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Abstract 

The fact that Case-based reasoning (CBR) adaptation in design domains is knowledge-intensive is one of the 

major factors that has limited the industrial application of CBR systems. Nevertheless, inductive techniques 

can ease the adaptation knowledge acquisition bottleneck by enabling useful knowledge to be elicited from 

the case-base (CB). Application of neural networks that use the knowledge available in the CB to (i) generate 

a desired mapping from differences between a query and retrieved cases, (ii) to minimise those differences 

and hence (iii) to adapt retrieved cases so that an optimal solution to a query is found is studied in this paper. 

This adaptation method is suitable for CBR systems that use numerical-valued attributes for describing a case.  

 

Keywords: Case-based reasoning, adaptation knowledge, artificial neural networks, polyurethane 

manufacture, polyurethane formulation. 
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Abstract 

The fact that Case-based reasoning (CBR) adaptation in design domains is knowledge-intensive is one of the 

major factors that has limited the industrial application of CBR systems. Nevertheless, inductive techniques 

can ease the adaptation knowledge acquisition bottleneck by enabling useful knowledge to be elicited from 

the case-base (CB). Application of neural networks that use the knowledge available in the CB to (i) generate 

a desired mapping from differences between a query and retrieved cases, (ii) to minimise those differences 

and hence (iii) to adapt retrieved cases so that an optimal solution to a query is found is studied in this paper. 

This adaptation method is suitable for CBR systems that use numerical-valued attributes for describing a case.  

 

Keywords: Case-based reasoning, adaptation knowledge, artificial neural networks, polyurethane 

manufacture, polyurethane formulation. 

Introduction 

The pressures to reduce time to market and generate cost effective, high quality products that satisfy customer 

demands can be supported by the development of CBR systems in design domains i.e. systems that not only 

serve as retrieval systems such as those found in help-desk applications but also serve as problem solvers. 

Progress has been made to the point that small CBR prototypes are available for various design tasks (e.g. see 

(Watson 1997)).  The majority of these still rely on a human-based approach to adaptation in which a domain 

expert proposes the changes that are required to adapt the retrieved case to solve a problem (Craw, Wiratunga 

et al. 1998; Khemani, Selvamani et al. 2002). 

Most researchers seem to agree that adaptation is one of the challenges in the development of useful CBR 

systems. Adaptation becomes essential especially in domains such as design because solutions never match 

completely past solutions and frequently two or more previous solutions must be combined to solve a new 

problem (Börner 2001). A review by (Wilke and Bergmann 1998) also suggests that the adaptation stage is 

still considered to be the least developed in the implementation of CBR systems. The findings of studies 

examining approaches to adaptation suggest that adaptation is a difficult task and hence the least developed 

stage in CBR largely because of the complexity in eliciting or acquiring adaptation knowledge and further 

compounded by the fact that this task requires a deep understanding (at expert level) of the problem domain 
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(Bandini and Manzoni 2001; Craw, Jarmulak et al. 2001). It is not surprising that existing commercial CBR 

tools do not include a well developed adaptation framework. 

Studies by (Hanney and Keane 1997) and (Craw, Jarmulak et al. 2001) indicate that the adaptation acquisition 

problem can be reduced by using the knowledge that may be already present in the case-base. Like inductive 

learning programs, artificial neural networks (ANN) can be used to learn domain knowledge from examples. 

However, the ANN approach has received little attention as a tool for CBR adaptation and more studies need 

to be conducted to study how ANNs could induce knowledge from a CB to reduce the adaptation knowledge 

acquisition task and perform adaptation of cases.  

The purpose of this paper is: (i) to study how the ANN approach could induce knowledge from a CB to adapt 

cases and (ii) to discuss various issues regarding neural system design, implementation and operation in CBR 

systems for adaptation of cases in formulation applications.  

Adaptation using the case-base: related work 

The aspects of how to extract knowledge that might already exist in a CB (or case-repository) to adapt cases 

represented as feature vectors using an ANN approach are covered in this section. First, the problem of 

adaptation of cases represented as feature vectors is reviewed, followed by the motivations for the use of an 

ANN approach to solve this problem. Classical reviews and introductions on alternative adaptation strategies 

(e.g. transformational, generative, null) are reported elsewhere (Kolodner 1993; Wilke and Bergmann 1998; 

Fuchs, Lieber et al. 1999). Information about formal adaptation frameworks not discussed in this paper can 

also be obtained from a number of other sources such as the papers by Bergmann and colleagues (Bergmann 

and Wilke 1998; Wilke and Bergmann 1998), and the surveys by Smyth and co-workers in (Hanney, Keane et 

al. 1995; Smyth and Keane 1996; Hanney and Keane 1997; Smyth and Keane 1998). 

