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An exact energy expression is presented in the strong-interaction limit of the density functional theory. Cusp relations are derived for arbitrary values of the coupling constant. The derivation utilizes the adiabatic connection and the strong-interaction limit is taken for a system of electrons and nuclei.

 [START_REF] Dreizler | Density Functional Theory[END_REF], Hohenberg and Kohn 1964[START_REF] Nagy Á | [END_REF][START_REF] Parr | Density Functional Theory of Atoms and Molecules[END_REF]. This theory states that there exists a functional E[ ] of the density that takes its minimum at the true ground-state electron density 0 . In the Kohn-Sham scheme (Kohn and Sham 1965) of the density functional theory non-interacting electrons move in a common local effective potential field and one-electron equations, the so-called Kohn-Sham equations should be solved. The local effective potential, the Kohn-Sham potential contains a term, the exchange-correlation potential that incorporates the many-electron effects. As its form is unknown it should be approximated. It turned out that simple local density approximations (LDA) is surprisingly good for periodic solids. However, LDA cannot provide the precision that is needed in surface chemistry, quantum chemistry, computation biology, etc.

There have been many attempts to develop approximations that are more accurate than the LDA (von Barth andHedin 1972, Kohn andSham 1965). In a large number of approaches the exchange-correlation functional depends not only on the density but the derivatives of the density, too. The most accurate gradient approximations are the generalized gradient approximation (GGA) (Langreth and Mehl 1983, Perdew and Wang 1986, Perdew et al. 1996,a) and the Becke-Lee-Yang-Parr (BLYP) (Becke 1988, Lee et al. 1988). There are some fully nonlocal approaches, where the exchange-correlation functional is obtained by modeling the pair-correlation function. The weighted density approximation (Gunnarsson and Lundqvist 1976) is the most popular fully nonlocal scheme.

There have been numerous studies concerning the coupling-constant dependence of the exchange-correlation functional. The success of the so-called hybrid schemes (Becke 1993) was explained on the grounds of the coupling-constant dependence of the exchangecorrelation energy. The adiabatic connection (Gunnarsson and Lundqvist 1976, Gunnarsson et al. 1976, Harris and Jones 1974, Harris et al. 1984, Langreth and Perdew 1975) provides the link between the real interacting and the fictitious non-interacting systems. The key quantities, such as the exchange-correlation energy are defined through adiabatic connection. It has recently been shown (Nekovee et al. 2003, Seidl et al. 1999, Seidl 1999, Seidl et al. 2000) that adiabatic connection has an important role in studying strongly interacting To find improved approximations is the aim of much current research. To test new functionals one needs highly accurate density, exchange-correlation energy density or paircorrelation function. These can be obtained from accurate many-body calculations, such as configuration interaction (CI) or quantum Monte Carlo (QMC) methods. There is another way of testing the quality of new functionals: to find out how accurately the trial functionals satisfy exact relations. So exact expressions have even practical importance. They provide a tool of improving functionals. The aim of this paper is to derive such an exact relation. This paper is organized as follows: In the following section adiabatic connection is summarized. Then the coupling constant dependent approximations for the exchange-correlation energy are reviewed. A section is devoted to the derivation of higher-order cusp relations for the wave function and the electron density for arbitrary coupling constant. In the last section the main result of this paper: a total energy expression in the strong-interaction limit is presented.

ADIABATIC CONNECTION

Consider a system of N interacting electrons in a local external potential v(r). The Hamiltonian has the form

Ĥ = T + Vee + V , (1) 
where

T = N i=1 (- 1 2 ∇ 2 i ) (2) 
and

Vee = N i<j 1 |r i -r j | (3) 
are the kinetic energy and the electron-electron energy operators and

V = N i=1 v(r i ). ( 4 
)
Then a coupling constant λ is introduced into the Hamiltonian with the definition Ĥλ = T + λ Vee + V λ .

