2-Amidoindole based anion receptors
Philip Alan Gale

To cite this version:
Philip Alan Gale. 2-Amidoindole based anion receptors. Supramolecular Chemistry, 2009, 21 (01-02), pp.125-130. 10.1080/10610270802348243. hal-00513536

HAL Id: hal-00513536
https://hal.science/hal-00513536
Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
2-Amidoindole based anion receptors

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Supramolecular Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>GSCH-2008-0037.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Full Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>23-Jun-2008</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Gale, Philip; University of Southampton, School of Chemistry</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Anion binding, indole, hydrogen bonding, crystallography</td>
</tr>
</tbody>
</table>

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.

1-4.cdx
Archive.zip
Abstract

Four receptors containing either 2-amidoindole or 7-nitro-2-amidoindole groups have been synthesized and shown to complex oxo-anions in DMSO-d$_6$/0.5% water solution. X-ray crystal structure elucidation reveals that receptor 1 complexes dihydrogen phosphate ion pairs in the solid state that are part of a continuous chain. Whilst this receptor binds dihydrogen phosphate in a 1:1 stoichiometry in solution, compound 4, which contains 7-nitroindole groups, does form 1:2 receptor:dihydrogen phosphate complexes in DMSO-d$_6$/0.5% water.

Keywords

Anion binding, indole, hydrogen bonding, crystallography

Introduction

Anion receptors based on organic frameworks are currently an area of intense interest.1 Recent work from the groups of Jeong2 and others3 has begun to focus attention on the use of indole as a hydrogen bond donor group in synthetic anion receptor systems.4 Indole (pK$_a$ 21 in DMSO), like pyrrole (pK$_a$ 23 in DMSO),5 contains a single hydrogen bond donor group and yet its utility as a component of synthetic receptor systems, in comparison to pyrrole, is still largely unexplored. In biological systems, indole (as tryptophan) has been shown to form hydrogen bonds to
anions such as chloride6 and sulfate.7 We have used 2,3-dimethylindole in functionalised pyridine-2,6-dicarboxamides and isophthalamides to form fluoride selective receptors8 and, in collaboration with Albrecht and co-workers, have explored the use of 2,7-functionalised indoles as oxoanion receptors.9 This latter project, related to our work on amidopyroles10 and Albrecht’s work on quinoline based receptors,11 led to the discovery that 1,3-diindolylureas are particularly effective dihydrogen phosphate receptors.12 In this paper we report the synthesis of four 2-amidoindole-containing receptors 1-4 consisting of two 2-carboxyindole groups linked either via a flexible 1,5-diaminopentane linker or via a 1,3-phenylenediamine linking group. Two of the compounds contain nitro- groups at the 7-position of the indole rings. The anion complexation properties of these receptors have been measured and the X-ray crystal structure of the dihydrogen phosphate complex of receptor 1 elucidated.

![Diagram of receptors 1 and 4]

Experimental

General remarks

All reactions were performed using oven-dried glassware under slight positive pressure of nitrogen/argon (as specified). 1H NMR (300 MHz) and 13C(1H) NMR (75 MHz) spectra were determined on a Bruker AV300 spectrometer. 1H NMR (400 MHz) and 13C(1H) NMR (100 MHz) spectra were determined on a Bruker AV400 spectrometer. Chemical shifts for 1H NMR are reported in parts per million (ppm), calibrated to the solvent peak set, with coupling constants reported in Hertz (Hz). The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, t = triplet, m = multiplet. Chemical shifts for 13C(1H) NMR are reported in ppm, relative to the central line of a septet at $\delta = 39.52$ ppm for DMSO-d$_6$. Infrared (IR) spectra were recorded on a Matterson Satellite (ATR). FTIR are reported in wavenumbers (cm$^{-1}$). Elemental analysis was performed by Medac Ltd. Low-resolution mass spectra
were recorded on a Micromass Platform single quadrupole spectrometer. All solvents and starting materials were purchased from commercial chemical sources where available. NMR titrations were performed by adding aliquots of the putative anionic guest (as the TBA) salt (0.15 M) in a solution of the receptor (0.01M) in DMSO-d_6 to a solution of the receptor (0.01M).

