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A mean field theory for diffusion in a dilute multi-component alloy :

a new model for the effect of solutes on self-diffusion

Maylise Nastar∗

Service de Recherches de Métallurgie Physique, CEA/Saclay,

91191 Gif-sur-Yvette, France.

(Dated: May 30, 2005)

ABSTRACT

A new extension of the self-consistent mean field (SCMF) theory is developed to describe diffusion

in dilute alloys, special attention being paid to the problem of self-diffusion in presence of solute

atoms. We start from a microscopic model of the atom-vacancy exchange frequency including nearest

neighbour interactions and derive kinetic equations from a Master equation. The non-equilibrium dis-

tribution function is expressed trough time dependent effective interactions. Their range of interaction

is controlling the level of description of the paths of a vacancy after a first exchange. In contrast to

the previous diffusion models devoted to concentrated alloys, the present formulation makes appear

into the final result several exchange frequencies associated to a given atom depending on the chemical

species of the atoms nearby. A first approximation restricted to nearest neighbour effective interactions

yields analytical expressions of the transport coefficients of a face centered cubic dilute binary alloy.

∗Electronic address: mnastar@cea.fr
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The phenomenological coefficients are equivalent to the ones obtained using the five frequency model

within the first shell approximation. A new expression of the self-diffusion coefficient is proposed and

compared to Monte carlo (MC) simulations using the same atomic diffusion model. The SCMF theory

reproduces the main tendencies of the MC simulations, in particular within the random alloy region

where the recent five-frequency model was not satisfying. The limitations and future improvements

of the SCMF approach are easily related to the range of the effective interactions considered.

I. INTRODUCTION

Matter transport in alloys is generally controlled by microscopic jumps of point defects. In the limiting

case of a very dilute binary alloy, the link between these microscopic jump frequencies and the phe-

nomenological transport coefficients Lij has been established for the main crystallographic structures

(Allnatt and Lidiard 1993). In that case it is possible after an exchange of a vacancy with a given

atom to account for all the different vacancy paths and determine the probability for a vacancy to

exchange again with the same atom. The five-frequency model for a dilute face centered cubic (fcc)

alloy is a well-known example of this kind (Howard and Lidiard 1963, 1964 and Allnatt 1981 for the

exact solution). But as soon as we consider the effect of adding a third atomic species or increas-

ing the amount of solutes rigorous models are lacking. We present here the example of estimation

of the diffusion coefficient of an isotope A∗ in a binary alloy AB (solute B in A) which remains a

challenge. Even so the question is of a great practical interest since many experimental results are

measurements of isotope diffusion coefficients. Within a multi-frequency model, the isotope diffusion

coefficient, DA∗ , is a sum of several partial diffusion coefficients relative to the position of A∗ with
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respect to the solute B for which the vacancy paths are performed within a cut-off radius. Following

the approach of Howard and Manning (1967), Ishioka and Koiwa (1984) performed a more extensive

calculation based on larger cut-off radius but some of their results were called into question from 1986

(Allnatt and Lidiard 1986). For example Allnatt and Lidiard (1986) have pointed out that DA∗ should

decrease with the B solute concentration when the vacancy-solute exchange frequency is zero since

then an addition of immobile solute atoms should slow down the diffusion of tracer solvent atoms

A∗. A recent publication suggested a possible reason for these shortcomings by showing

that the correlation effects between different vacancy encounters were not introduced

properly (Szabó and Beke 2004). An alternative theoretical approach which was first developed

to treat diffusion in concentrated alloys (Manning 1971, Moleko, Allnatt and Allnatt 1989, Nas-

tar et al. 2000) was verified to be more reliable for the prediction of diffusion of isotope A∗ in the

limiting case of a ’random dilute alloy’ AB. In a ’random alloy’ first introduced by Manning (1971)

a vacancy-atom exchange frequency, ωx is taken to be characteristic of the atom x but independent

of the environment which implies no interaction between the atoms. Among the random lattice gas

models, the predictions of Moleko, Allnatt and Allnatt (1989) were shown to be very close to

recent Monte Carlo simulations (Belova and Murch 2003b).

In a fcc alloy with interactions, recent Monte Carlo simulations (Belova and Murch 2003a) have shown

that both treatments of Howard and Manning (1967) and Ishioka and Koiwa (1984) have major

shortcomings in describing self-diffusion in presence of solute atoms. There are very few alternatives

to these multi-frequency models. A mean field approach like the Path Probability Method (PPM)

is based on an atomic diffusion model which depends on the local environment (Sato and Kikuchi
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1983, Sato et al. 1985 correcting the first versions of Kikuchi and Sato 1969). But the statistical

approximation used to average the matter flow under a gradient of chemical potential and formulate

the Lij leads to averaged jump frequencies, each one representing an atomic species. A recent approach

based on the same jump frequency model and starting from a Taylor series expansion in powers of time

of the time correlation functions appearing in the Lij (Qin et al. 1998) employs the detailed balance

principle to making appear a set of jump frequencies associated to a given chemical species.

However, the latter principle is not sufficient to make appear rotational jumps of type ω1

from other jumps like the dissociative jump of type ω3 in a fcc alloy. Indeed both jump

frequencies describe a jump leaving the same initial state and they differ by their saddle

point position only so that they cannot be connected by a detailed balance equality. The

empirical approach of Bakker and Stolwijk (Bakker 1979, Stolwijk 1981) also based on an averaged

treatment of the jump frequencies leads to the same conclusions. Our previous work based on a SCMF

theory yielded a full Onsager matrix from an atomic diffusion model (Nastar 2000) but the resulting

Lij made appear a limited number of averaged jump frequencies too. A severe consequence is that

non-diagonal phenomenological coefficients are automatically positive which means that for example

a kinetic coupling inducing an inversion of the direction of an atomic flux would not be predicted by

such models. Our purpose is to show that within a self-consistent mean field (SCMF) formalism one

can make appear a set of jump frequencies which in the particular case of a dilute alloy is equivalent

to the one defined by a multi-frequency model. The example of diffusion in a fcc binary dilute alloy

(solute B in A) with first nearest neighbour interactions will be treated. It requires that at least five

jump frequencies comes out of the present approach : the B-vacancy exchange frequency (ω2) and the

Page 4 of 48

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

5

four different A-vacancy exchange frequencies : ω3 when B is nearest neighbour of vacancy, ω4 the

reverse jump of ω3, ω1 when B is nearest neighbour of both species of the exchanging pair and ω0 for

the other jumps (Howard and Lidiard 1963, 1964, Allnatt and Lidiard 1993). First objective will be

to recover the formulae of the Lij of the five-frequency models and then to propose a new analytical

model of the self-diffusion coefficient to first order in solute concentration. To check the validity of

the later result, we perform Monte Carlo simulations based on the same atomic diffusion model with

nearest neighbour interactions. We use a slightly different procedure than the one of Belova and Murch

(2003a) : the atomic diffusion model is defined everywhere so that the present MC simulations do not

prevent configurations in which solute atoms are in close proximity.

First section starts from an atomic diffusion model and derives kinetic equations by means of a master

equation. Non-equilibrium averages are estimated using a non-equilibrium distribution function which

is defined in terms of a time dependent effective hamiltonian. In the following sections the SCMF

approach is applied to fcc alloys. Section III writes the kinetic equations for a fcc alloy in the case

of an effective hamiltonian restricted to nearest neighbour (nn) interactions and yields an analytical

expression of the transport coefficients in the limit of a dilute alloy. The present theory is compared to

the five-frequency models (Allnatt and Lidiard 1993). The extension to multi-component alloys being

quite obvious, a new formulae is suggested for the tracer diffusion DA∗ in AB. Section IV presents

the atomic diffusion models and the conditions of MC simulations. Section V is a discussion of the

results compared to the MC simulations and the previous models, first in the random alloy limit and

second in alloys with interactions.
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II. THE SCMF THEORY

Within the theory of linear non-equilibrium thermodynamics, the Lij are defined as the constants

coupling the fluxes to the external forces which will be here the gradients of chemical potentials. The

evaluation of ensemble averages of a system subject to an external gradient of chemical potential

requires to define a non-equilibrium distribution function. First part of this chapter provides with

a general formulae of the non-equilibrium distribution function in terms of non-equilibrium effective

interactions. We introduce then a Master Equation which expresses the fact that transitions between

a given configuration and the others are controlled by the vacancy jump frequencies. We obtain then a

series of kinetic equations which describe the time evolution of mean occupancies of resp. one chemical

species on one site, two chemical species on a pair of sites, etc.. The Lij are identified from the fluxes

which are deduced from the continuity equation applied to the time derivative of point averages. As a

first approximation we assume the effective Hamiltonian contains pair effective interactions only. We

deduce their expressions as a function of gradients of chemical potentials by applying the steady state

conditions to the time derivative of the two-point averages. The resulting Lij are written as a function

of equilibrium averages. Last part of the section is demonstrating that the Onsager reciprocal relation

is verified.

A. The non-equilibrium distribution function

The alloy is represented by a system of interacting atoms and vacancies distributed on a rigid lattice.