(5) 

V λ = N i=1 v λ (r i ) (6)
is defined by the condition that the density is fixed along the adiabatic path. λ = 1 corresponds to the real interacting system, λ = 0 gives the non-interacting Kohn-Sham system. In this case the Schrödinger equation is

T + V λ=0 Ψ λ=0 = E λ=0 Ψ λ=0 , (7) 
where the Kohn-Sham potential

V λ=0 = N i=1 v KS (r i
) is defined by the condition that the density of the non-interacting and the interacting systems are the same. For a nondegenerate system Eq. ( 7) takes the well-known form:

- 1 2 ∇ 2 + v KS φ i = ε i φ i (8)
and the density is expressed with the occupied one-electron orbitals φ i as

= i |φ i | 2 . ( 9 
)
It has been shown (Gunnarsson andLundqvist 1976, Langreth andPerdew 1975) that the exchange-correlation energy can be given as an integral with respect to the coupling constant

E xc [ ↑ , ↓ ] = 1 0 dλW λ [ ↑ , ↓ ], (10) 
where

W λ [ ↑ , ↓ ] = Ψ λ | Vee |Ψ λ -J. (11) J = 1 2 (r) (r ) |r -r | drdr ( 12 
)
is the classical Coulomb energy. The density of electrons with spin σ is defined as

σ (r) = N |Ψ λ (rσ, x 2 , ..., x N )| 2 dx 2 ...dx N . (13) 
The variable x stands for both the spatial r and spin σ variables. W λ can also be expressed with the pair density 

Γ λ (r, r ) = 1 2 N (N -1) |Ψ λ (rσ
W λ [ ↑ , ↓ ] = Γ λ (r, r ) |r -r | drdr -J. (15) 
The pair density can be written in the form

Γ λ (r, r ) = 1 2 (r) (r ) + λ xc (r, r ) (16) 
Applying Eq. ( 10) the exchange-correlation energy reads as

E xc [ ↑ , ↓ ] = 1 2 1 0 dλ (r) λ xc (r, r ) |r -r | drdr (17) λ xc (r, r )
is the density at r of the exchange-correlation hole around an electron at r for coupling strength λ. It can be easily shown that the charge of the exchange-correlation hole is -1:

λ xc (r, r )dr = -1.
(18)

The weak interaction limit is λ → 0. For a given shape of the density the weak interaction limit can also be performed at λ = 1 by uniform density scaling to the high-density limit (Levy and Perdew 1985) (r) → γ 3 (γr)andγ → ∞.

In this limit the Kohn-Sham theory is exactly the exchange-only theory and the pair density Γ can be given by a Hartree-Fock like expression.

Γ λ (r, r) = 2 (r) -2 ↑ (r) -2 ↓ (r). ( 20 
)
For the fully polarized density, i.e. ↑ = and ↓ = 0 we obtain Γ λ (r, r) = 0, while for the fully unpolarized case, that is for

↑ = ↓ = /2 we arrive at Γ λ (r, r) = 2 (r)/2.
In the weakly correlated case, from the competition between the kinetic energy and the Coulomb repulsion, the kinetic energy dominates. The wave function tends to that of the non-interacting system, which minimizes the kinetic energy for a given density.

Originally the adiabatic connection was defined between λ = 0 and λ = 1. However, it is possible to extend the value of λ outside the range of the coupling constant integration of Eq.

(10). Then the strong-interaction limit is λ → ∞. The density functional measure of the 

W 0 -W 1 )/(W 0 -W ∞ ).
For independent electrons it is 0, for strictly correlated electrons it gives 1. (Other measures can also be used (Ziesche 2000)).