Synthesis

N,N'-(Pentane-1,5-diyl)bis(1H-indole-2-carboxamide) (1): A solution of indole-2-carboxylic acid (0.63 g, 3.91 mM) and carbonyldiimidazole (CDI) (0.80 g, 5.00 mM) in chloroform (30ml) was heated at reflux of 1.5 hr. After this time, 1,5-diaminopentane (0.200 g, 1.96 mM) in chloroform (5 ml) was added dropwise and the solution was left at reflux over night. The reaction mixture was then left to cool to room temperature and the precipitate which had formed was removed by filtration, washed with ether (10 ml) and dried affording the product as a white powder (0.56g, 73%). 1H NMR (300 MHz, DMSO-d_6) δ1.40-1.42 (2H, br. m, CH$_2$), δ1.55-1.62 (4H, br. m, CH$_2$), δ3.33 (4H, m, CH$_2$), δ7.02 (2H, t, J = 7.4 Hz, ArCH), δ7.09 (2H, s, ArCH), δ7.16 (2H, t, J = 7.9 Hz, ArCH), δ7.42 (2H, d, J = 7.9 Hz, ArCH), δ7.58 (2H, d, J = 7.8 Hz, ArCH), δ8.44 (2H, s, NH), δ11.51 (2H, s, NH). 13C{1H} NMR (75 MHz, DMSO-d_6) δ24.0 (CH$_2$), δ29.0 (CH$_2$), δ38.7 (CH$_2$), δ102.2 (CH), δ112.3 (CH), δ119.7 (CH), δ121.4 (CH), δ123.2 (CH), δ127.1 (C), δ131.9 (C), δ136.4 (C), δ161.0 (C). MS (ESI+) m/z Calcd: 388.2 Found: 389.2 (M+H)$^+$. Anal. calcd. for C$_{23}$H$_{24}$N$_4$O$_2$: C= 71.11%, H= 6.23%, N= 14.42% Found: C= 70.89%, H= 6.11%, N= 14.69%. IR (cm$^{-1}$) 3272, 2942, 2359, 2342, 1614, 1547. mp. 270-272 ºC.

N,N'-(Pentane-1,5-diyl)bis(7-nitro-1H-indole-2-carboxamide) (2): A solution of 7-nitro-1-indole carboxylic acid (0.63 g, 3.91 mM) and CDI (0.4g) in chloroform (20ml) was heated at reflux of 1.5 hr. After this time, 1,5-diaminopentane (0.1 g, 0.98 mM) in chloroform (2 ml) was added dropwise and the solution was left at reflux over night under nitrogen. The reaction mixture was then left to cool to room temperature and the solution washed three times with water and the organic phase dried over magnesium sulfate. The solvent was then removed under in vacuo and an orange solid was obtained. Column chromatography on silica gel 60 eluting with CH$_2$Cl$_2$: MeOH
9:1 afforded the product as a yellow powder. Yield: (0.22 g, 47%) mp. 200-202 ºC. ¹H NMR (300 MHz, DMSO-d₆) δ1.43 (2H, m, CH₂), δ1.63 (4H, m, CH₂), δ3.33 (4H, m, CH₂), δ7.27-7.35 (4H, m, ArCH), δ8.14-8.22 (4H, m, ArCH), δ8.95 (2H, s, NH), δ10.70-10.81 (2H, s, NH). ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ14.7 (CH₂), δ24.0 (CH₂), δ28.7 (CH₂), δ106.0 (CH), δ119.8 (CH), δ120.9 (CH), δ128.6, δ130.5 (CH), δ130.9 (C), δ132.9 (C), δ134.8 (C), δ159.4 (C). MS (ESI-) m/z Calcd: 478.2 Found: 377.2 (M-H)