A configuration of the alloy is defined by a vector n, the components of which are the occupation
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numbers of all species on all sites {nA
1 , nB

1 , . . . , nv
1;n

A
2 , nB

2 , . . . , nv
2; . . .} such that na

i = 1 if site is

occupied by species a and zero if else. The corresponding configurational Hamiltonian is noted Ĥ.

Transitions between the different configurations of the system are controlled by exchanges between

atoms and vacancies. The probability per time unit of a single jump of an atom α at a site i into a

vacancy v at a site j is noted ŵαv
ij (n).

Changes of a configuration n are specified by the master equation,

dP̂ (n, t)
dt

=
∑
ñ

[
Ŵ (ñ → n)P̂ (ñ, t)− Ŵ (n → ñ)P̂ (n, t)

]
, (1)

where Ŵ (n → ñ) is the transition probability from a configuration n to a configuration ñ per time

unit : it is defined in terms of the microscopic frequencies controlling the diffusion of atoms. By

construction of the microscopic jump frequencies which obey micro-reversibility, each term of the sum

entering equation (1) is zero when P̂ is taken as the equilibrium distribution function P̂0 :

P̂0(n) = exp[β(Ω0 +
∑
α

µα

∑
i

nα
i − Ĥ)]. (2)

Here β = 1/T is the reciprocal temperature, Ω is the grand canonical potential found from the usual

normalization condition
∑

n P̂0(n) = 1, and µα is the chemical potential of the atoms α relative to

vacancies, i.e. the difference between the chemical potential of atoms α and of vacancies. Indeed,

since we describe a system with a fixed number of sites Ns, the constraint on site i,
∑

a na
i = 1, implies

that there are only (Nc − 1) independent chemical potentials, where Nc is the number of components

in a many-component system ; for our convenience we choose chemical potentials of atoms relative to

vacancy as independent ones.

[∗] We mark functions depending on configuration by the ‘hat’ sign, e.g. Ĥ stands for Ĥ(n).
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Following Vaks (1996), the non-equilibrium distribution function entering equation (1) is expressed in

terms of a time dependent effective hamiltonian ĥ(t) :

P̂ (n, t) = P̂0(n)P̂1(n, t), (3)

where P̂0(n) is the equilibrium distribution function and P̂1(n, t) = exp{β[δΩ(t) +
∑

α,i δµ
α
i (t)nα

i −

ĥ(t)]} is the non equilibrium contribution which is equal to one at equilibrium. The time-dependent

effective Hamiltonian is written as a polynomial function of the occupation numbers

ĥ(t) =
1
2!

∑
αβ,i6=j

v(2)αβ

ij (t)nα
i nβ

j +
1
3!

∑
αβγ,i 6=j 6=k

v(3)αβγ

ijk (t)nα
i nβ

j nγ
k + . . . , (4)

where v(N)αβ...
ij... (t) are time dependent N -body effective interactions, which are unknown and must be

obtained solving the master equation. In fact, instead of searching P̂ (n, t) as a solution of the master

equation (1) we define P̂ by its moments, 〈nα
i 〉, 〈nα

i nβ
j 〉, . . . , which we later call the one, two, ..., point

averages, and establish the kinetic equations for the latter. Furthermore the non-equilibrium averages

appearing in the kinetic equations are split up into two parts : a non-equilibrium contribution denoted

by P̂1 which is considered as a function to be averaged and the equilibrium average which is seen as

the distribution function to be employed to calculating the ensemble average. It is convenient in doing

so because the new averages to be calculated can now be connected to the well known thermodynamic

statistical approximations. Two hierarchies of approximations come up at this point. First hierarchy

is related to the statistical approximation used to calculate the equilibrium averages. The second

level of approximation is associated with the number of unknown effective interactions of the time

[†] Referred to the ”cluster expansion theorem” (Sanchez 1984), any quantity which is a function of configuration only
can be written in the form of equation (4)
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dependent effective Hamiltonian that we consider. It determines the number of independent kinetic

equations. For example truncation of the effective Hamiltonian after the pair effective interactions

limits the system of independent kinetic equations to the point and two-point equations and the

stationarity conditions are not guaranteed to be satisfied by the N-point kinetic equations (N > 2).

Self-consistency is then guaranteed up to the two-point averages.

B. Kinetic equations

Starting from the master equation, the time derivative of such averages simply writes (demonstration

is given in Appendix A of Nastar 2000),

d〈nα
i nβ

j nγ
k . . .〉

dt
=

∑
s 6=i6=j 6=...

〈nβ
j nγ

k . . . [nα
s nv

i ŵ
αv
si − nα

i nv
sŵ

αv
is ]〉+

∑
s 6=i6=j 6=...

〈nα
i nγ

k . . . [nβ
s nv

j ŵ
βv
sj − nβ

j nv
sŵ

βv
js ]〉+ . . . , (5)

where the brackets indicate non-equilibrium ensemble averages. To calculate such averages we use two

approximations : first we restrict the effective Hamiltonian to pair effective interactions, second we

use a better statistical approximation than the Bragg Williams approximation used in (Nastar 2000).

The complete procedure is presented below for a general model of alloy where the equilibrium averages

are not explicitly calculated. Chapter (III) applies the model to an fcc dilute alloy and provides with

a complete calculation of the Lij and the tracer correlation factor of a binary alloy.

After linearization with respect to the terms of the form β(δµα
s − δµα

i ) and βĥα
s together with the

principle of detailed balance, we obtain for the 2-point average (details are given in appendix A) :

d〈nα
i nβ

j 〉
dt

= β
∑

s 6=i6=j 6=...

〈nβ
j [nα

s nv
i ω̂

αv
si (δµα

s − δµα
i − ĥα

s + ĥα
i )]〉(0) +
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β
∑

s 6=i6=j 6=...

〈nα
i [nβ

s nv
j ω̂

βv
sj (δµβ

s − δµβ
j − ĥβ

s + ĥβ
j )]〉(0), (6)

where (0) means averaging over the equilibrium distribution function P (0), and ĥα
s is the partial deriva-

tive of ĥ with respect to nα
s .(δµβ

s − δµβ
j ) is equivalent to the difference of the total chemical potentials

since the equilibrium contribution to the difference is equal to zero.

Flux of atomic species is deduced from the continuity equation applied to the kinetic equation of the

one-point average :

d〈nα
i 〉

dt
= −

∑
s 6=i

Jα
i→s, (7)

and is recognized to be :

Jα
i→s = −β[〈nα

i nv
sω̂

αv
is (µα

s − µα
i − ĥα

s + ĥα
i )〉(0). (8)

Following the same procedure presented in (Nastar 2000), we could show that close to an homogeneous

equilibrium and under an homogeneous gradient of chemical potential, flux Jα
i→j and

d〈nα
i nβ

j 〉
dt − d〈nα

j nβ
i 〉

dt

depends on asymmetrical effective interactions of type (vαβ
ij − vαβ

ji ). An easy way to account for this

property is to put equal to zero the symmetric part of the effective interactions and assume vαβ
ij = −vαβ

ji

and vαα
ij = 0. In an isotope crystal, the diffusion problem is mono-dimensional : we choose an axis

along which the atomic fluxes are estimated. This axis is an axis of rotational symmetry so that

we group rotationally equivalent sites together. Furthermore, in an homogeneous equilibrium state,

the local concentrations do not depend on sites : cα
i = cα, where cα is the composition of atoms α.

For such conditions the system of equations has translational symmetry ; nothing is changed under

the transformation r → r + R (where R is a vector between two arbitrary sites of the lattice). The

solution may be taken with the same symmetry : vαβ
ij = vαβ(ri+R, rj+R). Therefore, the asymmetrical
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property added to the translation property reduce the number of unknown effective interactions to the

number of non-equivalent two-point averages to be considered. Each non-equivalent pair of points is

labelled by a number iv (iv = 1 for the first nearest neighbour two-point average) and is associated to

a positive effective asymmetrical interaction : v(ασ)iv = vασ
(ii+)iv in which (ii+)iv is the axis coordinate

of the vector linking both sites.

The antisymmetric property of v leads to a simplification of the flux :

Jα
i→i+ = −β[〈nα

i nv
i+ω̂αv

ii+(µα
i+ − µα

i + 2hα
i )〉(0). (9)

Since the effective Hamiltonian contains pair interactions only we write down the flux in terms of the

v(ασ)iv :

Jα
i→i+ = −βl(0)

α (µα
i+ − µα

i )− β
∑
σ,iv

[lα(σ, iv)v(ασ)iv ], (10)

with

l(0)
α = γ(ii+)1〈nα

i nv
i+ω̂αv

ii+〉
(0) (11)

and

lα(σ, iv) = 2
∑

p6=i6=i+,σ

γ(ii+)1γ(ip)iv 〈nα
i nv

i+nσ
p ω̂αv

ii+〉
(0)

vασ
ip

viv
(ασ)

. (12)

γ(ip)iv is equal to 1 if sites i and p form a pair of type iv and is equal to 0 if else.

