 and 3 are independent on temperature. 
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Figue 14 : The capture rate factor
0

1, +nnP normalized by ν Exp(Tw/T) versus the number of sites in the first shell 

for different values of (Tw/T), calculated for cluster sizes 1 to 100 for all curves plus (199-200) and (399-400) 

for the (Tw/T) range (0.75 – 1.25). 
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Figure 15: The pre-factor of equations (33-34) as a function of (Tw/T). 
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