Different case representations require different adaptation strategies (Wilke and Bergmann 1998). For cases 

that are represented as attribute-value vectors, adaptation involves to replace a value(s) corresponding to the 

solution in the retrieved case with a value that can fit the desired solution (Figure 1). The adaptation goal is to 

find the solution feature values for a given a query q. A feature case vector c is composed of both a case 

problem {cp} and a case solution {cs}. For a PU case, the case solution is the set of features that describe a PU 

solution i.e. the formulation ingredients for a given foam. In retrieval, q is matched against cases stored in the 

CB, so that the closest match is retrieved, i.e. cj
(r)

. Its solution set is then adapted so that an optimal solution 

c
(a)

 to q, can be found. 

 

Insert Figure 1 Here.  

Figure 1. Adaptation of cases represented as feature vectors. 

  
 

For many real-world applications, variables describing a set of objects are of different types. For instance a 

PU foam formulation can be described in terms of compression set (quantitative variable), amount of wear 

(ordinal), type of polyol (nominal) and presence or absence of voids (binary variable). Heterogeneous distance 

functions are used to handle mixed variables. Reviews of some other distance functions that handle qualitative 

attributes and heterogeneous attributes include: (Michalski, Stepp et al. 1981) review some distance functions 

for qualitative binary attributes are given; (Giraud-Carrier and Martinez. 1994; Gordon 1999) review 

distances that can handle variables having more than two states or categories i.e. multi-state (e.g. linear if the 

states are ordered (they can be discrete or continuous) or nominal if they are not). A general measure, which 

can be used to compare objects described by mixed variables, is described in (Gower 1971). Several 

heterogeneous distance functions are reviewed in (Wilson and Martinez 1997). The authors presented three 

distance functions namely, the Heterogeneous Value Difference Metric (HVDM), the Interpolated Value 
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Difference Metric (IVDM), and the Windowed Value Difference Metric (WVDM). The HVDM distance 

function uses, the Euclidean distance on linear attributes, and the Value Difference Metric (VDM), which was 

introduced by Stanfill & Waltz (Stanfill and Waltz 1986), on nominal attributes. The IVDM and the WVDM 

handle quantitative variables in a similar fashion to VDM.  

 

In the development of complete CBR systems (i.e. systems including adaptation), (Hanney and Keane 1997) 

have reported on the use of learning adaptation rules from cases represented as nominal feature vectors. The 

antecedent part of an adaptation rule consists of the feature differences between each pair of cases, with the 

differences between the solutions provided as the consequent part. Adaptation is carried out by applying these 

rules to deal with feature differences that are found between a query and a retrieved case.  

In particular, for the formulation domain, (Jarmulak, Craw et al. 2001) recently proposed a “knowledge light” 

approach for learning adaptation knowledge from the cases in the CB. In a fashion similar to the approach 

used by (Hanney and Keane 1997), constructed adaptation cases are derived by comparing differences 

between the problem features. For numerical attributes, these differences correspond to feature differences 

between a probe case and the corresponding retrieved case, and the difference between their solutions (refer to 

Figure 2). This adaptation approach, deals with feature differences that are found between a query and a 

retrieved case, by using single or combined suggested corrections. 

 

Insert Figure 2 Here  

Figure 2. Constructing adaptation cases. Source: (Jarmulak, Craw et al. 2001). 
 

A CBR framework for polyurethane formulation: CBRPUR 

In the PU domain, only a few experts have mastered PU formulation knowledge after years of experience 

hence the design of new formulation is expert-dependent. Several reasons account for this dependency on 

experts’ knowledge such as (i) the complex chemistry of the PUs (Saunders and Frisch 1962; Saunders and 

Frisch 1962), (ii) the lack of understanding of the underlying principles that govern the formulation process 

(e.g. PU structure-property relationships, kinetics) (Abouzahr, Ophir et al. 1982; Dounis and Wilkes 1997; 

Sykes 1999) and (iii) the difficulties of knowledge transfer in this domain. The use of the CBR and ANN 

paradigms enable the support of PUs formulation tasks by providing a framework for the collection, 

structuring, and representation of real formulating knowledge.  

By organising the problem-specific knowledge and the information on previous cases, the CBR system for PU 

formulation (CBRPUR) provides non-specialised users with the necessary guidance for solving PU foam 

formulation problems. The CBRPUR system consists of two main modules that are activated to perform 

specific tasks of the case-based problem solving process. The case-based (CB) module allows the user to 

translate formulations into cases (case description) and it also allows the retrieval of similar solutions to a 

query (case retrieval). For describing a case, the user enters the feature values of a formulation. The retrieval 

process begins with the search engine selecting from the system’s CB only those cases for which the current 

problem has been previously solved. For each of these past cases, the retrieval mechanism then computes 

similarity ratings and the user is presented with a list of past cases graded with respect to a similarity metric. 