The strong-interaction limit can also be performed in another way: with the low density

limit for λ = 1 (r) → γ 3 (γr)andγ → 0. ( 21 
)
In this limit the pair-density function at r = r , called on-top pair-density, goes to zero:

Γ λ (r, r) → 0f orλ → ∞. ( 22 
)
It has been shown (Perdew 1985a, Ziesche 2000) that the integral of Γ λ for any volume fragment Ω of the system

Ω Γ λ (r, r )drdr = N 2 Ω -NΩ 2 (23)
is the mean square fluctuation of electron number in the volume Ω. Consequently, these methods cannot give a proper description of the Wigner crystallization of the low-density uniform electron gas. Inclusion of self-interaction correction to LSD or LSD+U method (Anisimov et al. 1993, 1997, Georges et al. 1996) leads to a more reliable description. There is a hope that the recently developed self-interaction free meta-GGA (Becke and Roussel 1989, Becke 1998, Colonna and Savin 1999, Kurth et al. 1999, Perdew 1985b, Proynov et al. 1998, Tao et al. 2003, Van Voorhis and Scuseria 1998) and hyper-GGA [START_REF] Perdew | Density Functional Theory and Its Application to Materials[END_REF] will be able to describe strongly correlated systems reliably.

COUPLING CONSTANT DEPENDENT APPROXIMATIONS FOR THE EXCHANGE-CORRELATION ENERGY

In this section a summary of the coupling constant dependent approximations is presented. The λ dependence of W and E c has been studied by several authors (Bene and Nagy 2000, Burke et al. 1997, Colonna and Savin 1999[START_REF] Ernzerhof | [END_REF], Ernzerhof et al. 1997, Hood et al. 1998, Joubert and Srivastava 1998, Perdew et al. 1996b). Knowledge of exact properties of these functionals contributes to find improved approximations (see e.g. (Burke et al. 1997[START_REF] Ernzerhof | [END_REF], Perdew et al. 1996b).) Several exact expressions have already been derived. The key properties for W have the form (Görling and Levy 1993, Levy and Perdew 1985, 1995) denotes the second-order coefficients in the Görling-Levy perturbation theory (Görling and Levy 1993), where the correlation energy is expanded in a series

W λ [ ] = λW 1 [ 1/λ ] (25) λ (r) = λ 3 (λr), (26) 
W λ [ ] ≡ dW λ [ ] dλ < 0 (λ ≥ 0), ( 27 
) W 0 [ ] = E x [ ], (28) 
W 0 [ ] = 2E GL2 c [ ], (29) 
W ∞ [ ] = lim λ→∞ W λ [ ] (f inite). (30) 
E xc [ ] = E x [ ] + ∞ n=2 E GLn c [ ]. ( 31 
)
It has been shown (Seidl et al. 1999(Seidl et al. , 2000) ) that

W λ [ ] → W 0 [ ] + W 0 [ ]λ (λ → 0) (32)
in the weak interaction limit and

W λ [ ] → W ∞ [ ] + W ∞ [ ]λ -1/2 (λ → ∞) (33) 
in the strong interaction limit.

As λ → ∞ the electrons become strongly correlated. The concept of "strictly correlated electrons" (SCE) (Seidl et al. 1999, Seidl 1999, Ziesche 2000) has been worked out for them.

This model can be solved exactly for one-dimensional systems and three-dimensional twoelectron systems with spherically symmetric density (r). In the latter case the two electrons can be found on opposite sides of the spherical center (Seidl et al. 1999, Seidl 1999). The radial distance r 1 of one of the electrons strictly determines that of the other electron, r 2 = f (r 1 ). The "correlation" function f (r) is uniquely determined by the density (r). It is interesting to note that the differential equation satisfied by f ,

df (r) dr = - r 2 (r) f (r) 2 (f (r)) , (34) 
closely resembles the expression of a local scaling transformation [START_REF] Kryachko | Energy Density Functional Theory of Many-Electron Systems[END_REF]. It has been shown that for a two-electron system

W SCE ∞ [ ] = 2π ∞ 0 dr r 2 (r) r + f (r) -J[ ]. ( 35 
)
The generalization for systems having more than two electrons is difficult. Based on the expressions ( 25) -(30) a simple interpolation was proposed (Seidl et al. 1999)