The phenomenological coefficients are by definition the coefficients which relate fluxes to thermody-

namic forces (here gradients of chemical potentials). They have the form :

1/βLαα = l(0)
α (α) +

∑
σ,iv

lα(σ, iv)v(ασ)iv (α), (13)
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1/βLαβ =
∑
σ,iv

lα(σ, iv)v(ασ)iv (β), (14)

where v(αβ)iv (σ) is the σ coordinate of v(αβ)iv : v(αβ)iv =
∑

σ v(αβ)iv (σ)(∇µσ), with (∇µσ) =

γ(ii+)1(µσ
i+ − µσ

i ). In setting down equation (10) we have omitted the time dependence of v since

the kinetic equations will be solved under steady state conditions. The two point kinetic equations

alone are required for the estimation of v. They can be written as :

1/β
d〈nα

i nβ
j 〉(iv)

dt
= mα(β, iv)∇µα −mβ(α, iv)∇µβ

+
∑
jv

[t(αβ)iv ,(αβ)jv v(αβ)jv +
∑
γ

t(αβ)iv ,(αγ)jv v(αγ)jv +
∑
γ

t(αβ)iv ,(γβ)jv v(γβ)jv ] (15)

with

mσ(α, iv) =
∑

s 6=i6=i+

γ(ii+)iv γ(is)1〈nσ
i+nα

s nv
i ω̂

σv
si 〉(0)(µσ

s − µσ
i )/∇µσ, (16)

t(αβ)iv ,(ασ)jv = [
∑

s 6=i6=i+

γ(ii+)iv γ(is)1〈n
β
i+nα

s nv
i ω̂

αv
si (

∑
p6=j,s

γ(ip)jv vασ
ip nσ

p −
∑

p6=i,i+

γ(sp)jv vασ
sp nσ

p )〉(0)]/v(ασ)jv ,(17)

and

t(αβ)iv ,(αβ)jv = t(αβ)iv ,(ασ)jv (σ ≡ β) + t(αβ)iv ,(σβ)jv (σ ≡ α)

+[γ(ij)iv

∑
s 6=i6=j

γ(is)1〈n
β
j nα

s nv
i ω̂

αv
si (γ(ij)jv vαβ

ij − γ(sj)jv vαβ
sj )〉

+γ(ij)iv

∑
s 6=i6=j

γ(js)1〈nα
i nβ

s nv
j ω̂

βv
sj (γ(ij)jv vαβ

ij − γ(si)jv vβα
si )〉(0)]/v(αβ)jv . (18)

.

We note the symmetry : t(αβ)iv ,(ασ)jv = −t(αβ)iv ,(σα)jv and t(βα)iv ,(σα)jv = t(αβ)iv ,(ασ)jv .
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The unknown effective interactions are then solution of equation (15) under steady state conditions

(derivatives with time are equal to zero). They are given as a linear combination of the gradients of

chemical potential :

¯̄T v̄ = b̄, (19)

Components of b̄ and v̄, b(i) and v(i), are associated to the couple (α, σ)iv with i = (Nesp ∗ (Nesp +

1)/2) ∗ (iv − 1) + Nesp(α − 1) + σ. b(i) is equal to −mα(σ, iv)∇µα + mσ(α, iv)∇µσ. Element t(i, j)

of matrix T is associated to the couple ((ασ)iv, (βγ)jv) such that i is the index defined above and

j = (Nesp ∗ (Nesp + 1)/2) ∗ (jv − 1) + Nesp(β − 1) + γ.

C. The Onsager reciprocal relation

The SCMF approximation limited to nn effective interactions is shown to satisfy the Onsager reciprocal

relation, that is, Lαβ = Lβα.

For that it is sufficient to note that

lα(σ, 1) = 2mα(σ, 1). (20)

Using this relationship we deduce Lαβ from equation (14) where the unknown v(ασ)1(β) are calculated

using the system of equations (15) :

Lαβ = +2
∑
σ>α

mα(σ, 1)t−1
(ασ)1(αβ)1mβ(α, 1)

+2
∑
σ>β

mα(σ, 1)t−1
(ασ)1(βσ)1mβ(σ, 1)

+2
∑
σ>β

mα(β, 1)t−1
(αβ)1(βσ)1mβ(σ, 1), (21)
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where t−1
(ασ)1(αβ)1 is the element of the inverse T matrix located at the arrow associated to (ασ)1 and

the column associated to (αβ)1. In the same way, Lβα is deduced from equation (14) by exchanging

α and β where the unknown v(βα)1(α) are calculated using the system of equations (15) :

Lβα = +2
∑
σ>β

mβ(σ, 1)t−1
(βσ)1(αβ)1mα(β, 1)

+2
∑
σ>α

mβ(α, 1)t−1
(αβ)1(ασ)1mα(σ, 1)

+2
∑
σ>β

mβ(σ, 1)t−1
(βσ)1(ασ)1mα(σ, 1)]; (22)

which leads to the equality : Lβα = Lαβ .

III. RESULTS

A. The fcc alloy

The preceding section has been concerned with the general expression of the Lij . To complete the

derivation, the crystallographic structure needs to be specified. Indeed an explicit expression of the

sums over neighbouring sites entering equations (16,17,18) will depend on the crystal. In the following

sections we will illustrate the theory on the fcc crystallographic structure. Moreover, for the sake

of simplicity and in order to keep analytical results, we make the approximation that the effective

Hamiltonian is restricted to nearest neighbour (nn) interactions. Most of this section takes advantage

of the homogeneity of the equilibrium state. In the dilute limit, one can show that N-point averages

are equal to the product of point averages multiplied by an exponential of a binding energy so that

they are characterized by their interacting bonds only and disconnected from the sites surrounding

the N-point cluster. In the particular case of an Hamiltonian limited to nn interactions, the N-point
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averages are characterized by their nn pairs only. It is no more valid in concentrated alloys but we

will make this assumption from the beginning since the kinetic equations will be later used in a fcc

dilute alloy. There are two steps in the derivation. First step is to identify the N-point averages to be

calculated and last step is to calculate them. Sums over neighbours entering the kinetic equations are

calculated along a [100] symmetry axis. In practice, l
(0)
α of equation (11) may be written as

l(0)
α = γ(αv)1〈nαnvω̂αv〉(0), (23)

where indices entering equation (11) are eliminated since equilibrium averages are characterized by

their first nearest neighbour bonds only and γ(αv)1 function is introduced to notify that species α and

v occupy nn sites. In the same way equation (16) reduces to :

mσ(α, 1) = −3γ(σv)1γ(ασ)1〈nαnσnvω̂σv〉(0) + 2γ(αv)1γ(ασ)1γ(σv)1〈nαnσnvŵσv〉(0), (24)

where summations over neighbours entering equation (16) are performed along the [100] axis.

We start with a pair of sites (ii+)1 located at the respective positions i and i + 1 along the [100] axis.

Among the nn of i, there is one site at position (i + 1) which does not coincide with i+ and is not

nn of i+ and there are four sites at position (i− 1) which are not nn of i+, which leads to the factor

(1− 4 = −3) in front of the first average of equation (24). Furthermore there are two sites at position

(i + 1) which are nn of both s and i which explains the factor (2) in front of the second average.

Since nn neighbour effective interactions are considered only, terms of type t(αβ)1,(αγ)1 are to retain

only. They involve the calculation of four-point averages. The counting of these sums in a fcc crystal

is presented in appendix B.
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t(αβ)1,(ασ)1 = −8γ(αβ)1γ(αv)1γ(ασ)1〈ω̂αvnαnβnvnσ〉(0)

−10γ(αβ)1γ(αv)1γ(ασ)1γ(σv)1〈ω̂αvnαnβnvnσ〉(0)

+10γ(αβ)1γ(αv)1γ(ασ)1γ(σβ)1〈ω̂αvnαnβnvnσ〉(0) + 11γ(αβ)1γ(αv)1γ(σv)1〈ω̂αvnαnβnvnσ〉(0)

−2γ(αβ)1γ(αv)1γ(σv)1γ(βσ)1〈ω̂αvnαnβnvnσ〉(0) − 2γ(αβ)1γ(αv)1γ(σv)1γ(βσ)1γ(ασ)1〈ω̂αvnαnβnvnσ〉(0)

−10γ(αβ)1γ(αv)1γ(βv)1γ(ασ)1〈ω̂αvnαnβnvnσ〉(0) + 4γ(αβ)1γ(αv)1γ(βv)1γ(ασ)1γ(σv)1〈ω̂αvnαnβnvnσ〉(0)

+4γ(αβ)1γ(αv)1γ(βv)1γ(ασ)1γ(βσ)1〈ω̂αvnαnβnvnσ〉(0)

+2γ(αβ)1γ(αv)1γ(βv)1γ(ασ)1γ(βσ)1γ(σv)1〈ω̂αvnαnβnvnσ〉(0)

−6γ(αβ)1γ(αv)1γ(βv)1γ(βσ)1γ(σv)1〈ω̂αvnαnβnvnσ〉(0). (25)

for t(αβ)1,(αβ)1 :

t(αβ)1,(αβ)1 = t(αβ)1,(ασ)1(σ ≡ β) + t(βα)1,(βσ)1(σ ≡ α)

+7γ(αβ)1γ(αv)1〈ω̂αvnαnβnv〉(0) + 2γ(αβ)1γ(αv)1γ(βv)1〈ω̂αvnαnβnv〉(0)

+7γ(αβ)1γ(βv)1〈ω̂βvnαnβnv〉(0) + 2γ(αβ)1γ(αv)1γ(βv)1〈ω̂βvnαnβnv〉(0) (26)

In principle this model is valid at any concentration of the alloy. Difficulties arise when one decides to

calculate the equilibrium averages. Such averages should respect consistency between thermodynamics

and kinetics and in particular should satisfy the detailed balance,

〈nα
i nv

sω̂
αv
is 〉(0) = 〈nα

s nv
i ω̂

αv
si 〉(0). (27)

This requirement is easy to satisfy in a dilute alloy at first order in the solute concentration. Because

Page 16 of 48

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

17

the averaged terms are written so as to make appear the exact atomic jump frequencies which by

construction respect the detailed balance.