Once an appropriate formulation(s) has been selected, this is presented to the ANN module (i.e. an ANN 

trained on data associated with input changes in mechanical parameters and changes in output formulations) 

which is responsible for the adaptation of the formulation in order to meet the query’s specifications. 
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Artificial Neural Network Based Adaptation 

The ANN-based adaptation method is developed by training an ANN to generate a mapping between case-

problem feature differences (i.e. delta properties) and case-solution feature differences (i.e. delta ingredients) 

using the back-propagation algorithm. The trained network is a representation of how changes between pairs 

of property features affect formulation ingredient features. For the purposes of this research, the goal was to 

find an ANN that can prove that experimental PU formulation data contained in the CB could be used to guide 

CBR adaptation. 

Implementation of an artificial neural network to guide CBR adaptation 

Polyurethane formulation data  

Data from a statistical experiment was used for a case study. Thirty four formulations for a Combustion 

Modified High Resilient (CMHR) flexible foam made using conventional PU hand mixing methods were used 

as the sample data. The properties measured for these formulations include density (Herrington and Hock 

1991), hardness , tensile strength (the maximum tensile stress applied during stretching to rupture) and 

elongation at break (the percentage of elongation at rupture) and compression set. The formulation recipes and 

corresponding mechanical properties are given in Figure 3. 

 

Insert Figure 3 Here 

Figure 3. PU formulation data. 

 

Methodology and Experimental Setup  

The application of a feed-forward, back-propagation ANN for adaptation of retrieved cases has three phases, 

namely, pre-treatment, training and testing. Phase one, the pre-treatment task, as its name suggests involves 

pre-processing of the input data pattern so that the quality of the data can be determined. Some basic 

procedures include the elimination of outliers, normalisation, standardisation, transformation and data 

reduction. Phase two is the training process, during which a set of training examples are presented to the 

network. The parameters of the network are iteratively adjusted to enable input and output relationships to be 

learned. Phase three is a testing process, during which a known input pattern is presented to the trained 

network and this is required to discover the possible output so that a validation of the answer can be made.  

Phase one is important to utilise ANNs effectively (and in general any computation technique) to support the 

analysis and modelling of complex problems. Pre-treatment involves knowing as much as possible about the 

reliability of the network’s input pattern and the transformation of data to support the networks training phase.  

Phase two is usually a lengthy task and can require many iteration steps to satisfy the training conditions 

(defined in the following sections). Most ANN application studies usually concentrate on this phase, where 

the network architecture and input variables can intentionally be changed to optimise the network’s 

performance. Once the network’s parameters have been adjusted, the network is ready for testing. The testing 

phase can be very simple since it only requires the evolution of the performance of the trained ANN when 

predicting an output appropriate for new inputs. 
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Selection of the neural input patterns. The data sets that were used to choose the training and validation sets to 

implement the ANN as well as the normalisation that the input and output patterns received are described in 

this section.  

Test cases were randomly selected and correspond to cases No. 11, 12, 22 and 25 (refer to Figure 3). Each 

input pattern pδ  was obtained by taking the differences between the case-problem attributes for the cases 

stored in the CB. The difference between the problem part of two cases i.e. the delta property, is an exemplar 

of an input pattern for the ANN and a number of researchers (Hanney and Keane 1997; Jarmulak, Craw et al. 

2001) have suggested the use of these differences between the case-problem features to build adaptation 

cases. In order to obtain a large set of input patterns for the network, delta property values were calculated 

using all but the probe cases of the CB. 

Input patterns = 

( ) ( )









=−=
kattribute 

problem
kattribute 

problem
ji -case jcase iccpδ

, for ji ≠ . 

where 
( )ic  is the i

th
 feature vector which contains only the problem attributes of a case i.e. the mechanical 

properties.  

In a similar fashion, the outputs of the network are obtained by calculating the differences between the 

solution attributes of a case; this is between the formulation ingredients. 

Targets Network = 

( ) ( )









=−=
kattribute 

solution
kattribute 

solution

ji
-case jcase iccfδ

, for ji ≠ . 

