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Abstract. This paper considers a real-world industrial problem in order to minimize the 
(weighted) number of tardy jobs. This problem occurs in a company where due dates are 
associated with parts, and penalties incur when the parts are completed after the due dates, 
whatever the magnitude of the tardiness. Therefore, the objective function can be modelled as 
minimization of the (weighted) number of tardy jobs. The system studied is a hybrid flow shop 
with re-entrance (or recirculation). In order to deal with large size problems arising in real life, a 
Genetic Algorithm (GA) is implemented. A coding system, adapted to the considered problem, is 
designed, and existing crossover and mutation operators are adapted to this coding. To evaluate 
the effectiveness of the proposed method, it is tested against a commercial software package. 
The results show that the proposed GA performs well on the scheduling part for a given resource 
allocation, but it still requires an effective resource allocation procedure. 
 
Keywords : hybrid flow shop, re-entrance, number of tardy jobs, Genetic algorithm 
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1 Introduction 

The problem addressed in this paper is a real-
world industrial problem. This study is carried 
out for a manufacturer in order to improve its 
customers’ satisfaction. 

This firm manufactures complex objects. All 
the objects manufactured can be considered as 
identical, and thus one can talk about series 
production. The number of objects to be 
produced being relatively small, due to their 
complexity, the problem cannot be considered 
as a cyclic production. But the number of 
operations involved in an object is very large 
and the total number of operations to schedule 
may be as large as 5000 during the planning 
horizon. 

The shop considered can be seen as a flow 
shop, which is a very classical production 
system, but the originality of the problem lies 
in the number of constraints to take into 
account, and the large number of operations 
to schedule. 

The main features to be taken into account in 
the model are presented here. 

Firstly, every object must follow a fixed 
sequence of operations. This means that the 
order of the operations in any object is known 
and these operations cannot be swapped: there 
are precedence constraints between them. 
Moreover, the first operation of each object is 
not necessarily ready to start at time 0: There 
is a release date for each object. 

Secondly, each operation may need more than 
one resource to be processed. These resources 
can be machines as well as operators: A 
control operation, for instance, requires a 
control machine and at least one controller. In 
the considered problem, the number of 
resources required for an operation is either 2 
or 3. It is thus a multi-resource problem. 

Thirdly, for each operation, and for each type 
of resource needed, there exists more than one 
resource capable of processing the operation. 
For instance, if one considers a painting 
operation that requires one painter, several 
painters are qualified to perform this 

operation. For each operation, a resource has 
to be chosen among a given set of qualified 
resources. Furthermore, it is not possible to 
aggregate some resources to obtain a mono-
resource problem: A given operator does not 
always work with the same machine or the 
same other operator. 

Fourthly, the operators are polyvalent. This is 
not a constraint itself, but makes the problem 
more complex because, since the operators 
can process more than one kind of operation, 
they are involved in different stages of a job. 
This explains the re-entrance of the system. 
As an example, consider two different control 
operations, control A and control B. The 
object will go through control A, then through 
a number of other operations, and finally back 
to the same operator for control B: The 
operator who makes control A and control B 
is a re-entrant resource. 

Finally, the due dates are fixed and known in 
advance. Each delivery date is associated with 
a number of objects to deliver. If there is one 
or more object missing, then the firm gets a 
penalty, and, since the transportation costs are 
significant, the objects have to be delivered at 
the next due date: The object is either on time 
or late, and if it is late there is no need to 
know the magnitude of the lateness. To 
improve the customers’ satisfaction, the firm 
wants to minimize the number of late objects. 
This number may be weighted by the penalty 
cost, different for each customer and thus for 
each delivery. As all objects are identical, a 
due date is not associated with an object in 
particular. These due dates are said to be 
generalized or positional. 

To summarize, the problem dealt with here is 
the minimization of the weighted number of 
tardy jobs in a re-entrant flow shop with 
precedence constraints, release dates, multi-
resources operations, and generalized due 
dates. 

The firm is currently using a commercial 
software package for production scheduling. 
This software is named CADPlan®. It is 
based on simple priority rules, such as SPT or 
EDD. This software does not perform too 
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badly, but the rules are not well adapted to the 
complexity of the problem, so this paper aims 
at developing an effective method that would 
outperform this software with a comparable 
computation time. 

Due to the complexity and the size of the 
problem, this paper only deals with the 
scheduling part while assuming that for each 
operation, the required resource is already 
assigned. Therefore, it is assumed that the 
resource assignment is given, either randomly 
or by CADPlan®. 

This problem is very difficult and its 
sub-problems are NP-hard. It’s obvious that it 
cannot be optimally solved for large size 
industrial problems. Since Genetic 
Algorithms have been well used to solve 
many scheduling problems, this work 
develops a Genetic Algorithm. For this 
purpose, this paper proposes a new coding 
system avoiding twin solutions. The classical 
crossover and mutation operators are adapted 
to this new coding system and guarantee the 
feasibility of the yielded solutions, despite the 
complexity of the problem. Because of the 
complexity related to the re-entrance, the 
multi-resource operations and the flexibility 
of resources, a specific decoding procedure is 
needed to calculate the fitness of individuals. 
To evaluate its efficiency, the obtained results 
are compared with those given by the 
commercial software called CADPlan® 
currently used in the company. The 
improvement is very significant since it can 
be nearly 50% on the average, despite the 
complex features of the problem (precedence 
constraints, release dates, multi-resource 
operations). This shows that the developed 
method can contribute very much to the 
performance improvement of the company. 
Due to the fact that the problem has never 
been addressed in the literature, the method 
also makes a contribution to the state of the 
art of the research in production scheduling. 
 
Preliminary results for this problem were 
presented at ICSSSM 06 conference in Troyes 
(France), see [11]. This paper is an extended 
version that completes and improves the 

algorithm and results reported in the 
conference paper. 