W appr λ = W ∞ + W 0 -W λ √ 1 + 2Xλ , (36) 
where Integration of Eq. ( 36) leads to the correlation energy

X = W 0 W ∞ -W 0 . (37) 
E appr c = (W 0 -W ∞ ) 1 X √ 1 + 2X -1 -1 . (38) 
This model functional predicts accurate ground-state correlation energies for real atoms and the two-dimensional uniform electron gas (Seidl et al. 1999).

Though there is no exact expression for the strong interaction or the low density limit, it is supposed that the SCE energy should be close to that of a bcc Wigner crystal (Carr et al. 1961, Coldwell-Horsfall and Maradudin 1960, Herman and March 1984)

E W xc = - 0.89593 r s + 1.325 r 3/2 s + ... . (39) 
The uniform electron gas expression for (r s → ∞) has the form

E xc = - 0.90000 r s + 1.500 r 3/2 s + ... . ( 40 
)
The closeness of the energy expressions for the Wigner crystal and the uniform electron gas for r s → ∞ was observed long ago (Ceperley 1978, Perdew and[START_REF] Perdew | [END_REF].

Another model is the point-charge-plus continuum (PC) model. This is an approximation to the SCE concept and provides simple explicit functionals W P C ∞ [ ] and W P C ∞ [ ] for the coefficients in Eqs. ( 33). The interaction strength interpolation (Seidl et al. 2000) gives the following model expression:

W ISI λ = W ∞,ISI + X √ 1 + λY + Z , (41) 
where

X = xy 2 z 2 , Y = x 2 y 2 z 4 , Z = xy 2 z 3 -1 , ( 42 
) x = -2W 0 , y = W ∞ , z = W 0 -W ∞ . ( 43 
)
The analytical integration in Eq. ( 10) leads to

E ISI xc [ ] = W ∞ + 2X Y (1 + Y ) 1/2 -1 -Z ln (1 + Y ) 1/2 + Z 1 + Z . ( 44 
)
A combination of the ISI model with the "point charge plus continuum " (PC) model (Seidl et al. 1999(Seidl et al. , 2000) ) leads to a new correlation functional. The PC approximations have the form 

W P C ∞ = dr A (r) 4/3 + B |∇ (r)| 2 (r)
W P C ∞ = dr C (r) 3/2 + D |∇ (r)| 2 (r) 7/6 (46)
A, B, C and D are constants. Functionals of the form ( 45) and ( 46) can be considered exact for the uniform electron gas. The atomization energies calculated in the ISI model (Seidl et al. 2000) are remarkably accurate: the error is 2.8% of the mean experimental atomization energies.

HIGHER-ORDER CUSP RELATIONS FOR THE WAVE FUNCTION AND THE ELECTRON DENSITY FOR ARBITRARY COUPLING CONSTANT

The aim of this paper is to derive a new exact relation. To achieve this goal first Kato's theorem (Kato 1957[START_REF] March | Self-Consistent Fields in Atoms[END_REF], Steiner 1963) is generalized for arbitrary value of λ. The original theorem states that for an eigenfunction Ψ of the Hamiltonian H for an N -electron system

∂ Ψ ∂r r=Rα = -Z α Ψ| r=Rα , (47) 
where the partial derivatives are taken at the nuclei α and Ψ is the average value of Ψ taken over the sphere r = constant around the nucleus α, for fixed values of the remaining electron coordinates. Steiner (Steiner 1963) derived the corresponding theorem for the electron density

Z α = - 1 2 (r) ∂ (r) ∂r r=Rα . ( 48 
)
The cusp condition for wave functions were generalized by Roothaan and Kelly (Roothaan and Kelly 1963) and Pack and Brown (Pack and Brown 1966). Futher references can be found in (Esquivel et al. 1993a,b, Nagy andSen 2000a). Recently this theorem has been generalized for highly excited states for λ = 0 and λ = 1 (Nagy and Sen 2001). Now an extension for any value of λ follows.