 

A second data set was obtained to train the network by taking only the differences between a probe case and 

its first five closest retrieved cases. This will result in a smaller data set than the one previously described but 

it would include significantly smaller differences that the network could be able to represent more easily. As 

in the previous example, test cases correspond to cases No. 11, 12, 22 and 25. The total number of input 

patterns pδ  was obtained by (i) calculating the first five closest cases when each case is a query and (ii) 

calculating the differences between the case-problem attributes for each query and its first five retrieved cases 

(Figure 4). 

 

Insert Figure 4 Here  

Figure 4. Datasets for the ANN study. 

 

Data pre-treatment. The calculated the differences between attribute values, (i.e. the input patterns for the 

network) were normalised using the min-max normalisation in the interval [-1, 1]. Three types of outputs were 

used in training: (i) real-valued outputs normalised in the interval [0..1], (ii) binary-valued outputs (i.e. 0,1) 

and (iii) bipolar-valued outputs (i.e. the binary values corresponding to zero were changed to -1). The binary- 

and bipolar-valued outputs were obtained by codifying each difference in formulation ingredients between 

two cases into a triad of ones and zeros according to either a negative, positive or null difference. An example 

is given in Figure 5. Differences between the formulation ingredients between two cases (e.g. case i and case 

j) were calculated. This difference was codified into binary values depending on whether the change in 

ingredients was negative (case’s ingredient should be increased), positive (case’s ingredient should be 

decreased), or zero (leave a case’ ingredient as it is). The normalised real-valued outputs were used first in 

preliminary experiments to narrow down the search space for the network adequate architecture; therefore 

these results are presented first. 

 

Insert Figure 5 Here  
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Figure 5. A network training sample.  

 

Network data sets. Without enough formulations to justify splitting the data into training and test sets, the 

cross-validation approach was adopted. By following this approach the training set was partitioned into five 

distinct segments. Each sample in the training set completely specifies all the inputs as well as the outputs that 

are desired when those inputs are presented. Five networks therefore were trained, each time using random 

chosen training sets with 792 exemplars and training-test sets with 20 exemplars (refer to Table 8). The 

network with the lowest error with respect to the training test set was selected. The performance of the 

selected network was confirmed by measuring its performance on a third independent set of data called a test 

set. If the error in the test set is not acceptable, a common practice is to joint the training and training test set 

and re-train (Masters 1993 p.183).   

 

Insert Table 1 Here  

Table 1. Networks trained. 

 

Network architecture. There has been much debate about how to find the correct network architecture for a 

particular problem. A large body of research exists which suggest several rules of thumb that can be applied to 

the problem at hand (Hecht-Nielsen 1990; Masters 1993; Bishop 1995; Hagan, Demuth et al. 1996). In 

considering how to find the correct network architecture that can map the feature sets studied in this section, 

the first point to consider is what is meant by the term network architecture.  

The network architecture is the description of the number of the layers in an ANN, each layer's transfer 

function, the number of neurons per layer, and the connections between layers. Finding the correct network 

architecture is a not an easy task. Aside from the number of neurons in a network's output layer, the number of 

neurons in each layer can be found by trial and error. One rough guideline for choosing the number of hidden 

neurons in many problems is the geometric pyramid rule (Masters 1993 p. 176). For a one-hidden layer feed-

forward network, with n input neurons and m target neurons the rule states that the hidden layer would have 

sqrt (mn) neurons. However, the problem studied in this study is highly complex and this rule may 

underestimate the number of hidden neurons required. Therefore, the systematic change of the number of 

number of neurons in each layer to find an optimum network’s architecture was the approach used in this 

study (Figure 6). 

 

Insert Figure 6 Here  

Figure 6. Methodology followed to find an optimum network architecture. 

 

Algorithm in the MATLAB Artificial Neural Network Toolbox. To implement a two-hidden layer feed-forward 

ANN that could guide CBR adaptation the MATLAB 7 Artificial Neural Networks Toolbox was used. The 

systematic change in the number of neurons in each layer was performed using MATLAB (Figure 6). The 

pseudo-code to create, train and simulate the ANN using the MATLAB 7 ANN Toolbox used in this project 

to assist CBR adaptation is presented in Figure 7. The network’s functions and training parameters used in 

MATLAB for the feed-forward back-propagation networks are presented in Table 2.  

 

Insert Figure 7 Here 

Figure 7. Pseudo-code to create and train the ANN using MATLAB. 

 

Insert Table 2 Here  

Table 2. Network functions and training parameters used in MATLAB. 

Page 7 of 28

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 

Algorithm in GHOST. Experiences using the MATLAB 7 ANN Toolbox indicated that when the number of 

iterations increases, the computing time arises leading to a lengthy training process. This is due to the fact that 

the TRAINLM is suited only for networks with a small number of weights . An alternative ANN software 

programme, GHOST was used in parallel to MATLAB. GHOST is ANN software in development that is being 

written in C++ at Loughborough University (Hinde 2004). The network functions and training parameters 

available in GHOST and used for the feed-forward back-propagation networks are presented in Table 10. 