The remainder of this paper is organized as 
follows. Section 2 presents a brief review of 
the literature, both on the scheduling and 
resource allocation problems. Section 3 
describes the proposed method. Section 4 
reports the numerical results of the 
experiments. Finally, section 5 concludes the 
paper and provides some perspectives for 
further works. 

2 Literature review  

The minimization of (weighted) number of 
tardy jobs has been studied in single machine 
case and in classical flow shop. This section 
reviews the related literature for this problem. 

2.1 Single machine problems 

2.1.1 Minimizing the number of tardy jobs 

For the unweighted problem, if there are no 
particular constraints (i.e. all release dates are 
equal, no precedence relations, etc.), the 
problem can be solved to optimality in 
polynomial time due to the algorithm of 
Moore [17] which runs in O(n²) time, where n 
is the number of jobs to be scheduled. If 
release dates are different, the problem 
becomes NP-hard. [8] presented a lower 
bound for this problem, along with a heuristic 
that shows good results on small size 
instances (up to 50 jobs). [3] proposed some 
dominance rules and a Branch-and-Bound 
algorithm based on dominance rules, which 
solves to optimality all small size instances 
and more than 50% of larger size instances 
(up to 200 jobs). [10] also used a Branch-and-
Bound approach, based on the notion of 
master sequence; i.e., a sequence containing 
at least one optimal solution. They managed 
to solve 95% of 140-job instances optimally 
in less than one hour. [6] presented a slightly 
different approach. The authors started by 
identifying a critical path from which they 
computed the maximum tardiness, and then 
they used a Branch-and-Bound algorithm to 
find a sequence that minimizes the number of 
tardy jobs while respecting the maximum 
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tardiness. In [1] the case with preemptive jobs 
was studied, and an O(n4) algorithm based on 
dynamic programming was proposed. 

When generalized due dates are involved, [7] 
gave some dominance rules, and showed that 
the SPT rule is optimal, if the release dates 
are identical. For problems with precedence 
relations, [23] established the strong NP-
hardness. 

2.1.2 Minimizing weighted number of tardy 

jobs 

In the weighted case, with no additional 
constraints, the problem is polynomially 
solvable if all processing times are equal (see 
[24]). In the general case (i.e. when 
processing times are different), [14] 
developed a Genetic Algorithm to minimize 
the weighted number of both early and tardy 
jobs, and reduced this number by a third when 
compared to an existing heuristic, on 
problems with up to 80 jobs. [22] also 
provided a Genetic Algorithm and showed 
that the quality of the initial population is of 
high importance for the efficiency of the final 
result. This GA was used on problems with up 
to 100 jobs. 

[2] dealt with the problem with release dates, 
and with equal processing times. The author 
proved that this problem is polynomial, and 
proposed an O(n7) algorithm, based on 
dynamic programming. He also proposed an 
O(n10) algorithm for the preemptive case. 

With precedence relations between jobs, the 
weighted problem is NP-hard, according to 
[24]. If the due dates are generalized, [21] 
showed that, when the weights are associated 
to the due dates, the SPT rule is optimal. 
When the weights are on the jobs, then the 
problem is still polynomially solvable and an 
algorithm was provided. However, the 
problem with release dates, weights being on 
due dates or on jobs, is intractable. 

2.2 m machines problems  

For the problem with more than one machine, 
only two articles were found. The first one 
([5]) dealt with a 2-machine flow shop, and 

with the objective of minimizing the weighted 
number of tardy jobs. The authors proposed 
an exact method in O(n3log(n)). The second 
one considered m machines, but the objective 
function is unweighted: [19] proposed a GA 
that solves small size instances (30 jobs on 15 
machines) in less than 30 seconds, and to 
near-optimality. 

2.3 Hybrid flow shops 

In the papers cited above, whether with one or 
two machines, the basic assumption was that 
there is no choice in the machine to perform 
each operation. In the case considered here, 
for each operation, a machine can be chosen 
among several qualified ones. In the 
literature, this model is called hybrid flow 
shop (HFS). In an HFS (also called 
multiprocessor flow shop), a job visits all 
stages, and at one or more stage, more than 
one machine is available to process the 
operation. A good review on HFS can be 
found in [16]. According to this review, most 
of the papers on this subject focused on 
2-stage HFS, which are NP-complete. The 
only study it reported with more than three 
stages was on minimizing the sum of machine 
changeovers. This review is not related to any 
study on minimizing tardiness or even 
makespan. [18] was another review on HFS, 
but is rather concentrated on adapting local 
search methods from the flow shop 
scheduling to the hybrid flow shop 
scheduling. In this field, taboo search and 
variable-depth search of a neighbourhood 
seem to be the best-performing methods. 

There is a very interesting paper on the hybrid 
flow shop with 3 stages and recirculation 
([4]). Recirculation means that a job may go 
through a given stage more than once. 
According to the authors, there seem to be no 
other paper dealing with an HFS with 
recirculation to minimize the total weighted 
number of tardy jobs. In this paper, they 
implemented several dispatching rules, and 
included the obtained sequences into the 
initial population of a Genetic Algorithm. As 
it can be seen in their experimental results, 
this association performs better than GA 
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alone or dispatching rules alone. The 
problems tested vary from 20 to 400 jobs. 

To be closer to the industrial case studied in 
the present paper, a further particularity 
should be added to the model: in addition to 
an HFS, a multi-resource Hybrid Flow Shop 
has to be dealt with. This means that at each 
stage, the processing of a job requires more 
than one resource (machine or agent), and 
each of these resources can be chosen among 
a set of available ones (flexibility). To the 
best of the knowledge of the authors, there is 
no such study in the literature, except [9] that 
considered a multi-resource Flexible Job Shop 
with nonlinear precedence relations (i.e., an 
operation may have more than one 
predecessor and/or more than one successor). 
In this latter paper, the authors introduced a 
modified disjunctive graph representation to 
take into account the flexibility and the 
multiplicity of resources, as well as nonlinear 
routing. Then they defined a neighbourhood 
and explored it with a taboo search approach. 
This method gave an improvement of 24% of 
the makespan, from the initial solution to the 
best solution found. 