B. The dilute fcc alloy

We turn now to the presentation of explicit expressions for the transport coefficients in a binary

dilute alloy. A dilute alloy is an easy case since thermodynamic averages of product of occupation

numbers are known. Starting from the classical rate theory, we adopt an exponential form for the

jump frequencies which depends upon the configuration of nearby atoms and defects. Furthermore we

make the assumption that local configuration is limited to the first coordination shell.

It requires to calculate the probability of every shell configuration and to allocate to it the correspond-

ing value of the jump frequency. For example :

l
(0)
A = γ(is)1〈nα

i nv
sω̂

Av
is 〉(0)

=
∑

σi′ ,σs′ ,σk

γ(is)1〈nα
i nv

sn
σ1

i′1
. . . nσ7

i′7
nσ1

s′1
. . . nσ7

s′7
nσ1

k1
. . . nσ4

k4
ω̂Av

is 〉(0)

=
∑

σi′ ,σs′ ,σk

γ(is)1〈nα
i nv

sn
σ1

i′1
. . . nσ7

i′7
nσ1

s′1
. . . nσ7

s′7
nσ1

k1
. . . nσ4

k4
〉(0)ωAv(nσ1

i′1
= . . . nσ1

s′1
= . . . nσ1

k1
= . . . = 1). (28)

We introduce three types of sites : four sites of type k which are nn of site i and s, and seven sites of

type i′ (resp. s′) which are nn of site i (resp. s). In a binary alloy, since the value of a jump frequency

is fixed by the number of B atoms which are on sites of the first shell no matter the interactions

between them, it is then convenient to define jump frequencies by using the notation : ωAv(σi′ , σs′ , σk)

where σi′ (resp. σs′ , σk) is the number of B atoms on sites of type i′ (resp. s′, k). In the limit of low

concentration, the first coordination shell contains at maximum one site occupied by a solute atom
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while the other sites are occupied by solvent atoms. As a consequence, averages make appear only

one binding energy between solute and vacancy. It is easy to show that starting from CVM or low

temperature expansion (Ducastelle 1991)

〈nv
i n

B
i′ 〉(0) ' cBcvyBv, (29)

where yBv is the probability of forming a pair Bv which is an exponential of thermodynamic interac-

tions extracted from H. Since jump frequencies satisfy the detailed balance principle, we get

γ(Av)1γ(Bv)1〈nBnAnvωAv〉 = γ(Av)1γ(AB)1〈nBnAnvωAv〉, (30)

A projection on the first shell coordination gives

γ(is)1〈nA
i nv

sn
A
i′1

. . . nA
i′7

nB
s′1

nA
s′2

. . . nA
s′7

nA
k1

. . . nA
k4
〉(0)ωAv(0, 1, 0) =

γ(is)1〈nA
i nv

sn
B
i′1

nA
i′2

. . . nA
i′7

nA
s′1

. . . nA
s′7

nA
k1

. . . nA
k4
〉(0)ωAv(1, 0, 0), (31)

which to first order in solute concentration, is equivalent to :

c19
A cvcByBvωAv(0, 1, 0) = c19

A cvcBωAv(1, 0, 0), (32)

where ωAv(0, 1, 0) (resp. ωAv(1, 0, 0)) corresponds to the so-called ω3
Av (resp. ω4

Av) of the five frequency

model (Allnatt and Lidiard 1993). Hence the detailed balance gives the well known relationship :

yBv = ω4
Av/ω3

Av.

If we come back to equation(28) of l
(0)
A we make appear two additional frequencies, ωAv(0, 0, 0) and

ωAv(0, 0, 1) which are recognized to be the so-called ω0
Av and ω1

Av of the five frequency model :

l
(0)
A ' cv[c19

A ω0
Av + 7cBc18

A ω4
Av + 4cBc18

A yBvω
1
Av + 7cBc18

A yBvω
3
Av

' cvω
0
Av[1− cB(19− 14

ω4
Av

ω0
Av

− 4
ω1

Av

ω0
Av

ω4
Av

ω3
Av

)]. (33)
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The above calculations can be easily extended to any averaged quantities. Let us first proceed with

the derivation of the Lij in a binary alloy AB. When the effective interactions are limited to the nn

ones, the associated matrix T is a scalar equal to t(AB)1(AB)1 and the Lij are deduced from equation

(21) :

LAA = l
(0)
A − 2(mA(B, 1))2/t(AB)1(AB)1 (34)

LAB = 2mA(B, 1)mB(A, 1)/t(AB)1(AB)1 (35)

LBB = l
(0)
B − 2(mB(A, 1))2/t(AB)1(AB)1 (36)

Following the procedure explained in equation (28), we express

l
(0)
B ' cvcBωBv

ω4
Av

ω3
Av

, (37)

where ωBv is the jump frequency of B in pure A. We do not introduce the effect of surrounding B

atoms on ωBv since B concentration is supposed to be very low. In the same way,

mB(A, 1) = −cvcBωBv
ω4

Av

ω3
Av

, (38)

mA(B, 1) = cvcB
ω4

Av

ω3
Av

(2ω1
Av − 3ω3

Av), (39)

and

t(AB)1,(AB)1 = cvcB
ω4

Av

ω3
Av

(2ω1
Av + 7ω3

Av + 2ωBv). (40)

Therefore, the resulting expressions for LAA, LAB and LBB are :

LAB = 2ωBvcvcB
ω4

Av

ω3
Av

−2ω1
Av + 3ω3

Av

2ω1
Av + 7ω3

Av + 2ωBv
, (41)
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LBB = l
(0)
B − 2ωBvcvcB

ω4
Av

ω3
Av

ωBv

2ω1
Av + 7ω3

Av + 2ωBv
, (42)

LAA = l
(0)
A − 2cvcB

ω4
Av

ω3
Av

(3ω3
Av − 2ω1

Av)
2

2ω1
Av + 7ω3

Av + 2ωBv
, (43)

where l
(0)
A is given by equation (33) and l

(0)
B by equation (37). These transport coefficients turn out

to be the same as those obtained by Howard and Lidiard (1963,1964) using the five frequency model

within the first shell approximation. Taking into account nn effective interactions only would mean

calculating the probability of the direct jumping back of a vacancy in competition with the escaping

jumps, the paths of the vacancy made of more than two jumps being neglected.

We turn now to the evaluation of the self-diffusion coefficient. To do so we add to the binary alloy AB

a third atomic species, an isotope A∗ of solvent A, and calculate the appropriate transport coefficient

LA∗A∗ :

DA∗ = 1/β lim
cA∗→0

LA∗A∗ (44)

Following the notation of equation (13) we write down LA∗A∗ :

LA∗A∗/β = l
(0)
A∗ − lA∗(A, 1)vAA∗(A∗)− lA∗(B, 1)vBA∗(A∗)

= l
(0)
A∗ + 2

mA∗(A, 1)t(AB)1(AB)1

det(T )
[−mA∗(A, 1)t(BA∗)1(BA∗)1 + mA∗(B, 1)tAA∗,BA∗]

+2
mA∗(B, 1)t(AB)1(AB)1

det(T )
[mA∗(A, 1)t(BA∗)1(AA∗)1 −mA∗(B, 1)tAA∗,AA∗], (45)

where matrix T is three dimensional :

T =


t(AB)1(AB)1 t(AB)1(AA∗)1 −t(AB)1(A∗B)1

t(AA∗)1(AB)1 t(AA∗)1(AA∗)1 t(AA∗)1(BA∗)1

−t(BA∗)1(BA)1 t(BA∗)1(AA∗)1 t(BA∗)1(BA∗)1


, (46)
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and determinant of T is equal to :

det(T ) = t(AB)1(AB)1 [t(AA∗)1(AA∗)1t(BA∗)1(BA∗)1 − (t(BA∗)1(AA∗)1)
2] (47)