Initially, MATLAB was used to find the optimum architecture when real-valued outputs were used. Once an 

idea of the optimum architecture was found, further training was carried out using GHOST. Several networks 

were trained with different training and test sets as mentioned formerly.  

 

Insert Table 3 Here  

Table 3. Network functions and training parameters used in GHOST. 

 

Using an artificial neural network to adapt cases  

By training an ANN, as it was mentioned previously, a mapping between the network’s input and the output 

patterns is obtained. The trained network was used to adapt cases in the following manner (refer to Figure 8). 

First, the problem features difference between a retrieved case and a query is presented to the network. The 

trained network having learnt that for various delta properties, certain changes in the output variables result, 

reports on how the retrieved case solution features (i.e. formulation ingredients) should be adapted.  

 

Insert Figure 8 Here  

Figure 8. Artificial neural network for adaptation of PU retrieved cases. 

 

In order to adjust the amount of ingredients that need to be changed, a “vote mechanism” that uses ranked 

retrieved cases and their distances to the query was used. The contribution of the retrieved cases to the answer 

is determined by a relevance factor. The definition of this factor allows to take into account the similarity 

between the query and cases i.e. the similar the case to the query is (smaller the distance), the higher the 

contribution of the case to the answer should be. 

The relevance factor for each case is defined in terms of the distance between the retrieved case and the query 

by the following relation: 

∑
=

−=
r

ji

ij

ij

i

d

d
f

1,

1

     (1) 

where r is the number of retrieved relevant cases; and ijd  is the distance function used in the similarity 

assessment between a case i and a query j. 

For instance, the steps for using this vote mechanism using the first two ranked cases include to: (i) present 

the difference between the closest retrieved case and the query to the trained artificial neural network, (ii) 

determine relevance factors, (iii) obtain an adapted solution case by using the relevance factor for each 

solution feature, according to the algorithm shown in Figure 9. 

 

Insert Figure 9 Here  

Figure 9. Algorithm to adapt retrieved cases using the trained ANN output. 
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Note: For the case when two ranked retrieved cases are used, each network’s output attribute is compared. If 

the network’s output is the same, a New_Adjusted case is generated by taking the contribution of each ranked 

case to the response. If they are different, the New_Adjusted case attributes are the same as the closest 

retrieved case.  

 

An example of the adaptation of cases using this vote mechanism is shown in  

. The relevance factor is calculated as:  

189.0142.0

189.0
1,

189.0142.0

142.0
1 21 +

−=
+

−= ff L

 
 

Insert Figure 10 Here  

Figure 10. Examples of adaptation of cases by means of a vote mechanism and a trained ANN. 

Results and discussion  

The results of the training of several feed-forward ANNs and the use of a trained network with the lowest 

training error to adapt cases are presented in this section. Three types of outputs were studied i.e. real-valued, 

binary-valued (0,1) and bipolar-valued (-1,1) outputs as it was described previously. The normalised real-

valued outputs preliminary experiments served to narrow down the search space for the network adequate 

architecture, therefore these results are presented first.  

Artificial Neural Network Implementation 

Real-valued outputs. A systematic change in the number of neurons in two layers was used in this study to 

train a feed-forward ANN with real-valued outputs normalised in the interval [-1..1] in MATLAB. Early tests of 

the perceptron network (5–8) yielded high mean square errors. Figure 11 a) shows the performance (i.e. mean 

square error) of the network against the number of hidden neurons in the first layer. It can be seen that as the 

number of neurons are increased, the error of the network decreases monotonically. Figure 11 b) shows the 

computing effort (training time in seconds) versus the number of hidden neurons in the first layer. By 

increasing the number of neurons the training time is also increased in a linear fashion for the chosen interval. 

In addition, it can be observed that by using more than 80 neurons the error does not decrease significantly but 

it results in a high computation training time.  

 

Insert Figure 11 Here  

Figure 11. Artificial neural network performance. 

a) Mean square error as a function of number of neurons in the hidden layer.  

b) Training time as a function of the number of neurons in the hidden layer. 