As far as the authors know, [11] is the first to 
consider the problem of the minimization of 
the weighted number of tardy jobs in a 
re-entrant flow shop with precedence 
constraints, release dates, multi-resources 
operations, and generalized due dates in the 
literature. [11] uses a Genetic Algorithm and 
developers a new code that is suitable to any 
series production problem, but does not 
describe in detail the algorithm developed. 

This paper is an extended version of the 
conference paper [11]. In this paper, the 
problem is described in detail and the 
literature review is completed. The present 
paper improves the efficacy of the method 
proposed in [11], by introducing heuristics in 
the initial population. The comparisons for the 
crossover operators and the effect of the 
mutation phase are detailed. The evaluation 
section is strengthened by clarifying the 
decoding. More numerical experiments were 
done in this paper. For example, both fixed 
resources and flexible resource allocation 
cases have been considered; tests for the 

unweighted and the weighted problems are 
compared. This paper also indicates further 
research directions to further improve the 
performance of the proposed Genetic 
Algorithm, especially in the flexible resource 
allocation setting. 

3 Scheduling with the Genetic 

Algorithm 

As can be seen from section 2, most of the 
existing models in scheduling problems deal 
with a small number of jobs and with few 
constraints. In the considered case, in order to 
comply with industrial requirements, a 
method is needed that would combine both 
quickness and efficiency even on large size 
problems such as the problem at hand. Indeed, 
the number of feasible schedules 
exponentially increases with the number of 
operations to be scheduled. 

In this context, metaheuristics are known to 
be very powerful methods. Metaheuristics 
enclose a set of general methods adaptable to 
different problems. For this purpose, Genetic 
Algorithm is chosen, because it is able to 
explore a good part of the solution space in a 
reasonable amount of time. 

The Genetic Algorithm was first described in 
[12]. It was originally used for signal 
processing. [20] reviewed its application to 
scheduling problems. 

 

The Genetic Algorithm (GA) is based on the 
principles of biological sexual reproduction: 
two individuals, called parents and constituted 
of genes, reproduce and give birth to two new 
individuals, called children, each child 
receiving a part of each parent’s genes or 
characteristics. Sometimes, random mutations 
appear during the reproduction process and 
the children get genes coming from none of 
the parents. Then, eldest or weakest 
individuals die and leave room for younger 
and stronger individuals. In this way the 
population gradually improves itself, 
following the idea of Darwin’s Natural 
Selection (see fig. 1). 

Insert Figure 1 here 
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In the GA, the individuals are feasible 
solutions and the equivalent of the sexual 
reproduction is called crossover. It starts with 
an initial population, constituted of a number 
of individuals generated most often either 
randomly or using heuristics. Some parents 
are selected among this population, and are 
subjected to a crossover operator. This 
operator will create two new feasible 
solutions (the children). A mutation operator 
will then be applied to the children with a 
generally low probability. At some point of 
the algorithm, the renewal of the population 
consists in selecting some individuals from 
the current population and to replace them 
with newly-created children. A new 
generation is obtained, and the algorithm goes 
on until a stopping criterion is reached. The 
stopping criterion is often related to the 
improvement of the best solution between 
successive generations. 

The crossover part is called intensification 
phase, because it is assumed that, by taking 
two parents with good features and by 
crossing them, the children will combine the 
good features from both parents to get even 
better features (and thus, lead to a solution of 
better quality). The mutation is called the 
diversification part. Its aim is to maintain a 
good level of diversity in the population, and 
to avoid redundancy between the solutions 
explored: It prevents the search from staying 
stuck in a local optimum. 

A good description of GA scheme, and of 
several crossover and mutation operators, is 
given in [13]. 

As said above, a metaheuristic is just a 
general skeleton of a method. Then, each 
component of the GA must be adapted to the 
considered problem, starting with the coding 
of the individuals. 

3.1 Coding 

The coding makes it possible to represent 
feasible solutions, namely feasible schedules, 
into individuals that can be handled by the 
algorithm. In scheduling problems, the most 
classical coding is a coding by operation 

number. Each operation is attributed a unique 
number, and the schedule is represented as a 
list of operation numbers. This coding is 
called indirect, because it does not represent 
directly the schedule. To obtain a schedule 
with starting dates the individual must be 
decoded. 

Example 1: 

Consider 5 objects to be manufactured. Each 
object must go through 4 operations A, B, C 
and D in this order. The data concerning these 
operations (considering that the operations A, 
B, C and D are the same for all 5 objects) is in 
the table 1. 

Insert Table 1 here 

To use the coding by operation number, a 
number must be assigned to each operation as 
in Table 1. Then, an individual for the GA, 
representing a feasible solution for the 
considered problem, can be coded as I1 (see 
fig. 2). 

Insert Figure 2 here 

 

This coding is widely used for representing 
solutions in scheduling problems. However, it 
is not well adapted to the case considered in 
this paper. In fact, it could be used, but it does 
not take into account the fact that the objects 
are identical. Consider another feasible 
individual I2 with respect to the data given in 
example 1 (see fig. 2). 

 
Since all objects are identical, operations 0 – 
4 – 8 – 12 – 16 are the same operation (type 
A), as well as 1 – 5 – 9 – 13 – 17 (type B), 2 – 
6 – 10 – 13 – 18 (type C), and 3 – 7 – 11 – 15 
– 19  (type D). Then, individuals I1 and I2 
represent the same list of operations and thus 
the same schedule. When the number of 
objects to manufacture is large, this situation 
very frequently occurs, and therefore the 
number of “twin individuals”; i.e., the number 
of different individuals representing the same 
schedule, will be very large. 