N,N’-(1,3-Phenylenebis(methylene))bis(1H-indole-2-carboxamide) (3) A chloroform solution of CDI (0.6g, 3.7mM) and indole-2-carboxylic acid (0.476g, 2.937mM) was placed under nitrogen at reflux 1.25 hr. A solution of 1,3-bis(aminomethyl)benzene (0.2g, 1.469mM) in DMF (5ml) was added dropwise to the reaction mixture which was then left under nitrogen at reflux overnight. The solution was then left to cool to room temperature and ether (20ml) added. The white precipitate that had formed was removed by suction filtration (crop 1) and the filtrate was taken to dryness, by evaporation under reduced pressure and cold finger evaporation. The yellow solid produced was suspended in CH₂Cl₂ solid removed by suction filtration (crop 2) and then washed with ether (10ml) to afford the product as a white powder. Yield: (0.44 g, 70%) mp. 257-258 ºC. ¹H NMR (300 MHz, DMSO-d₆) δ4.52 (4H, d, J = 5.9 Hz, CH₂), δ7.04 (2H, t, J = 7.0 Hz, ArCH), δ7.16–7.30 (8H, m ArCH), δ7.32-7.35 (2H, m, ArCH), δ7.43–7.62 (2H, m, ArCH), δ7.42 (2H, d, J = 6.4 Hz ArCH), δ7.59 (2H, d, J = 6.0 Hz, ArCH), δ9.06 (2H, s, NH), δ11.60 (2H, s, NH). ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ42.2 (CH₂), δ102.7 (CH), δ112.3 (CH), δ119.8 (CH), δ121.5 (CH), δ123.3 (CH), δ125.9 (CH), δ126.3 (CH), δ127.1 (C), δ128.4 (CH), δ131.7 (C), δ136.5 (C), δ139.8 (C), δ161.2 (C). MS (ESI-) m/z Calcd: 422.2 Found: 421.2 (M-H)^+. Anal. Calcd. for C₂₃H₂₂N₆O₆: C= 57.74%, H= 4.63%, N= 17.56% Found: C= 57.41%, H= 4.71%, N= 17.82%. IR (cm⁻¹) 3462, 3370, 2930, 2859, 2359, 2342, 1631, 1559.
N,N’-(1,3-Phenylenebis(methylene))bis(7-nitro-1H-indole-2-carboxamide) (4) A chloroform (60ml) solution of 7-nitroindole-2-carboxylic acid (0.606g, 2.939mM) and CDI (0.600g, 3.700mM) was stirred at reflux under nitrogen for 2 hr until a clear orange solution had been produced. A DMF (5ml) solution of bis(aminomethyl)benzene was then produced and added dropwise to the solution. This solution was then left at reflux under nitrogen overnight and produced a yellow precipitate which was removed by filtration. Ether (20ml) was then added to the filtrate and the yellow precipitate that was produced was again removed by suction filtration. The yellow precipitate was dried and then washed with dilute HCl solution (100ml) and the insoluble precipitate removed by suction filtration and then washed with ether and dried in vacuo affording the product as a yellow powder. Yield: (0.55 g, 72%) mp. 268-269˚C. 1H NMR (400 MHz, DMSO-d6) δ4.54 (4H, d, J = 6.0 Hz, CH2), δ7.26–7.40 (8H, m, ArCH), δ8.11 (2H, d, J = 7.5 Hz, ArCH), δ8.17 (2H, d, J = 8.0 Hz, ArCH), δ9.55 (2H, t, J = 6.0 Hz, NH), δ11.27 (2H, s, NH). 13C{1H} NMR (100 MHz, DMSO-d6) δ42.8 (CH2), δ106.9 (CH), δ120.3 (CH), δ121.5 (CH), δ126.6 (CH), δ126.6 (CH), δ128.9 (CH), δ129.1, δ130.9 (CH), δ131.3 (C), δ133.4 (C), δ134.9 (C), δ139.8 (C), δ159.9 (C). MS (ESI-) m/z Calcd: 512.1 Found: 511.2 (M-H). Anal. Calcd. for C26H20N6O6: C= 60.94%, H= 3.93%, N= 16.40% Found: C= 61.05%, H= 3.97%, N= 16.32%. IR (cm⁻¹) 3464, 3449, 3302, 2360, 2341, 1643, 1557, 1517.

Results and Discussion

Compounds 1-4 were synthesized by coupling either commercially available indole-2-carboxylic acid or 7-nitroindole-2-carboxylic acid with either 1,5-diaminopentane or 1,3-phenylenediamine using carbonyl diimidazole (CDI) as an amide-coupling reagent in yields ranging from 42-73%.