 

In order to find a balance between computational effort (i.e. low training time), good generalisation (i.e. not 

many hidden neurons) and good modelling ability (i.e. enough hidden neurons), 80 hidden neurons were 

chosen in each of the two hidden layers. A partial justification for choosing this number of neurons relies also 

in the fact that the two-hidden layer architecture is known to approximate any continuous mapping provided 

that the number of hidden neuron is sufficiently large (Bishop 1995). Additionally, it is expected that if the 

network with this size shows good performance, the network’s configuration can be later optimised by using 

growing and pruning algorithms if required, see for instance (Bishop 1995 p.353). 
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Binary-valued output results. After 20 thousand epochs, the measure of network’s performance (the mean 

square error) for the five trained networks using binary-valued outputs is high when compared to the 

performance goal of 0.001 indicating that convergence was not reached (Table 11). For instance, for NET 1 

the minimum error reached was 4.90 after twenty thousand iterations which is about 4.90 thousand times the 

performance goal. In addition, the error after twenty thousand epochs was about the same for all networks 

(approximately 5.0 in average) indicating that these errors may not depend of the data subdivision. It is 

probable that either the training set or the training-test set were not representative for the relationship to be 

modelled i.e. they did not contain important information the network should have learnt. Especially for the 

training-test sets that contained only twenty samples, a high chance of selecting a non-representative subset 

was considerable. In addition, these results are not enough evidence for concluding that the networks’ low 

performance is due to (i) cross-validation subset selection alone, (ii) strong noise in the data and/or (iii) an 

error optimisation problem (i.e. a local minimum instead of the global minimum was incidentally reached). 

It was mentioned in the preceding sections that if the cross-validation error is not acceptable, a common 

practice is to train using the training and testing set together (Masters 1993 p.183). This assumes the training 

set being representative of the population. It was assumed that by using the whole data set, a set representative 

of the population could be obtained. The results of the re-trained network using training and training-test sets 

merged are shown Table 12. The results with an independent test set are shown in Table 13. An independent 

test set composed of the differences between the problem part (measured properties) of four probe cases and 

their retrieved cases using the Euclidean distance was presented to the trained network to assess how well the 

network performs with real data. It can be seen that there is only one minor error indicating good network’s 

performance on the test set.  

 

Insert Table 4 Here  

Table 4. Results on the 20
th

 thousand iterations 

 

 

Insert Table 5  Here  

Table 5. Results for trained network using merged training and test set 

 

 

The results described above indicate that a trained ANN is able to recognise important patterns in formulation 

data and therefore can be used to diagnose formulation changes required for adaptation of retrieved cases. 

From Table 13 it can be seen that there is only one error when the test set is presented. However, this is not 

enough evidence that the network is able to generalise when presented with more data independent from the 

original data set. Given the large number of hidden units, and the small training set the network is likely over-

fitting the data.  

 

Insert Table 6 Here  

Table 6. Testing results of best performance network. 

 

 

The results shown in Table 13 indicate that the performance goal was mainly limited by the ability of 

collecting new data and by the computational resources available. More PU formulation data are required if a 

trained network free of generalisation issues is required. In addition, these results reiterate the importance of 

the relationship between (i) the number of hidden neurons and (ii) the training set, in the implementation of 

ANNs. This relationship can lead towards two extremes as it has been illustrated. First, the network can learn 
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both the data and the noise present in the data and hence it does not generalise well. Second, the scarcity of 

the training set is partially compensated by limiting the number of hidden neurons but this prevents the 

network from learning as it should.  

Training with CBR retrieved differences. A second data set obtained by taking only the differences between 

probe cases and its first five closest retrieved cases was used to train a two-hidden layer feed-forward back-

propagation network. The idea behind this approach is that because smaller differences are present when 

closer cases are compared, the network could learn more rapidly compared to the case when higher 

differences are present even though the training set is reduced significantly from 812 to 145 exemplars.  

After 20 thousand epochs, the trained network (NET 8) using binary-valued outputs the error did not decrease 

(Table 14). This suggests that the data presented to the network are not representative of the population and 

confirms the conclusions from the preceding paragraphs in which it was suggested that collection of more 

independent formulation data is necessary.  

 

Insert Table 7 Here 

Table 7. Results for the network NET 8 

Adaptation using the Artificial Neural Network 

Despite the fact that the NET 6 is not able to generalise, it is a good example that the trained ANN can learn 

important patterns in PU formulation data as a PU expert would do. It can remember relationships within the 

data to diagnose formulation changes required for adaptation of retrieved cases but it is not able to apply its 

learning capabilities to other sets of data accurately.  

For the purposes of this research, the main goal was to find a network that can do well enough to prove that 

experimental formulation data contained in the CB can be used as a knowledge container to guide CBR 

adaptation. Despite the fact that NET 6 do not generalise accurately, it can prove that it is capable of use PU 

real formulation data to guide CBR adaptation. The results from the validation test shown in Table 13 were 

used to find the formulation ingredients when the first two retrieved cases using the Euclidean distance were 

used.  