In order to take advantage of the fact that all 
objects are identical, and therefore that any 
operation on an object is strictly equivalent to 
the same operation on any other object, 
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coding based on the type of the operations, 
rather than on their number, is developed. 
Using this new coding, both individuals I1 
and I2 above will be represented as I3 in fig. 
2. 

In this way, the number of twin individuals 
can be significantly reduced, and then the 
population diversity is improved. This coding 
is based on the fact that all object 
manufactured are identical; therefore it can be 
used in any serial production problem.  

In this considered problem, the type of 
operation is represented by a number rather 
than by a letter as I3’ in fig. 2, because it will 
be simpler to implement in the algorithm. 

3.2 Feasibility constraints 

After the definition of the coding system, the 
conditions for an individual to represent a 
feasible schedule must be expressed. 

Two constraints must be respected. The first 
one is that each type of operation must occur 
in the individual as many times as the number 
of objects. Define: 

)(kI

wΝ  as the number of occurrences of 

operations of type w in individual I up to 
position k (included). I can be dropped when 
there is no ambiguity about the individual 
considered; 

m as the number of objects to manufacture; 

n as the number of operations in each object 
(and therefore the number of types). 

With these notations, the constraint expressed 
above can be written as: 

{ }1,...,1,0)1*( −∈∀=−Ν nwmmnw
 

This constraint also ensures that the number 
of genes in the individual will be equal to the 
total number of operations. 

As an example, individual I4 in figure 3 does 
not respect this first constraint:  

N0(11) = 4 > m 

N3(11) = 2 < m 

The second constraint is precedence relations. 
This constraint can be written as follows: 

{ }nwkk
I

w

I

w ,...,1)()( 1 ∈∀Ν≤Ν −
 

This inequality requires that, if at position k of 
an individual, only x operations of type w-1 
have been scheduled, then at the same 
position there cannot be more than x 
operations of type w scheduled. Otherwise, it 
would mean that at least one operation of type 
w has been scheduled before its predecessor. 

As an example, individual I5 in figure 3 does 
not respect this second constraint: 

N1(2) = 2 > N0(2) = 1 

Insert Figure 3 here 

 

3.3 Evaluation 

The evaluation step consists in determining 
the fitness of an individual. The fitness is the 
performance of the considered individual 
related to the optimization criterion. 
Therefore, in the proposed GA, the evaluation 
step will be the calculation of the wNT 
(weighted number of tardy jobs) induced by 
an individual. 

Beforehand, the individual must be decoded; 
i.e., the sequence of genes must be translated 
into a feasible schedule. In biology, this 
decoding corresponds to the translation of the 
genotype into the phenotype. 

Consider an individual I, coded following the 
proposed coding. L(i) is the value of the gene 
at position i where i=0, …, n×m-1; L'(i) will 
be the value of the gene at the same position 
in the decoded individual I’ (I’ will then 
contain a list of operations rather than a list of 
type of operations). The relation between L(i) 
and L'(i) is given by: 

)1(N)L()(L' )(L −×+= inii
I

i
 

Figure 4 presents an example of decoding. 

Insert Figure 4 here 

Then, by considering successively each gene 
from the decoded individual L’, the starting 
dates of the operations can be calculated. 

Let )(iΠ  denote the set of operations that 
have at least one resource in common with 
operation i, and that appear before operation i 
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in the individual. Let i
- be the immediate 

predecessor of operation i in an object. If i is 
the first operation of the object, then i- is set 
to -1, without loss of generality. 

Then, the starting date S(i) of the 
corresponding operation i is: 

{ }jiij
pjSpiSiS ++= −

−

Π∈
)(;)(max)(

)(
 

where jp  is the processing time of operation 

j. 

The last step of this evaluation phase is to 
calculate the weighted number of tardy jobs 
associated with the solution. 

 

Insert Figure 5 here 

 

Figure 5 gives an example. In this figure, 
objects 0 and 1 are completed on time for 
deliveries (due dates) #0 and #1. Object 2 is 
completed too late for delivery #2: It will be 
delivered in delivery #3, for which it is on 
time. Object 3 is delivered in delivery #4. 
Object 4 is delivered in delivery #6 since it is 
completed too late for delivery #5. Objects 5 
and 6 will be used to replace deliveries #2 and 
#5, which are late. The weighted number of 
tardy jobs is the sum of weights of the 
deliveries which are late (#2 and #5), i.e. 2 + 
2 = 4. 

 

3.4 Generation of the initial population 

There are several ways to generate an initial 
population of feasible individuals. Generally, 
these individuals are generated randomly or 
using simple heuristics. In the proposed 
method, they are first generated randomly to 
avoid increasing the computing time. Then a 
few simple heuristics are implemented to 
improve the algorithm’s efficiency. 

The heuristics used are the following: 

- EDD (Earliest Due Date), which schedules 
first the operations belonging to the object 
with the earliest due date. It means that, in 
the sequence, all operations from an object 
will be placed together. For example, if 

there are 10 objects constituted of 5 
operations each, the sequence given by 
EDD will be: 0-1-2-3-4 repeated 10 times; 

- SPT (Shortest Processing Time) which 
places the operations in nondecreasing order 
of their processing times. 

- FIFO (First In First Out) which places the 
operations in nondecreasing order of their 
availability date (i.e. the release date of the 
object plus the sum of processing times of 
the preceding operations in this object) 

- Slack (Remaining Time) which places the 
operations in nondecreasing order of the 
slack. 

- BATCH which places all operations of a 
same type together. For example, with 10 
objects of 5 operations, the sequence will 
be: 0-0-0-0-0-0-0-0-0-0-1-1-1-1-… 

In case of ties, the operation with the smallest 
type is scheduled. 