Likewise l
(0)
A (equation (33)), l

(0)
A∗ is a function of the four jump frequencies of A :

l
(0)
A∗ ' cvcA∗ [c18

A ω0
Av + 7cBc17

A ω4
Av + 4cBc17

A yBvω
1
Av + 7cBc17

A yBvω
3
Av

' cvcA∗ω0
Av[1− cB(18− 14

ω4
Av

ω0
Av

− 4
ω1

Av

ω0
Av

ω4
Av

ω3
Av

)]. (48)

Following the same scheme, terms entering equation (45) are calculated to first order in cB :

t(AA∗)1,(AA∗)1 ' ω0
AvcAcA∗cv[11− cB(17 ∗ 11− 142

ω4
Av

ω0
Av

− 52
ω1

Av

ω0
Av

ω4
Av

ω3
Av

)]

t(BA∗)1,(AA∗)1 ' −ω0
AvcA∗cvcB(

ω4
Av

ω0
Av

+ 6
ω1

Av

ω0
Av

ω4
Av

ω3
Av

), (49)

t(A∗B)1,(A∗σ)1(σ ≡ B) = t′(A∗B)1,(A∗B)1cA∗cvc
2
B

t(BA∗)1,(BA∗)1 ' t′(A∗B)1,(A∗B)1cA∗cvc
2
B + cA∗cvcB(7ω4

Av + 2ω1
Av

ω4
Av

ω3
Av

+ 9ωBv
ω4

Av

ω3
Av

), (50)

and

mA∗(A, 1) ' −ω0
AvcAcA∗cv[1− cB(17− 11

ω4
Av

ω0
Av

− 6
ω1

Av

ω0
Av

ω4
Av

ω3
Av

)

mA∗(B, 1) ' ω0
AvcA∗cvcB(−3

ω4
Av

ω0
Av

+ 2
ω1

Av

ω0
Av

ω4
Av

ω3
Av

). (51)

We write down the resulting LA∗A∗ :

LA∗A∗/β = l
(0)
A∗ −

NA∗

det(T )
(52)
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where the denominator is equal to :

det(T ) = t(AB)1(AB)1cBcAc2
vc

2
A∗[(9 ∗ 11ωBvω

0
Av + 11ω0

Av(7ω4
Av + 2ω1

Av))

+cB(9ωBv(52ω1
Av + 142ω4

Av − 187ω0
Av) + 11ω0

Avt
′
(A∗B)1,(A∗B)1 − 1309ω0

Avω
4
Av

−374ω0
Avω

1
Av + 993(ω4

Av)
2 + 636ω1

Avω
4
Av + 68(ω1

Av)
2)] (53)

and the numerator is equal to :

NA∗ = 2t(AB)1(AB)1cAc3
A∗c

3
vcBω0

Av{ω0
Av(7ω4

Av + 2ω1
Av + 9ωBv)

+cB[ω0
Avt

′
(A∗B)1,(A∗B)1 − 245ω4

Avω
0
Av − 70ω1

Avω
0
Av + 259(ω4

Av)
2

+44(ω1
Av)

2 + 28ω1
Avω

4
Av + 9ωBv(+22ω4

Av + 12ω1
Av − 35ω0

Av)]}. (54)

Finally, self-diffusion coefficient to first order in cB is defined through a zero order term DA∗(cB = 0)

and an enhancement factor b : DA∗ = DA∗(cB = 0)(1 + bcB) with b = bf + bω. DA∗(cB = 0) is equal

to :

DA∗(cB = 0) = cvω
0
Av

9
11

, (55)

where 9
11 is a first shell approximation of f0. The contribution bω to the enhancement factor describes

the variation of the mean frequency of A atoms due to the presence of solutes :

bω = −(18− 14
ω4

Av

ω0
Av

− 4
ω1

Av

ω0
Av

ω4
Av

ω3
Av

). (56)

Treatment by Lidiard (1960) was assuming that enhancement coming from the correlations was neg-

ligible which is equivalent to put fA = f0 at any concentration. The resulting enhancement was then

equal to bω.
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While bf describes the enhancement of the correlation factor :

bf = −2(1− 9
11

)
ω4

Av

ω0
Av

ωBv

ω1
Av

(−27 + 18ω1
Av

ω3
Av

) + 1
9(164ω1

Av

ω3
Av

+ 389ω3
Av

ω1
Av
− 472)

9ωBv

ω1
Av

+ 7ω3
Av

ω1
Av

+ 2
). (57)

It is the first time that bf is given in an analytical form which allows to study its general behaviour

with respect to each frequency ratio and to compare it with other analytical approaches available in

some limiting cases.

IV. MONTE CARLO SIMULATIONS

A. The atomic diffusion model

The probability per time unit of a single jump of an atom α at a site i into a vacancy v at a site j has

the ”thermally activated” form

ŵαv
ij (n) = ωαv

ij exp{−β[Ê(s)
αv

ij (n)− Ĥ(n)]}, (58)

where we assume that the attempt frequency ωαv
ij is independent of the configuration ; the activation

barrier is the difference between the energy of the system, Ê(s)
αv

ij , with atom α at the saddle point

position between sites i and j and the energy of the initial configuration n, Ĥ(n). Interactions

which are not modified during the jump process do not contribute to the activation barrier, hence the

activation barrier only depends on the local environment of sites i and j. Interactions are assumed to

be limited to the first nearest neighbour interactions both at the substitutional position (Vab) and at

the saddle point positions (V s
ab). As a result the single jump probability (58) takes the final form

ŵαv
ij (n) = να exp(−β[

∑
k,β

γ
′

(i
′
k)1

V s
αβ − (

∑
k6=j,β

γ(ik)1Vαβ +
∑
k,β

γ(jk)1Vvβ)], (59)
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where να is the attempt jump frequency, the first term in the exponential corresponds to the new

binding energies created at the saddle point and the second term between parenthesis to the binding

energies to be cut by the exchanging species at initial state. In presence of one atom B in the simulation

box, the are only five jump frequencies to be distinguished. And the dependence upon the microscopic

parameters of the three frequency ratios controlling the enhancement factor b are known :

The corresponding jump frequency ratios are equal to :

ω4
Av

ω0
Av

= expβ(VAB − VAA),

ω3
Av

ω1
Av

= expβ(V s
AB − V s

AA + VAA − VAB)

ωBv

ω1
Av

=
νB

νA
expβ(−4Vs

BA + 3V s
AA + V s

AB + 10VAB − 10VAA).

(60)

Note that in reality there is more than one B atom in the simulation box and other jump frequencies

may be required during the simulation. In opposition to Belova and Murch (2003b), we keep them

and we affect to them the value provided by equation (59). Three sets of parameters are proposed to

explore the behaviour of b with respect to the variation of the three frequency ratios one by one.

First set of parameters corresponds to : VAA = −1.1984eV , VBB = −1.2344eV , VAB = −1.1984eV ,

VAv = 0, VBv = −0.0016eV , V s
AA = −2.4eV , V s

AB = −2.4597, V s
BA = V s

BB = −2.9eV , νA = 5.1015 and

and νB = 8.30404× 105x so that ω4
Av/ω0

Av = 1, ω3
Av/ω1

Av = 0.5 and ωBv/ω1
Av = x.

Second set of parameters corresponds to : VAA = −1eV , VBB = −1.4328eV , VAB = −1.1984eV , VAv =

0, VBv = −0.2eV , V s
AA = −2.4eV , V s

BA = V s
BB = −2.9eV , νA = 5.1015 and V s

AB = −2.5984+kBT ln(x)

and νB = 4.15867× 1015/x so that ω4
Av/ω0

Av = 0.1, ω3
Av/ω1

Av = x and ωBv/ω1
Av = 0.1.
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Third set of parameters corresponds to : VAA = −0.9 − kBT lnxeV , VBB = −0.936 + kBT lnxeV ,

VAB = −0.9eV , VAv = VBv = 0, V s
AA = −2.4eV , V s

BA = V s
BB = 0eV , V s

AA = −2.75 × kBT ln(x) ,

V s
AB = −1.75× kBT ln(x) ,νA = νB = 1055 so that ω4

Av/ω0
Av = x, ω3

Av/ω1
Av = 1 and ωBv/ω1

Av = 1.

Note that the three sets of parameters are adjusted in such a way that there is no trapping of vacancies

on solutes which would have modified the concentration of vacancy in the regions of pure A. The affinity

between A and B is fixed by the ratio :

ω4
Av

ω3
Av

=
ω4

Av

ω0
Av

exp[β(VAv − VBv)], (61)

which is very close to one for the three parameter sets so that the concentration of vacancy in the

matrix is not modified by the addition of solutes B. In real materials, vacancies interact with solutes

but sources and sinks like grain-boundaries, interfaces or dislocations are usually supposed to be

efficient enough to guarantee a vacancy concentration in the matrix very close to the value measured

in pure metal.