Conclusions 

An ANN methodology designed to carry out the adaptation task in a CBR system for supporting PU 

formulation is presented in this paper. It is well known that adaptation of cases is a difficult task that has made 

difficult the deployment of complete CBR systems. For this reason, in order to solve this problem, several 

researchers have proposed to exploit the knowledge that might be already contained in the CB by means of 

inductive techniques that elicit knowledge from the CB and ease the adaptation knowledge bottleneck by 

learning from cases. However, it is not clear (i) what cases need to be compared to generate adaptation rules 

and cases and (ii) what rules or cases need to be applied to make the algorithm effective and efficient. 

Research has highlighted the potential of ANNs an inductive technique to be used in product formulation 

application to map formulation ingredients or processing conditions to final product properties. It this paper, a 

feed-forward back-propagation neural network to adapt retrieved PU cases can be implemented as well as a 

method to use the knowledge learnt by the network to adapt retrieved PU cases.  

A two-layer feed-forward network trained using a modified back-propagation algorithm was found to be able 

to generate adaptation knowledge from a CB composed of real PU formulation data. The network was trained 

to learn a relationship between the change in formulation properties and formulation ingredients. When a new 

query exists, the CBR system retrieves cases that partially match the query and the difference between the 
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query and the closest retrieved case is presented to the trained network for it to propose what ingredients of 

the retrieved formulation need to be adjusted to compensate for the differences found.  

In order to know how much to change the formulation ingredients, a vote mechanism was proposed. This 

method worked by taking into account the “weight” or contribution to the answer by defining a relevance 

factor based on the measure of distance used in the retrieval algorithm in a way that the similar the case to the 

query is (smaller the distance), the higher the contribution of the case to the answer should be. 

Although the network has a low global error (4%), the network does not have good generalisation capabilities. 

This maybe due to the fact that the network was presented with a very small data set and hence it is not able to 

discover the relationships between the large number of variables involved.  
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Tables 

Table 8. Networks trained 

Network Output  

Data sets  

Values Training set Training-test set Cross-

validation 

Network 

name 

real-valued output Continues in the 

interval [0..1] 

792 exemplars 20 exemplars  NET 0 

NET 1 

NET 2 

NET 3 

NET 4 

792 exemplars  20 exemplars  X 5 times 

NET 5 

binary-valued output [0, 1] 

125 exemplars 20 exemplars  NET 6 

bipolar-valued output [-1,1] 125 exemplars 20 exemplars  NET 7 

 
Table 2. Network functions and training parameters used in MATLAB 

Function  Matlab reference Name 

Training Function trainlm Levenberg-Marquardt back-propagation algorithm 

(Hagan and Menhaj 1994) 

Performance function mse Mean Squared Error 

Transfer Function  tansig Hyperbolic tangent sigmoid transfer function 

Learning Function  learngdm Gradient descent with momentum weight and bias 

learning function 

Network Parameters Matlab name Value  

Maximum number of epochs to 

train 

net.trainParam.epochs 100 

Performance goal net.trainParam.goal          1e-5 

Maximum validation failures net.trainParam.max_fail     5 

Minimum performance gradient net.trainParam.min_grad 1e-10   

 
Table 10. Network functions and training parameters used in GHOST 

Function  Name 

Training Function Back-propagation algorithm 

Performance function Mean Squared Error 

Transfer Function  Logistic sigmoid transfer function 

Learning Function  Generalised delta function 

Network Parameters Value  

Maximum number of epochs to train >1000 

Performance goal 1e-3 

Maximum validation failures 5 
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Table 11. Results on the 20th thousand iterations 

Feature NET 1 NET 2 NET 3 NET 4 NET 5 

Max No. of errors 0.901375 0.991220 0.991027 0.915647 0.769905 

maxsamp 4 7 1 14 14 

maxname output 19 output2 output2 output24 output21 

Num wrong 20 20 20 20 20 

Max sq. errors 6.251496 6.640180 6.294469 5.834857 6.344229 

Mean sq. errors 4.907088 5.276645 5.362985 4.875774 4.981290 

Av. Absolute errors 9.764001 10.195293 10.306092 9.769579 9.958319 

 
Table 12. Results for trained network using merged training and test set 

Feature NET 6 

No. Iterations  17000 

Max No. of errors 1 

maxsamp 19 

maxname output 11 

Num wrong 5 

Max squ errors 6.577664 

Mean squ errors 1.567303 

Av. Absolute errors 2.239573 

 
Table 13. Testing results of best performance network. 