As a consequence, the initial population 
contains 5 individuals generated by heuristics. 
The others are generated randomly. To ensure 
that the individuals are feasible, before 
generating a gene, all possible operation types 
are sorted according to one of the above rules. 
The gene is either chosen randomly from the 
list or the head of the list is chosen. 

This way of generating individuals ensures 
that they will be feasible. 

3.5 Crossover 

Before the crossover operation, a number of 
parents must be selected. Some authors use 
the whole population as parents. In the 
method presented, only a part of it is selected. 
For the selection, each individual is given a 
probability of being chosen: a number S is 
randomly drawn such that: 

[ ]max2.1min;2.0 ××∈S  where min and max 
are the minimum and maximum values of the 
weighted number of tardy jobs in this 
generation, respectively. Any individual I 
such that the weighted number of tardy jobs is 
less than S is selected with a probability pS(I) 
to be selected: 
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min2.0max2.1

)(max2.1
)(

×−×

−×
=

IwNT
IpS  where wNT(I) is 

the criterion value corresponding to individual 
I. 

In this way, the better the individual, the 
higher chance it gets to be selected as a 
parent. 

The individuals are examined in 
nondecreasing order of their wNT (i.e. best 
individuals first). At the end of the selection 
procedure, if the number of parents selected is 
odd, the last parent selected is discarded. The 
crossover takes place between two parents 
randomly drawn in the list. 

For the crossover, a crossover operator is 
needed. There exist a large variety of 
operators. Some of them do not create 
feasible individuals: They require a repairing 
afterwards. Other operators create feasible 
individuals: They can be more complex but 
avoid repairing the created children. In the 
proposed GA, an operator of this latter kind is 
chosen. 

Three different crossover operators have been 
tested. All three of them already existed in the 
literature, but they had to be adapted to the 
proposed coding system and to the feasibility 
constraints. 

3.5.1 1X operator 

1X means 1-point crossover. The principle of 
this operator is simple: Each parent is divided 
into two parts, and the children are both made 
with one part from each parent (see fig. 6). 

Insert Figure 6 here 

 

A cross point (CP) is randomly chosen 
between position A = 0.25*n*m and position 
B = 0.75*n*m. These positions ensure that the 
crossover will produce children different from 
their parents: If the cross point is too close 
from an end of the individual, most of the 
genes will be copied directly from one parent 
to the child. Then, both children will be too 
similar to their parents.  

Then there are three steps: 

Step 1: The first part of parent 1 is copied into 
child 1. 

Step 2: All genes appearing in the first part of 
parent 1 are deleted from parent 2. 

Step 3: The remaining genes are copied from 
parent 2 to child 1. 

 
These steps are then repeated for the second 
child by inversing the role of parents 1 and 2. 
 
Since the genes coming from parent 1 are 
identical to this parent, and genes coming 
from parent 2 are in the same relative order as 
in parent 2, one can conclude that, if both 
parents respect the feasibility conditions, then 
both children will also do. 

3.5.2 2X operator 

2X means 2-point crossover. This operator 
works similarly to 1X. Here two cross points 
are randomly chosen, the first one cpA ∈ [0; 
CP-0.25*n*m] and the second one cpB ∈ 
[CP+0.25*n*m; n*m-1]. Then, the steps are 
virtually the same as in 1X crossover (see fig. 
7) 

 

Insert Figure 7 here 

 

Step 1: All genes between cpA and cpB are 
copied from parent 1 to child 1. 

Step 2: All genes appearing in the middle part 
of parent 1 are deleted from parent 2. 

Step 3: The remaining genes of parent 2 are 
copied to child 1. 

 
These steps are then repeated for child 2 by 
inversing the role of the parents. 
 

Both children respect the feasible conditions 
if both parents do, for the same reason as in 
1X crossover.  

3.5.3 POX operator (Precedence preserving 

Order based Crossover) 

This operator has been designed by [15]. 
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Here the positions of all the operations from a 
randomly chosen task (object) are simply 
swapped between the parents (see fig. 8). 

Insert Figure 8 here 

 

Step 1: A task number is chosen randomly. 

Step 2: The operations from this task are 
copied identically from parent 1 to 
child 1. 

Step 3: The rest of child 1 is filled with the 
operations of the other tasks from 
parent 2. 

Here, all the operations of each task keep the 
same relative order as in parents 1 and 2. 
Then, the feasibility conditions are met for the 
children if they are also met for the parents. 

Some experiments were performed on these 
operators, to know whether one of them 
dominates the others. They were applied to 
the same instances, and compared both in 
terms of computation time and in terms of 
solution quality. The results show that POX 
operator performs clearly better than 1X and 
2X (see figure 9). This conclusion is not 
surprising: given that POX operator was 
initially designed for problems with 
precedence constraints, and thus closer to the 
considered problem, while 1X and 2X were 
not specifically designed to take into account 
this kind of constraints. 

 

Insert Figure 9 here 

 

In further experiments, the operator used will 
always be POX. 

 

3.6 Mutation 

After crossover is complete, a mutation is 
applied on some children. The mutation aims 
to explore new solutions that may not be 
reached by crossing existing solutions. It 
consists in a random modification of an 
individual. For each child, the probability of 
being mutated is 5%. As a mutation operator, 

the PPS (Precedence Preserving Shift 
mutation) operator is adapted. As for the POX 
operator, it has been designed by [15] for 
problems with precedence constraints. 

In the PPS operator, a position is randomly 
chosen. The corresponding gene is then 
swapped with another gene, randomly chosen 
between the immediate predecessor and 
successor of the operation corresponding to 
the drawn position (see fig. 10). The relative 
positions of operations in the chosen task 
remain the same, thus the feasibility 
constraints are not violated. 