Stability constants were determined by 1H NMR titration techniques¹³ in DMSO-d6/0.5% water solution (Table 1). Stoichiometries were determined by Job plot analysis. The results show that the compounds have a moderate affinity for anions under these solvent conditions with selectivity for oxo-anions and specifically dihydrogen phosphate (excepting compound 2). On moving from compound 1 to compound 2 one might expect stability constants to increase due to the electron
withdrawing nature of the nitro substituents. However only in the case of acetate is enhanced binding observed. It is possible that steric interactions between the nitro groups occur if the receptor wraps around a single anionic guest so destabilizing the complex. In the case of compound 4 and dihydrogen phosphate a 1:2 receptor:anion complex is formed with $K_2 > K_1$. Dihydrogen phosphate is known to oligomerize14 and it is possible that in this case the receptor is binding a dihydrogen phosphate anion pair. It may be the case that steric interactions between the nitro-groups disfavour the formation of a 1:1 complex with dihydrogen phosphate and hence promoting the formation of a 1:2 complex.

Crystals of the tetrabutylammonium dihydrogen phosphate complex of receptor 1 were grown by slow evaporation of an acetonitrile solution in the presence of excess tetrabutylammonium dihydrogen phosphate.15 The structure shown in Figure 1 shows that each receptor complexes a dihydrogen phosphate ion pair in the solid state. Each ion-pair is part of a continuous chain of dihydrogen phosphate anions (Figures 2 and 3) analogous to that observed in the solid-state structure of tetrabutylammonium dihydrogen phosphate.16 In this case, each amidoindole unit in the receptor binds to different dihydrogen phosphate anions in the ion-pair with two different hydrogen bonding motifs (Figure 4). Hydrogen bond lengths and angles are shown in Table 2.

Table 1 Stability constants of compounds 1-4 with anionic guests added as tetrabutylammonium salts in DMSO-d_6/0.5% water solution at 298K. 1:1 stoichiometries were observed except where noted. Errors in fitting estimated $< 15\%$ except for chloride (see ESI).

<table>
<thead>
<tr>
<th>Anion</th>
<th>Compound 1</th>
<th>Compound 2</th>
<th>Compound 3</th>
<th>Compound 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>F^-</td>
<td>83</td>
<td>a</td>
<td>< 10</td>
<td>a</td>
</tr>
<tr>
<td>CH_3COO^-</td>
<td>46</td>
<td>149</td>
<td>38</td>
<td>97</td>
</tr>
<tr>
<td>PhCOO^-</td>
<td>25</td>
<td>24</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>H_2PO_4^-</td>
<td>260</td>
<td>99</td>
<td>176</td>
<td>$K_1 = 108$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$K_2 = 216$</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
</tr>
</tbody>
</table>

a NH proton resonance disappeared during the titration and hence a stability constant could not be obtained.
Figure 1 Receptor 1 binding a dihydrogen phosphate dimer in the solid state. Tetrabutylammonium counter cations have been omitted for clarity.

Figure 2 The dihydrogen phosphate chain in the crystal structure of the complex with receptor 1 showing the receptors complexing dihydrogen phosphate anion pairs. Tetrabutylammonium counter cations and non-acidic hydrogens have been omitted for clarity.
Figure 3 A view down the c-axis in the tetrabutylammonium dihydrogen phosphate complex of receptor 1. Tetrabutylammonium counter cations and non-acidic hydrogens have been omitted for clarity.

Figure 4 Two different dihydrogen phosphate-binding motifs are observed in the solid state structure of the dihydrogen phosphate complex of receptor 1.

Table 2. Hydrogen bonds [Å and °] in the tetrabutylammonium dihydrogen phosphate complex of receptor 1. Atom labels are shown in Figure 1.