The total Hamiltonian for a system of electrons and nuclei (5) can be written as a sum 

Ĥλ = Ĥ1 + F λ + Ĝλ , (49) 
Ĥ1 = - 1 2 ∇ 2 1 - Z α r 1 , (50) 
F λ = - M β =α Z β |r 1 -R β | + ṽλ (r 1 ) + λ N j=2 1 |r 1 -r j | (51) 
and Ĝλ = -

N i=2 M β =α Z β |r i -R β | + ṽλ (r i ) + λ N i=2 N j =i 1 |r i -r j | - 1 2 N i=2 ∇ 2 i - N j =1 Z α r j . (52) 
The external potential V λ which is defined to ensure the density being fixed is written as a sum of the true external potential and the remaining term Ṽ λ = N i=1 ṽλ (r i ):

V λ = M β=1 Z β |r i -R β | + Ṽ λ . (53) 
In the following the origin of the coordinate system is placed at the nucleus α. To study the wave function in the vicinity of the nucleus α consider the case where

|r 1 | = r 1 is small.
Taking into account the expansions

1 |r 1 -r 2 | = m=+l l=∞ l=0 m=-l 4π 2l + 1 r l 1 r l+1 2 Y * lm (Ω 1 )Y lm (Ω 2 ) (54) and ṽλ 
= l,m r l 1 ṽλ lm Y * lm (Ω 1 ) , (55) 
F λ has the form

F λ = l,m r l 1 F λ lm Y * lm (Ω 1 ) , (56) 
where F λ lm depend on r 2 , ..., r N but do not depend on r 1 .

F λ lm = - 4π 2l + 1 M β =α Z β Y lm (Ω β ) R l+1 β -λ N j>1 Y lm (Ω j ) r l+1 j + ṽλ lm . (57) 
Y lm are the spherical harmonics. The operator G λ acts only on r 2 , ..., r N . The antisymmetric wave function Ψ λ is expanded around the nucleus α

Ψ λ = ∞ l=0 m=l m=-l r l 1 χ λ lm (r 1 , X)Y lm (Ω 1 ) , (58) 
where X stands for the coordinates s 1 , r 2 , s 2 , ..., r N , s N . In certain highly excited states the spherical average of the derivative of the wave function can be zero at a nucleus: χ λ 00 (0, X) = 0. (This corresponds to the case where there is no s electrons.) So Eq. ( 58) is rewritten in the form

Ψ λ = m r l 1 χ λ lm (r 1 , X)Y lm (Ω 1 ) + l =∞ l >l m =+l m =-l r l 1 χ λ l m (r 1 , X)Y l m (Ω 1 ) , ( 59 
)
where l is the smallest integer for which χ λ lm is not zero. So the expressions derived in the following are valid not only in the ground state but even in the highly excited states. Then the function χ λ lm is expanded as

χ λ lm (r, X) = a (0)λ lm (X) + a (1)λ lm (X)r + a (2)λ lm (X)r 2 + a (3)λ lm (X)r 3 + ... (60) 
Substituting expressions ( 59), ( 60) and ( 56) into the Schrödinger equation

Ĥλ Ψ λ = E λ Ψ λ , (61) 
multiplying it with the spherical harmonics Y * lm (Ω 1 ), integrating on the polar angles Ω 1 and equating the coefficients of r l-1 , r l , r l+1 separately to zero, we arrive at the system of equations

Z α a (0)λ lm (X) + (l + 1)a (1)λ lm (X) = 0 , (62) 
(2l + 3)a (2)λ lm (X) + Z α a (1)λ lm (X) -Ĝλ + F λ -E λ a (0)λ lm (X) = 0 , (63) 
where F λ = (4π) -1/2 F λ 00 . Combining these equations we are led to the relations for the terms a λ l,m a (1)λ lm (X) = - For l = 0 and λ = 0 the relations of Rassolov and Chipman (Rassolov and Chipman 1996) can be recovered.