 

Insert Figure 10 here 

 

Some additional experiments were performed 
to check the interest of mutation in the GA. 
The GA was run with and without mutation 
on the same instances, and the computation 
time, the solution quality and the convergence 
of the algorithm were compared. These 
experiments showed that without mutation, 
the solution converges much more quickly, in 
a few generations (see fig.11). On the 
contrary, with the mutation step, the 
computation time only slightly increased, but 
the solutions are much better. Therefore this 
mutation step is kept in the algorithm. 

 

Insert Figure 11 here 

 

3.7 Renewal 

Once the crossover and mutation are 
complete, a number of children can be 
inserted into the population in order to form a 
new generation. In the proposed GA the 
population size is kept constant, so as many 
individuals as the number of children created 
must be discarded. As for the selection step, 
each individual is examined. For this purpose, 
the population is sorted twice: first in 
nondecreasing order of the weighted number 
of tardy jobs, and then in nondecreasing order 
of age (expressed in number of generations). 
Let rV(I) and rA(I) denote the ranks of an 
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individual I in these two lists, respectively. 
Then, a random number is drawn between 0 
and 2*pop, where pop is the number of 
individuals in a population. If this number is 
less than the sum of rV(I) and rA(I), then the 
individual I is deleted and replaced by a child. 
The probability for an individual I to be 
deleted is then: 

pop

IrVIrA
Ipdel

×

+
=

2

)()(
)(  

In this way, individuals with a better criterion 
value and/or younger in terms of number of 
generations have less chances to be deleted. 

This procedure is repeated until all children 
are inserted into the new population. 

3.8 Stopping criterion 

There are several ways to stop a Genetic 
Algorithm. For example, if a lower bound 
exists, the stopping criterion can be the gap 
between the best solution found and the lower 
bound. The GA then stops when it reaches a 
solution that is within this gap. In the 
considered case, there is no lower bound to 
refer to. The number of generations without 
improvement is used as a stopping criterion: if 
the best solution found is not improved since 
the last g generations with g being a control 
parameter, then this solution is considered as 
unlikely to be improved any more and so the 
algorithm is stopped.  

4 Numerical results 

To check its effectiveness, the GA presented 
in the previous section was tested against the 
software currently used: CADPlan®. Since 
there is no known method to tackle the 
problem studied here, this software provides 
an interesting comparison tool that maintains 
this study in an industrial context. 

CADPlan® is able to assign resources itself. 
To ensure that the comparison between the 
software and the proposed method (which 
considers a fixed resource allocation), the 
problems used in the following tests will 
either consider fixed resource allocation (the 
same for both CADplan® and the proposed 
algorithm), or a flexible resource allocation, 

in which case the resources are assigned to 
operations by CADPlan®, and this 
assignment is used as the fixed resource 
allocation for the algorithm. In any case, the 
resource allocation is the same for CADPlan® 
and for the proposed algorithm. 

Two series of tests were conducted. In the 
first series, the resources used are fixed and 
known in advance. In the partner company, 
this is the case when operations are pre-
assigned to machines and operators (fixed 
resources). It means that it is known before 
scheduling who processes each given 
operation, and with which machine. 
Moreover, this resource allocation is 
considered to be the same for all objects. In 
the second series of tests, the case when an 
operation may be done by several machines 
and/or several operators equally qualified is 
considered (flexible resources). It means that, 
for each operation, the set of qualified 
machines and operators is known, and any 
machine/operators combination can be chosen 
among a set. This can be the case, for 
example, when operators belong to 
laboratories, and within a laboratory each 
agent is qualified on the operations processed 
in the laboratory. 

For each series of tests, 5 methods will be 
compared. The first one is CADPlan®, noted 
CP in the following tables; the second is the 
proposed GA. The remaining three are 
derived from the proposed GA: GA* is the 
Genetic Algorithm to which the solution 
computed by CADPlan® is fed as part of the 
initial population; in GAh the presented 
heuristics are used to generate a part of the 
initial population, and GAh* is the GAh with 
the solution from CADPlan® in the initial 
population. 

For each instance, the size is given by the 
number of objects to manufacture (nb obj.) 
and the number of operations to realize for 
each object (nb ope.). 

The mean improvement ratio has been 
calculated by comparing the sums of wNT for 
all methods. The mean improvement ratio 
between two methods A and B is then the 
difference between the sum of wNT given by 
A minus the sum of wNT given by B, divided 
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by the sum of wNT by A (and multiplied by 
100 to get a percentage). 

All 5 methods are tested on both weighted 
and unweighted problems. 

The GA was coded in C, using Visual C++. 
The computer used to run the tests is a 3GHz 
processor with 1Go RAM. 

4.1 Fixed resources 

Table 2 shows the comparison results when 
the resource allocation is fixed and known, 
and on problems where the due dates are 
unweighted (all weights=1). 

 

Insert Table 2 here 

For each instance, GA outperforms CP. The 
mean improvement ratio is 21.3% for the GA 
when compared to CP. When the solution 
from CP is added to the initial population of 
the GA (GA*), the improvement ratio is 
33.9%; using heuristics to generate a part of 
the initial population (GAh and GAh*) seems 
to be profitable. GAh gives better results than 
GA*. However, the combination of the two 
methods (GAh*) improves both results, with 
an improvement of 41.2%. This means that, 
not only a good initial solution leads to good 
final results, but also the number of good 
solutions in the initial population helps the 
Algorithm to generate better solutions by 
combining them through the crossover phase, 
and then to reach even better results. 

 

Insert Table 3 here 

Table 3 gives the results of the same 
comparison but now the due dates are 
weighted. One can see here that the 
improvements are not affected by the addition 
of weights.  

4.2 Flexible resource allocation 

This is the case where machines and operators 
can be chosen among sets of competent 
resources. Since the proposed GA does not 
provide a resource allocation module, 
CADPlan® must be run first and then the 

resources chosen by CADPlan® are used as 
fixed resources for the Genetic Algorithm. 
Table 4 shows the comparison results for the 
unweighted case. 