B. Conditions of simulation

The simulation box contains 163 = 4096 sites among which 45 sites are occupied by B atom and one by

a vacancy. The concentration in solute atoms is then equal to cB = 0.0109 which at the temperature

of the simulations (T = 1000K) is checked to be inferior to the solubility limit, c0 :

c0 = exp{W/kBT} = 0.081, (62)

where W = 12/2(VAA + VBB − 2VAB) = −0.216eV is a negative ordering energy which simulates a

system with clustering tendencies. Note that MC simulations were performed with lower values of
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cB to check that the slope of the self-diffusion coefficient with respect to cB remains constant in this

concentration range. Each MC value is an average of 10000 (or 50000 if necessary) measures. Each

measure of diffusion coefficient is a result of a Monte carlo run of 107 steps. The calculated standard

error of the mean (SEM) (the mean square divided by the square root of the number of measures) does

not exceed 0.1% of the diffusion coefficient value. b is obtained as the difference between the diffusion

coefficient measured at cB = 0.0109 minus the same diffusion coefficient measured in the pure metal

A divided by cB = 0.0109. Error on b does not exceed 0.1.

V. DISCUSSION

While the Lij of a binary alloy have been precisely known since 1981 (Allnatt 1981), a reliable model

for the enhancement factor b is still lacking. From the previous sections, we obtained a new analytical

formulae of b which is compared to the MC simulations and the available models. Some of the

differences with the MC simulations are explained in terms of the vacancy paths in relation with the

range of the effective interactions considered.

A. The fcc random alloy

First historical test of the multi-frequency model was to reduce the alloy to a random lattice gas which

is equivalent to say that the influence of solutes on the jump rate of the solvent is negligible and that

there is only one solvent jump frequency : ωAv = ω0
Av = ω1

Av = ω3
Av = ω4

Av. This limiting case appeared

to be a crucial test of the multi-frequency models (Allnatt and Lidiard 1987). Moreover, recent Monte

Carlo simulations (Belova and Murch 2003b) established how wrong were the models. It appeared
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that the so-called random lattice gas models starting with an ideal solid solution and associating to

each chemical species a unique jump rate were in better agreement with the Monte Carlo simulations.

Among the various random alloy model, Belova and Murch (2003b) have shown that predictions of the

correlation factors of Moleko, Allnatt and Allnatt (1989) were almost equal to the exact Monte

Carlo simulations of a random alloy even at very low concentration of solutes which is not the case of

the random alloy model of Manning (1971) . In the following, the formulae of Moleko, Allnatt and

Allnatt (1989) will be stated as the reference :

b(M.A.A.) =
2(1− f0)(ωBv − ωAv)

ωBv + ωAv + (1− f0)(ωAv − ωBv)
, (63)

where the vacancy concentration is assumed to be very low (see Belova and Murch 2003b

to obtain the details of the derivation).

The SCMF model (equations (56) (57)) is simplified by assuming that every solvent jump frequency

is equal to ωAv :

b = 2(1− 9
11

)
(ωBv − ωAv)
ωBv + ωAv

. (64)

A previous publication, based on the same atomic diffusion model and using the same self-consistent

mean field formalism, yielded more general results since it considered the whole series of effective pair

interactions at infinite range and any isotropic crystallographic structure (fcc, body centered cubic,

diamond, etc.). The principle was to neglecting variations of jump frequencies upon the configuration

of nearby atoms and to assume that jump frequencies appearing in equation (28) were all equal which

was coherent with the Bragg Williams statistical approximation used to calculate the thermodynamic

averages. The resulting Lij depended on two effective jump frequencies, ωAv and ωBv, the alloy
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composition and the correlation factor for self-diffusion, f0. The corresponding expression of b coincides

with equation (64) unless the constant (1− 9
11) is replaced by the more general quantity (1− f0). On

the other hand a discussion given in (Nastar et al. 2000) predicts that equation (64) is quite satisfying

as long as the exchange frequencies are not too different. Indeed the effective Hamiltonian is truncated

after pair interactions and self-consistency is satisfied until two-point averages only. Time derivatives

of N-point averages (N > 2) are proportional to (ωA−ωB). The larger the difference between effective

frequencies the worse the self-consistency of kinetic equations. Indeed, it is observed that the difference

between equations (63) and (64) increases with (ωA−ωB). In summary, we expect that a critical test

of the present model will be the behaviour of b for high values of (ωBv − ωAv). For example, when

ωBv (resp. ωAv) is taken to be zero, b(M.A.A.) is found to be equal to −0.559 (resp. 0.559) while the

present b is equal to −0.437 (resp. 0.437).

[Insert table 1 about here]

However, table (I) shows that a relative error of around 20% on the value of b is not so critical

compared to the errors made by the multi-frequency models which in some cases do not predict the

right sign even. The enhancement factor should vanish when jump frequency of solute is equal to the

solvent jump frequency which is verified by all the random alloy model and the present model but not

by the five frequency models. It is even more surprising that an improved calculation (Ishioka and

Koiwa 1984) which considers larger radius for the estimation of the partial correlation factors appears

to be worse than the initial approximation of H. M. (1967). Note that the predictions of Lidiard
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(1960) are not given in table (I) since it would give 0 at any value of the jump rates. As a conclusion

already noted down by Allnatt and Lidiard (1987) and recently confirmed by Monte Carlo simulations

of Belova and Murch (2003), the multi-frequency models are inaccurate when they are used to predict

the effect of solute on self-diffusion in a random alloy.

B. The fcc interacting alloy

In opposition to the last five-frequency models (Howard and Manning 1967, Ishioka and Koiwa 1984),

the present model provides with an analytical expression of b (equations (56) and (57)). As shown

by Howard and Manning (1967), the enhancement factor depends on three ratios, ω3
Av/ω1

Av, ωBv/ω1
Av

and ω4
Av/ω0

Av. The two first ratios represent the relative probabilities of the possible jumps a vacancy

can make when it is at a nn site of a solute atom. And the last ratio, ω4
Av/ω0

Av represents the relative

probability of the jumps a vacancy can make when it is at a next nn site of a solute atom. The ratio

ω4
Av/ω3

Av which determines the probability of forming a pair Bv is not involved as long as sinks and

sources of the system manage to maintain the vacancy concentration in the matrix at the corresponding

value in pure A. We shall limit the discussion to the comparison between the present model and the

previous five frequency models. No comparison is possible with other mean field approaches such as

the Path Probability Method (Sato and Kikuchi 1983) and the Taylor series expansion of the time

correlation functions (Qin et al. 1998) or more empirical techniques (Stolwijk 1981, Bakker 1979)

since no one makes appear the five jump frequencies in the dilute limit.

Although, the Lidiard model (1960) is limited to the description of the effect of solute on the mean

solvent jump frequency (bω), it is represented in the figures so that the correlation effect contribution,
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bf , can be directly measured by making the difference with the values of Lidiard. Note that the MC

simulations and every theory agree on the estimation of bω, the discrepancies with the MC results are

due to an approximate estimation of the correlation effects.

The jump frequency of solutes can have a significant effect on the self-diffusion by modifying its

correlation factor. This effect is omitted by the first model of Lidiard (1960) which is limited to b = bω

(equation (56)). The SCMF model predicts an increasing of b with ωBv/ω1
Av no matter the value of

ω3
Av/ω1

Av and ω4
Av/ω0

Av. Indeed

∂b

∂(ωBv

ω1
Av

)
= 4(1− 9

11
)(

ω4
Av

ω0
Av

)(
ω3

Av

ω1
Av

)
(8ω1

Av

ω3
Av
− 17)2

(9ωBv

ω1
Av

+ 7ω3
Av

ω1
Av

+ 2)2
(65)

is always positive. This tendency already predicted by H.M. (Howard and Manning 1969) is in agree-

ment with the Monte Carlo simulations (figures (1) and (2)). We choose to represent MC simulations

of Belova and Murch (2003a) in figure (2) to explore a new set of jump frequencies but also to make

sure that a positive variation of b with ωBv/ω1
Av is verified by different authors. The SCMF theory

predicts a very small variation of b in agreement with the MC simulations while it underestimates the

slowing down of self-diffusion due to correlation effects. Calculation of I.K. (Ishioka and Koiwa 1984)

was proved to be not accurate in the random alloy limit. Figures (1) and (2) reveal that it is still not

accurate when it is examined in the region where the various host atom jump frequencies are close to

one another. Moreover, the prediction of a negative slope of b with respect to ωBv/ω1
Av extends beyond

the set of frequencies represented in figures (1) and (2)) : at ω4
Av/ω0

Av = 0.1 and ω3
Av/ω1

Av > 0.1 ; and

also at ω4
Av/ω0

Av = 1 and 0.25 < ω3
Av/ω1

Av < 5. For some values of the jump frequencies, the curves of

I.K. and H.M. are above the curve associated to the Lidiard theory (1960) and predict then a speed

up of the self-diffusion coefficient by the correlation effects, which is in contradiction with the MC
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simulations.

[Insert figure 1 and 2 about here]

The fall of b at low values of ω3
Av/ω1

Av is a general feature occurring at any value of the other two

ratios (figure (3) and Belova and Murch 2003a).