<table>
<thead>
<tr>
<th>D–H···A</th>
<th>d(D–H)</th>
<th>d(H···A)</th>
<th>d(D···A)</th>
<th>θ(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1–H1···O301i</td>
<td>0.88</td>
<td>1.84</td>
<td>2.659(8)</td>
<td>154.4</td>
</tr>
<tr>
<td>N2–H2···O304i</td>
<td>0.88</td>
<td>2.08</td>
<td>2.901(8)</td>
<td>154.7</td>
</tr>
<tr>
<td>N3–H3···O402i</td>
<td>0.88</td>
<td>2.07</td>
<td>2.948(8)</td>
<td>179.1</td>
</tr>
<tr>
<td>N4–H4···O402i</td>
<td>0.88</td>
<td>1.85</td>
<td>2.719(8)</td>
<td>171.0</td>
</tr>
<tr>
<td>O302–H302···O301i</td>
<td>0.84</td>
<td>1.85</td>
<td>2.596(7)</td>
<td>147.2</td>
</tr>
<tr>
<td>O303–H303···O403</td>
<td>0.84</td>
<td>1.75</td>
<td>2.510(8)</td>
<td>148.9</td>
</tr>
<tr>
<td>O401–H401···O402ii</td>
<td>0.84</td>
<td>1.81</td>
<td>2.641(7)</td>
<td>171.4</td>
</tr>
</tbody>
</table>
Crystals of the fluoride complex of receptor \(\text{2} \) were obtained by slow evaporation of a solution of the receptor in acetonitrile in the presence of excess tetrabutylammonium fluoride. This process produced an oil that was recrystallised from dichloromethane affording X-ray diffraction quality single crystals. The structure shows that each equivalent of receptor \(\text{2} \) is bound to two fluoride anions via indole and amide NH–F hydrogen bonds. The complexes form two crystallographically distinct hydrogen bonded cyclic structures as shown in Figure 5 bridged through water molecules. For details of the hydrogen bond lengths and angles please see the electronic supplementary information.

Figure 5 The X-ray crystal structure of the fluoride complex of receptor \(\text{2} \). Tetrabutylammonium counter cations and non-acidic hydrogen atoms have been omitted for clarity.

Conclusions
Whilst the receptors described here generally show a moderate to low affinity for anions, the formation of a 1:2 receptor:dihydrogen phosphate complex in solution by receptor 4 and in the solid state by receptor 1 lead us to suggest that binding anionic dimers may be a potentially useful strategy for complexing oxo-anions containing both hydrogen bond donors and acceptors. We are continuing to explore this and other aspects of anion complexation by indole containing anion receptors. The results of these studies will be reported in due course.

Acknowledgements

We thank the EPSRC for studentship funding (JRH) and for access to the crystallographic facilities at the University of Southampton. CC would like to thank Regione Sardegna for a Master & Back grant.

References

Crystal data for compound 1tetrabutylammonium dihydrogen phosphate CCDC 686083: C_{55}H_{100}N_{10}O_{10}P_{2}, Mr = 1067.35, T = 120(2) K, triclinic space group P-1, a = 14.4568(8), b = 14.5325(8), c = 16.3506(8) Å, α = 108.932(2)°, β = 104.053(2)°, γ = 98.051(2)°, V = 3061.1(3) Å^3, ρ_calc = 1.158 Mg/m^3, μ = 0.128 mm^-1, Z = 2, reflections collected: 34256, independent reflections: 10399 [R(int) = 0.0662], final R indices [I > 2σ(I)]: R1 = 0.1248, wR2 = 0.3162, R indices (all data): R1 = 0.1518, wR2 = 0.3381.

Crystal data for compound 2tetrabutylammonium fluoride CCDC 690147:
C₅₅H₉₉F₂N₈O₈.75, Mr = 1050.93, T = 120(2) K, triclinic space group P₁, a = 18.2539(8), b = 19.4067(5), c = 20.2800(9) Å, α = 67.988(2)°, β = 83.891(2)°, γ = 63.829(2)°, V = 5962.7(4) Å³, ρcalc = 1.171 Mg / m³, µ = 0.083 mm⁻¹, Z = 4 reflections collected: 81556, independent reflections: 20977 [Rint = 0.1296], final R indices [I > 2σI]: R1 = 0.1139, wR2 = 0.2830, R indices (all data): R1 = 0.2326, wR2 = 0.3566.