 

Insert Table 4 here 

First notice that the proposed GA performs 
badly, whether the solutions generated with 
heuristics (GA and GAh) are included in the 
initial population. This is due to the fact that 
the resources have been fixed by CADPlan® 
simultaneously with the scheduling: this 
allocation is linked with the schedule. 

 

Operations are scheduled progressively, and 
resources are chosen for each operation 
among the available resources. Thus, the 
allocation suitable for a given schedule is not 
efficient when it is used with other schedules, 
and then a schedule that fits well to the 
resource allocation cannot be found. 

 

However, when the solution obtained with 
CADPlan® is included in the initial 
population, the final solution is much better. 
The improvement is nearly 50% on the 
average for GA* and GAh*. This is because 
both the resource allocation and the initial 
schedule were obtained from CADplan®. The 
GA can then generate new solutions from 
CADPlan®’s, which have common points 
with the initial schedule. The GA needs a 
good starting point to find its way towards a 
good solution. In table 5, the results in the 
weighted case show that the addition of 
weights does not change the validity of these 
observations. 

 

Insert Table 5 here 

 

4.3 Statistical analysis 

These results are analyzed to check whether 
all methods were significantly different or 
not. The Wilcoxon matched-pairs signed-
ranks test was used. This test aims at 
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determining whether two populations are 
significantly different. 
 
The results from this analysis show that all 
five methods are different one from another, 
except in two cases. 

- With fixed allocation, in the 
unweighted case, GAh and GAh* are 
not significantly different (GA with 
heuristics, with or without the solution 
from CADPlan® in the initial 
population); 

- With flexible allocation, in both 
weighted and unweighted cases, GA* 
and GAh* are not different (GA with 
the solution from CADPlan®, with or 
without solutions yielded by the 
heuristics in the initial population). 

These results confirm initial observations. 
 
The Wilcoxon test was also used to see 
whether the flexibility of the allocation was 
influent on the solution found by a given 
method. This test was applied to each method, 
both in the unweighted case and weighted 
case, to compare between the results with 
fixed allocation and the results with flexible 
allocation. 
 
The results of this analysis show that, as far as 
CADPlan® is concerned; i.e. in GA, GA* and 
GAh* methods, there is a significant 
difference between the results according to 
the type of allocation (fixed or flexible). This 
is due to the fact that, in the flexible case, the 
resource assignment is done by CADPlan®. 
When CADPlan is not involved (GA and 
GAh methods), the results are not 
significantly different: The resource 
allocation is just an input data, whether it 
comes from CADPlan® or is generated 
randomly. 
 

4.4 Results on computation time 

Previous sections show that the proposed GA 
performs better than CADPlan® in terms of 
solution quality. The experiments made also 
show its superiority on the computation time 
level, as can be seen in figure 12.  

Insert Figure 12 here. 

 

5 Conclusions 

This paper proposed a Genetic Algorithm to 
minimize the weighted number of tardy jobs 
in a real-world multiresource hybrid flow 
shop involving re-entrance. This problem 
corresponds to an industrial case, and this 
paper aims at developing a method that gives 
efficient results in a reasonable amount of 
computation time. For this purpose, a Genetic 
Algorithm is used. A new coding system was 
proposed and existing crossover and mutation 
operators were adapted to take into account 
the specificities of the problem, and several 
heuristics were added to generate a part of the 
initial population. 

To check the efficiency of the proposed 
method, it is compared with a commercial 
software package named CADPlan®. The 
results show that, if resources are fixed in 
advance, the proposed GA performs much 
better than CADPlan®, and even better if 
some initial solutions come from CADPlan® 
and/or heuristics, with an improvement of up 
to 42%. When resources are flexible, and 
assigned using CADPlan®, the proposed GA 
needs the schedule from CADPlan® as one of 
the initial solutions to give efficient results 
and the improvement is as much as nearly 
50%. 

One can conclude that, to be efficient even 
with flexible resources, resources allocation 
and operations scheduling must be processed 
simultaneously. It would be interesting to 
develop further research by simultaneously 
scheduling the operations and assigning the 
required resources. 
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Operation A B C D  k 1 2 3 4 5 

Processing time 5 3 2 4  Release date of object k 0 0 10 20 20 

Resources 1 – 2 3 – 4 1 – 3 2 – 4  k
th

 due date 20 22 24 26 28 

      

Object 1 2 3 4 5 

Operation A B C D A B C D A B C D A B C D A B C D 

Number 0 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

19 

 Table 1 

Data for example 1 
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Figure 2 

Individuals I1 and I2 represented with our coding as I3 (with letters) or I3’ (with numbers) 

I1: 0 1 4 2 5 6 7 8 3 12 9 10 16 11 13 17 14 15 18 19 

                     

I2: 0 1 4 2 5 6 3 12 7 8 13 14 16 15 9 17 10 11 18 19 

                     

I3: A B A C B C D A D A B C A D B B C D C D 

I3’: 0 1 0 2 1 2 3 0 3 0 1 2 0 3 1 1 2 3 2 3 
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I4 : 0 1 0 2 1 0 0 2 1 2 3 3 

 
I5: 0 1 1 0 2 3 0 2 3 1 2 3 

 

Figure 3 : 

Example of individuals not respecting 

feasibility constraints for n = 4 and m = 3 
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Coded individual : 

I: 0 1 0 2 1 0 1 2 3 3 2 3 

 

Decoded individual : 

I’: 0 1 4 2 5 8 9 6 3 7 10 11 

 
Figure 4 : 

Example of decoding an individual 
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 Object Completion 

date 

 Delivery 

# 

Date Weight 

0 15  0 20 5 

1 20  1 20 3 

2 25  2 20 2 

3 30  3 30 1 

4 35  4 30 3 

5 40  5 30 2 

6 45  6 50 1 

 