Z α l + 1 a (0)λ lm (X) , (64) 
a (2)λ lm (X) = 1 2l + 3 Z 2 α l + 1 + Ĝλ + F λ -E λ a (0)λ lm (X) . (65) 
The spherical average of the electron density can be obtained by integrating |Ψ λ | 2 for all coordinates but r

¯ (r) = m r 2l (χ λ lm ) 2 + l ,m l >l r 2l (χ λ l m ) 2 , (66) 
where (χ λ lm ) 2 is obtained after integrating (χ λ lm ) 2 for all the coordinates X

(χ λ lm ) 2 = (χ λ lm ) 2 dX . ( 67 
)
To include even the highly excited states the function η l (r) is introduced instead of ¯ (r)

with the definition

η l (r) = ¯ (r) r 2l . (68) 
From Eqs. ( 66) and ( 68) follows that

η l (r) = m (χ λ lm ) 2 + l ,m l >l r 2(l -l) (χ λ l m ) 2 . (69) 
Taking η l (r) at the nucleus α

η l (0) = m (χ λ lm ) 2 (0) = [a (0)λ lm ] 2 dX . (70) 
Differentiating Eq. ( 69) with respect to r and making use of Eq. ( 64) we arrive at the cusp relation for η l (r)

η l (0) = -2 Z α l + 1 η l (0) . (71) 
The second derivative can be given by

η l (0) = 2 1 2l + 3 Z 2 α (l + 1) 2 (4l + 5) -2E λ η l (0) +2 F λ l (0) + G λ l (0) + η l+1 (0) , (72) 
where for the second derivative is the main relation that is going to be applied in the stronginteraction limit in the next section.

F λ l (0) = N m a (0)λ lm F λ a (0)λ lm dX , (73 

TOTAL ENERGY EXPRESSION IN THE STRONG-INTERACTION LIMIT

First we emphasize that the density and consequently η l and their derivatives are the same for any value of λ. Taking arbitrary two values of λ the total energy difference can be written as

E λ 2 -E λ 1 = F λ 2 l (0) -F λ 1 l (0) + G λ 2 l (0) -G λ 1 l (0) η l (0) . ( 75 
)
For the ground state and low excited states l = 0 and η l (0) = (0).

To consider the strong-interaction limit λ → ∞ the Schrödinger equation

T + λ Vee + V λ Ψ λ = E λ Ψ λ (76) 
is rewritten as

1 λ T + Vee + 1 λ β Z β |r i -R β | + 1 λ Ṽ λ Ψ λ = E λ λ Ψ λ . (77) If λ → ∞ Eq. (77) reduces to Vee + 1 λ Ṽ λ Ψ λ = E λ λ Ψ λ , (78) 
consequently for λ >> 1

Ṽ λ = λU = λ N i=1 u(r i ) (79) 
and

ṽλ lm = λu lm (r i ). ( 80 
)
Then from (72) follows that Exact expressions have not only theoretical importance but they are very useful in two practical aspects. As adequate approximations should satisfy these relations with a good accuracy, they can directly serve as a measure of the accuracy of a given approximation.

lim λ→∞ E λ λ = N η l (0) m |a (0)∞ lm | 2 (F ∞ + G ∞ )dX , (81) 
On the other hand they can be applied in constructing new approximations and improve a given method.

There are exact relations for the functionals themself, see e. g. Eqs. ( 25)-( 30). Other expressions are formalized for average values of certain quantities, such as the total energy or certain parts of the energy. A well-known relation of the latter type is the virial theorem.

The exact expression derived in this paper belong to the latter category. It is our hope that it will be useful in the future.
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