[Insert figure 3 about here]

A schematic representation given in figure (4) helps to understand the role of correlations in relation

with the range of the effective interactions. It represents the possible jumps of a vacancy after a first

jump with a tracer in a fcc lattice. Two initial jumps are represented, ω1 (case a)) and ω0 (case b)). In

both cases, low values of ω3
Av/ω1

Av enhance the jump back of the vacancy in opposition to the escaping

jumps which lead to a slowing down of the self-diffusion by the correlation effects. The role of the nn

effective interactions appears clearly in equation (9). They require to determine what are the chemical

species on the nn sites of the migrating atom (tracer). In figure (4), the solute atom of case a) is seen

by the effective interactions since it is nn of the tracer but not the one of case b). We understand

then that some of the correlation effects are missed by the SCMF when the effective hamiltonian is

restricted to nn effective interactions. Ishioka and Koiwa (1984) which consider longer paths of the
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vacancy and more details of the local environment around the vacancy is more efficient to describe

such a strong correlation effect.

[Insert figure 4 about here]

The MC simulations of figure (5) reveal a non-monotonous variation of bf with respect to ω4
Av/ω0

Av.

Indeed at values of ω4
Av/ω0

Av above 5, correlations effects enhance the self-diffusion. Note that this

phenomenon was not observed by Belova and Murch (2003a) perhaps because self-diffusion was not

studied for values of ω4
Av/ω0

Av beyond 5. H. M. and I. K. overestimate the slowing down due to

correlation effects and do not predict the reverse trend at higher values of the ratio ω4
Av/ω0

Av, while

the present theory predicts a bf equal to zero which appears to be a better approximation of bf .

Although the present model moves away from the MC simulations at higher values of ω4
Av/ω0

Av. An

acceleration of self-diffusion by the correlation effects means that the solvent correlation factor is

higher than f0 but still below 1.

[Insert figure 5 about here]

A schematic diagram drawn in figure (6) represents the possible paths of a vacancy after a ω3 or a ω0

jump type. Note that in the case of an alloy simulated by the third parameter set (defined in section
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IV), initial jumps of type ω1 and ω4 would show no preferential path of a vacancy. Figure (6) shows

that in both cases a high value of ω4/ω0 enhances the escape frequency of a vacancy compared to

a coming back. It is natural then to observe an acceleration of the self-diffusion by the correlation

effects. Note that the nn effective interactions do not see the solute atom so that the vacancy follows

a random path after the initial jump which explains that the SCMF curve meets the Lidiard curve in

figure (5).

[Insert figure 6 about here]

The model has been successfully tested in the region of the random alloy (figures (1) and (2)). In

an interacting alloy, the SCMF results are observed to be in reasonable agreement with the MC

simulations and well reproduce the main tendencies : large slowing down of the self-diffusion due

to correlations at low ratio ω3/ω1 and weak correlation effects in an alloy associated to the third

parameter set (figure 5). Moreover, the limitations of the model are easily connected to the range of

the effective interactions considered. A significant improvement of the model would be obtained if the

effective Hamiltonian was extended to the next nearest neighbour effective interactions.

VI. CONCLUSION

SCMF kinetic equations based on an atomic model of atom-vacancy exchange frequencies are written

in the general case of a multi-component alloy with any crystallographic structure. They lead to an
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expression of the phenomenological coefficients as a function of time dependent effective interactions

which are solved using the the kinetic equations of the next moments of the distribution function under

steady state conditions. An explicit calculation is carried out for the case of a fcc matrix of A atoms

containing a small amount of B atoms and isotope atoms (A∗). The phenomenological coefficients,

LAA, LAB and LBB, are equivalent to the first shell formulae of the five-frequency model (Howard

and Lidiard 1963, 1964). A new analytical model for evaluating the effect of solute atoms on the self-

diffusion coefficient is given. In the particular case of a random alloy, the present SCMF approximation

is found to be equivalent to a previous formulation based on a lower statistical approximation but

valid at any concentration of a multi-component alloy. In agreement with the Monte Carlo simulations

the self-diffusion coefficient is increasing with the solute jump frequency in opposition to the previous

five-frequency model (Ishioka and Koiwa 1984). Although a good quantitative agreement is obtained

(within 20 %), the discrepancy is recognized to be due to the fact that pair effective interactions

are considered only with a neglect of the triplet interactions. In an alloy with interactions, the

SCMF prediction of the self-diffusion coefficient reproduces the main tendencies of the Monte Carlo

simulations based on the same atomic model, with in general, a better agreement than the previous

five-frequency models. When the quantitative agreement is not satisfying (for example at low ratio

of ω3/ω1), it can be explained by the fact that nearest neighbour effective interactions are considered

only which greatly reduces the level of description of the diffusion paths offered to a vacancy after a

first exchange. As a consequence the main discrepancies can be easily corrected by an extension of the

effective Hamiltonian to interactions with a larger range. This approach is promising since it reconciles

a diffusion model devoted to concentrated alloys with a multi-frequency approach usually restricted
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to dilute alloys. The objective will be to give a multi-frequency formulation of the phenomenological

coefficients of a concentrated alloy. It will allow to predict negative values of the non-diagonal transport

coefficients which is not possible with the actual diffusion models of concentrated alloys.

APPENDIX A

Following equation (3), the distribution function is divided into two terms :

d〈nα
i nβ

j nγ
k . . .〉

dt
=

∑
s 6=i6=j 6=...

〈nβ
j nγ

k . . . [nα
s nv

i ω̂
αv
si − nα

i nv
sω̂

αv
is ]P̂1(n, t)〉(0) +

∑
s 6=i6=j 6=...

〈nα
i nγ

k . . . [nβ
s nv

j ω̂
βv
sj − nβ

j nv
sω̂

βv
js ]P̂1(n, t)〉(0) + . . . , (66)

where 〈. . .〉(0) means averaging over the equilibrium distribution function P̂0(n). Expansion of P̂1(n)

to first order in ĥ(t) and δµ(t) gives :

d〈nα
i nβ

j nγ
k . . .〉

dt
=

∑
s 6=i6=j 6=...

〈nβ
j nγ

k . . . [nα
s nv

i ω̂
αv
si − nα

i nv
sω̂

αv
is ](1 + β(δΩ(t) +

∑
α,i

δµα
i (t)nα

i − ĥ(t)))〉(0) +

∑
s 6=i6=j 6=...

〈nα
i nγ

k . . . [nβ
s nv

j ω̂
βv
sj − nβ

j nv
sω̂

βv
js ](1 + β(δΩ(t) +

∑
α,i

δµα
i (t)nα

i − ĥ(t)))〉(0) + . . . ,(67)

By construction of the exchange frequencies, detailed balance principle is satisfied at equilibrium :

P̂0(n)nα
s nv

i ω̂
αv
si (n) = P̂0(n′)n′αi n′

v
sω̂

αv
is (n′), (68)

where configurations n and n′ differ by an exchange of atom α on site i and a vacancy v on a

neighbouring site s. Equation (68) summed over all the configurations leads to the equality :

〈nα
s nv

i ω̂
αv
si 〉(0) = 〈nα

i nv
sω̂

αv
is (n)〉(0). (69)
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Therefore to first order in ĥ(t) and δµ(t), equation (67) simplifies to :

d〈nα
i nβ

j . . .〉
dt

= β
∑

s 6=i6=j 6=...

〈nβ
j . . . [nα

s nv
i ω̂

αv
si (δµα

s − δµα
i − ĥα

s + ĥα
i )〉(0) +

β
∑

s 6=i6=j 6=...

〈nα
i . . . nα

i nβ
s nv

j ω̂
βv
sj (δµβ

s − δµβ
j − ĥβ

s + ĥβ
j )〉(0) + . . . . (70)

Note that δΩ(t) disappears in the difference.

APPENDIX B

The calculation consists in dividing the sums into blocks of equivalent four-point averages and by using

the antisymmetry property of the effective interactions summing each block in terms of the positive

first nearest neighbour effective interaction. The estimation of each sum is listed in table (II), each cell

corresponding to a summation over p indices at fixed site s. To get the final result it suffices to sum

the equivalent four-point averages over s. For example first term of the rhs of equation (25) results

from the sum of the first three cells of the first column, each cell being weighted by the number of

equivalent s sites : [(−4) ∗ 1 + (−2) ∗ 2 + (0) ∗ 4v(ασ)1 ](v(ασ)1/v(ασ)1).

[Insert table 2 about here]

ACKNOWLEDGMENTS

The authors are grateful to V. Barbe, P. Bellon, J. L. Bocquet, E. Clouet, B. Legrand, G. Martin and

F.Soisson, for their judicious comments and their assistance.

Page 36 of 48

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

37

REFERENCES

[1] Allnatt, A. R., 1981, J. Phys. C : Solid State Phys., 14, 5453.

[2] Allnatt, A. R., and Lidiard, A. B., 1987, Acta metall., 35, 1555.

[3] Allnatt, A. R., and Lidiard, A. B., 1993, Atomic Transport in Solids (Cambridge : University Press).

[4] Bakker, H., 1979, Phil. Mag. A, 40, 525.

[5] Belova, I. V., and Murch, G. E., 2003a, Phil. Mag., 83, 377.

[6] Belova, I. V., and Murch, G. E., 2003b, Phil. Mag., 83, 393.