Weighted number of tardiness : 4 

 Figure 5 : 

Example of weighted number of tardiness 

computation 
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0 0 1 2 1 0 1 2 3 2 3 3 

Parent 1 

0 1 2 0 3 0 1 1 2 3 2 3 

Parent 2 

Figure 6 : 

1X Crossover Operator 

CP CP 

0 0 1 2 1 3 0 1 2 3 2 3 

 

0 1 2 0 3 1 0 1 2 2 3 3 

 

Child 1 Child 2 
CP CP 
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0 0 1 2 1 0 1 2 3 2 3 3 0 1 2 0 3 0 1 1 2 3 2 3 

Parent 2 

Figure 7 :  

2X Crossover Operator 

CPa CPa 

0 1 2 0 1 0 1 2 3 3 2 3 

 

0 0 1 2 3 0 1 1 2 2 3 3 

 
Child 1 Child 2 

CPa CPa 

CPb 

CPb CPb 

Parent 1 
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Figure 8 : 

POX Crossover Operator 

0 0 1 2 1 0 1 2 3 2 3 3 

Parent 1 Parent 2 
Task swapped : task 2 

0 1 2 0 3 0 1 1 2 3 2 3 

0 1 2 0 3 0 1 1 2 2 3 3 0 0 1 2 1 0 2 1 3 3 2 3 

Child 1 Child 2 
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Figure 9 : 

Deviation between the wNT found by each 

operator and the minimum value found 
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Figure 10 :  

PPS Mutation Operator 
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Original individual 

Mutation position : 

gene n° 5 
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Mutated individual 
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Figure 11 : 

Interest of the mutation phase 
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Pb  

nb 

obj. 

nb 

ope. CP GA GAh GA* GAh* 

1 50 35 46 37 22 29 22 

2 55 37 39 35 26 33 26 

3 60 38 38 41 27 27 27 

4 65 41 60 49 33 42 33 

5 70 37 61 41 33 31 29 

6 75 27 62 36 33 35 32 

7 80 40 67 52 35 37 35 

8 85 33 68 44 37 42 37 

9 90 27 30 28 26 26 26 

10 95 38 78 57 40 47 41 

11 100 37 68 62 47 46 46 

12 50 34 50 27 23 24 23 

13 55 34 55 40 29 30 29 

14 60 32 60 47 32 32 32 

15 65 30 46 46 31 33 31 

16 70 47 65 50 42 46 42 

17 75 44 69 53 42 52 42 

18 80 43 56 50 38 44 38 

19 90 47 77 67 53 68 53 

Sum 1095 862 649 724 644 

 Table 2 : 

Comparison results 

Fixed allocation, unweighted problems 
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Pb 

nb 

obj. 

nb 

ope. CP GA GAh GA* GAh* 

1 50 35 144 108 67 83 66 

2 55 37 123 113 83 109 83 

3 60 38 107 117 80 97 80 

4 65 41 181 141 106 127 106 

5 70 37 194 124 112 96 91 

6 75 27 199 105 103 105 100 

7 80 40 211 149 95 116 113 

8 85 33 188 122 101 110 101 

9 90 27 95 101 88 90 90 

10 95 38 234 169 118 150 120 

11 100 37 199 172 149 131 131 

12 50 34 142 80 71 57 61 

13 55 34 156 112 79 89 82 

14 60 32 166 123 89 93 89 

15 65 30 142 139 104 99 99 

16 70 47 159 111 101 120 94 

17 75 44 182 128 115 129 100 

18 80 43 187 149 116 132 123 

19 90 47 240 196 145 203 148 

Sum 3249 2459 1922 2136 1877 

 Table 3 : 

Comparison results 

Fixed allocation, weighted problems 
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Pb 

nb 

obj. 

nb 

ope. CP GA GAh GA* GAh* 

1 50 35 26 36 28 13 13 

2 55 37 16 37 27 7 7 

3 60 38 6 41 28 2 2 

4 65 41 37 50 39 19 19 

5 70 37 30 45 34 13 13 

6 75 27 0 37 26 0 0 

7 80 40 36 54 39 18 18 

8 85 33 0 45 37 0 0 

9 90 27 0 45 33 0 0 

10 95 38 46 63 48 23 23 

11 100 37 29 70 53 12 12 

12 50 34 20 33 25 11 11 

13 55 34 18 39 26 8 8 

14 60 32 0 35 17 0 0 

15 65 30 0 35 27 0 0 

16 70 47 46 54 41 24 24 

17 75 44 52 57 46 26 26 

18 80 43 30 53 40 12 12 

19 90 47 67 70 57 33 33 

Sum 459 899 671 221 221 

 Table 4 : 

Comparison results 

Flexible allocation, unweighted problems 

Page 31 of 34

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 

Pb 

nb 

obj. 

nb 

ope. CP GA GAh GA* GAh* 

1 50 35 83 111 90 47 47 

2 55 37 54 120 91 24 24 

3 60 38 13 116 75 5 5 

4 65 41 117 142 121 54 54 

5 70 37 98 136 102 41 41 

6 75 27 0 113 84 0 0 

7 80 40 107 156 124 60 60 

8 85 33 0 118 106 0 0 

9 90 27 0 139 109 0 0 

10 95 38 136 184 132 75 75 

11 100 37 84 196 149 29 29 

12 50 34 64 89 73 39 39 

13 55 34 47 110 82 27 27 

14 60 32 0 89 45 0 0 

15 65 30 0 110 74 0 0 

16 70 47 122 126 101 53 53 

17 75 44 137 130 112 78 78 

18 80 43 97 164 134 37 37 

19 90 47 195 199 168 98 98 

Sum 1354 2548 1972 667 667 

 Table 5 : 

Comparison results 

Flexible allocation, weighted problems 
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Figure 12: 

Computation Times Comparison 

With 

CADPlan® 
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