[7] Ducastelle, F., 1991, Order and Phase Stability in Alloys (Amsterdam : North-Holland).

[8] Howard, R. E., and Lidiard, A. B., 1963, J. Phys. Soc. Japan, 18(Suppl. 2), 197.

[9] Howard, R. E., and Lidiard, A. B., 1964, Rep. Prog. Phys., 27, 161.

[10] Howard, R. E., and Manning, J. R., 1967, Phys. Rev., 154, 561.

[11] Ishioka, S., and Koiwa, M., Phil. Mag. A, 1984, 50, 505.

[12] Kikuchi, R., and Sato, H., 1969, J. Chem. Phys., 51, 161.

[13] Lidiard A. B., 1960, Phil. Mag., 5, 1171.

[14] Manning, J. R., 1971, Phys. Rev. B, 1971, 4, 1111.

[15] Moleko, L. K., Allnatt, A. R., and Allnatt, E. L., 1989, Phil. Mag. A, 59, 141.

[16] Nastar, M., Dobretsov, V. Yu., and Martin, G., 2000, Phil. Mag. A, 80, 155.

[17] Qin, Z., Allnat, A. R., and Allnat, E. L., 1998, J. Phys. : Condens. Matter, 10, 5295.

[18] Sanchez, J. M., Ducastelle, F., and Gratias, D., Physica A, 1984, 128, 334.

[19] Sato, H., and Kikuchi, R., 1983, Phys. Rev. B, 28, 648.

[20] Sato, H., Ishikawa, T., and Kikuchi, R., 1985, J. Phys. Chem. Solids, 46, 1361.

Page 37 of 48

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

38

[21] N. A. Stolwijk, 1981, Phys. Stat. sol. (b), 105, 223.

[22] I. A. Szabo and D. L. Beke, 2004, Phys. Chem. Chem. Phys., 6, 3625.

[23] Vaks, V. G., 1996, Pis’ma Zh.eksp. teor. Fiz., 1996, 63, 447. Engl. Transl. JETP Lett., 1996, 63, 471.

Page 38 of 48

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

39

H.M. (1967) I.K. (1983) S.C.M.F. M.A.A. (1989)

ωBv = 0 0.010 0.855 −0.437 −0.559

ωBv = ωAv 0.215 0.163 0 0

ωBv/ωAv = 103 0.898 −0.367 0.437 0.559

TABLE I: The enhancement factor b for different values of the ratio of jump frequencies associated to A and B

in a binary alloy AB without interaction predicted by the five-frequency models of H.M. (Howard and Manning

1967) and I.K. (Ishioka and Koiwa 1984) ; by the present model (SCMF) and by M.A.A. (Moleko, Allnatt

and Allnatt 1989).
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γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1

(1− γ(sp)1)(1− γ(jp)1) (1− γ(sp)1)γ(jp)1 γ(sp)1(1− γ(jp)1) γ(sp)1γ(jp)1

(1− γ(js)1)γ(ip)1v
ασ
ip (1− γ(js)1)γ(ip)1v

ασ
ip (1− γ(js)1)γ(ip)1v

ασ
ip (1− γ(js)1)γ(ip)1v

ασ
ip

1s ∈ (i+) −4v(ασ)1 0 0 2v(ασ)1

2s ∈ (i) −2v(ασ)1 v(ασ)1 v(ασ)1 − 2v(ασ)1 v(ασ)1

4s ∈ (i−) v(ασ)1 − v(ασ)1 2v(ασ)1 −2v(ασ)1 0

γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1

(1− γ(sp)1)(1− γ(jp)1) (1− γ(sp)1)γ(jp)1 γ(sp)1(1− γ(jp)1) γ(sp)1γ(jp)1

γ(js)1γ(ip)1v
ασ
ip γ(js)1γ(ip)1v

ασ
ip γ(js)1γ(ip)1v

ασ
ip γ(js)1γ(ip)1v

ασ
ip

2s ∈ (i+) −4v(ασ)1 v(ασ)1 v(ασ)1 0

2s ∈ (i) v(ασ)1 − 2v(ασ)1 v(ασ)1 −2v(ασ)1 v(ασ)1

γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1

(1− γ(ip)1)(1− γ(jp)1) (1− γ(ip)1)γ(jp)1 γ(ip)1(1− γ(jp)1) γ(ip)1γ(jp)1

(1− γ(js)1)γ(sp)1v
ασ
sp (1− γ(js)1)γ(sp)1v

ασ
sp (1− γ(js)1)γ(sp)1v

ασ
sp (1− γ(js)1)γ(sp)1v

ασ
sp

1s ∈ (i+) 3v(ασ)1 − v(ασ)1 v(ασ)1 −2v(ασ)1 0

2s ∈ (i) 2v(ασ)1 − 2v(ασ)1 0 v(ασ)1 − 2v(ασ)1 v(ασ)1

1s ∈ (i−) v(ασ)1 − 4v(ασ)1 0 2v(ασ)1 0

1s ∈ (i−) −4v(ασ)1 v(ασ)1 0 2v(ασ)1

2s ∈ (i−) v(ασ)1 − 4v(ασ)1 0 v(ασ)1 v(ασ)1

γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1 γ(ij)1
∑

p γ(is)1

(1− γ(ip)1)(1− γ(jp)1) (1− γ(ip)1)γ(jp)1 γ(ip)1(1− γ(jp)1) γ(ip)1γ(jp)1

γ(js)1γ(sp)1v
ασ
sp γ(js)1γ(sp)1v

ασ
sp γ(js)1γ(sp)1v

ασ
sp γ(js)1γ(sp)1v

ασ
sp

2s ∈ (i+) 2v(ασ)1 − v(ασ)1 2v(ασ)1 −v(ασ)1 −v(ασ)1

2s ∈ (i) v(ασ)1 − 2v(ασ)1 v(ασ)1 −2v(ασ)1 v(ασ)1

TABLE II: Value of the intermediate sums to be calculated in equations (25) and (26) which depend on four

point averages and nearest neighbour effective interactions, in the particular case of a fcc crystal. In each cell,

the number in front of the positive nn effective interaction corresponds to the number of equivalent four-point

averages weighted by the sign of the associated nn effective interaction when summed over p at fixed s.
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Figure 1 Dependence of b with the ratio ω2/ω1 with ω4/ω0 = 1 and ω3/ω1 = 0.5 deduced from the

first parameter set defined in section (IV). Line and full circles correspond to equilibrium

Monte Carlo simulations, stars to the SCMF predictions, triangles to the five-frequency

model of I.K. (Ishioka and Koiwa 1984), polygons to the five-frequency model of H.M.

(Howard and Manning 1967) and crosses to the five-frequency model of L. (Lidiard 1960).

Figure 2 Dependence of b with the ratio ω2/ω1 with ω4/ω0 = 0.1 and ω3/ω1 = 1. Line and full

circles correspond to equilibrium Monte Carlo simulations (Belova and Murch 2003a),

stars to the SCMF predictions, triangles to the five-frequency model of I.K. (Ishioka and

Koiwa 1984), polygons to the five-frequency model of H.M. (Howard and Manning 1967)

and crosses to the five-frequency model of L. (Lidiard 1960).

Figure 3 Dependence of b with the ratio ω3/ω1 with ω4/ω0 = 0.1 and ω2/ω1 = 0.1 deduced from

the second parameter set defined in section (IV). Line and full circles correspond to

equilibrium Monte Carlo simulations, stars to the SCMF predictions, triangles to the five-

frequency model of I.K. (Ishioka and Koiwa 1984), polygons to the five-frequency model of

H.M. (Howard and Manning 1967) and crosses to the five-frequency model of L. (Lidiard

1960).

Figure 4 Schematic diagram of a fcc crystal to illustrate the possible paths of a vacancy (empty

circle) near a solute atom (black circle) after an exchange with a tracer atom A (grey

circle). Cases a) and b) represent respectively the possible jumps offered to a vacancy

after a first jump of type ω1 (resp. ω0). The thick arrow represents the most probable
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jump when the set of jump frequencies is the second set of section (IV) illustrated in figure

(3) in the case of low values of ω3/ω1.

Figure 5 Dependence of b with the ratio ω4/ω0 with ω3/ω1 = 1 and ω2/ω1 = 1 deduced from the

third parameter set defined in section (IV). Line and full circles correspond to equilibrium

Monte Carlo simulations, stars to the SCMF predictions, triangles to the five-frequency

model of I.K. (Ishioka and Koiwa 1984), polygons to the five-frequency model of H.M.

(Howard and Manning 1967) and crosses to the five-frequency model of L. (Lidiard 1960).

Figure 6 Schematic diagram of a fcc crystal to illustrate possible paths of a vacancy (empty circle)

near a solute atom (black circle) after an exchange with a tracer atom A (grey circle).

Cases a) and b) represent respectively the possible jumps offered to a vacancy after a first

jump of type ω3 (resp. ω0). The thick arrow represents the most probable jump when

the set of jump frequencies is the third one of section (IV) illustrated in figure (5) in the

region of large values of ω4/ω0.
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