Retrieved Probe Ing 1 Ing 2 Ing 3 Ing 4 Ing 5 Ing 6 Ing 7 Ing 8 

11 24 decrease increase no change no change no change no change no change increase 

12 13 decrease no change increase increase no change no change no change no change 

22 28 increase no change no change decrease no change no change decrease decrease 

25 17 decrease no change increase no change increase increase no change no change 

 
Table 14. Results for the network NET 8 

Feature NET 8 

Max No. of errors 0.927057 

maxsamp 14 

maxname output9 

Num wrong 20 

Max sq. errors 7.143233 

Mean sq. errors 4.908544 

Av. Absolute errors 9.339203 

 

List of Figure Captions  

Figure 1. Adaptation of cases represented as feature vectors. 

Figure 2. Constructing adaptation cases. Source: (Jarmulak, Craw et al. 2001). 

Figure 3. PU formulation data. 

Figure 4. Datasets for the ANN study. 

Figure 5. A network training sample. 

Figure 6. Methodology followed to find an optimum network architecture. 

Figure 7. Pseudo-code to create and train the ANN using MATLAB. 

Figure 8. Artificial neural network for adaptation of PU retrieved cases. 

Figure 9. Algorithm to adapt retrieved cases using the trained ANN output. 

Figure 10. Examples of adaptation of cases by means of a vote mechanism and a trained ANN. 
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Figure 11. Artificial neural network performance. 
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Task  Result 

1. Retrieval  

a) match problem features between 

query  q and cases in the case base 

{ }
pp3p2p1 c ,...c ,c ,c=q  

b) retrieve j closest cases 
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2. Adapt  retrieved case  

a) Adjust solution features  

b) Propose solution 
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(pphp) Hardness Density Tensile Strength Elongation Compression Set

Polyether Polyol 1Polyether Polyol 2Amine CrosslinkerAmine Catalyst 1Amine Catalyst 2Silicone Water Index (N) (kg/cm3) (kPa) (%) (%)

1 91.95 1.50 1.50 0.3 0.75 0.25 3.75 110 445 54.1 134 73 10.1

2 92.70 3.00 0.00 0.3 0.75 0.25 3.00 110 240 48.2 86 83 7.3

3 93.35 1.50 0.00 0.9 0.25 0.25 3.75 85 384 67.6 137 108 12.6

4 89.85 3.00 1.50 0.9 0.25 0.75 3.75 85 177 47.6 74 83 5.8

5 93.60 1.50 0.00 0.9 0.25 0.75 3.00 85 141 59.3 62 106 7.7

6 91.35 1.50 1.50 0.9 0.25 0.75 3.75 110 454 53.1 148 79 8.4

7 91.35 3.00 0.00 0.9 0.75 0.25 3.75 85 152 47.1 67 89 7

8 91.95 3.00 0.00 0.3 0.25 0.75 3.75 85 235 51.2 64 81 6.8

9 91.20 3.00 1.50 0.3 0.25 0.75 3.00 110 192 50.8 50 62 4.9

10 90.45 3.00 1.50 0.3 0.75 0.25 3.75 85 168 48.9 56 75 6

11 90.95 3.00 1.50 0.3 0.25 0.25 3.75 110 431 53.5 90 59 7.7

12 90.85 1.50 1.50 0.9 0.75 0.75 3.75 85 154 48.9 61 80 7.5

13 92.95 1.50 0.00 0.3 0.75 0.75 3.75 85 149 48.2 60 83 8.6

14 91.25 2.50 1.00 0.7 0.50 0.50 3.55 100 230 51.1 86 81 3.9

15 91.10 3.00 1.50 0.9 0.25 0.25 3.00 85 171 61.2 65 86 4

16 89.35 3.00 1.50 0.9 0.75 0.75 3.75 110 354 55.0 114 70 4.6

17 93.20 3.00 0.00 0.3 0.25 0.25 3.00 85 161 59.1 55 87 4.6

18 92.70 1.50 1.50 0.3 0.25 0.75 3.00 85 175 60.1 74 92 5.4

19 92.60 1.50 1.50 0.9 0.25 0.25 3.00 110 210 51.3 93 87 6.9

20 93.10 1.50 0.00 0.9 0.75 0.75 3.00 110 153 48.3 66 81 9.1

21 92.10 1.50 1.50 0.9 0.75 0.25 3.00 85 159 61.1 76 101 6.1

22 94.20 1.50 0.00 0.3 0.75 0.25 3.00 85 129 58.6 51 95 5.6

23 94.70 1.50 0.00 0.3 0.25 0.25 3.00 110 182 50.3 67 87 4.9

24 92.45 1.50 1.50 0.3 0.25 0.25 3.75 85 301 58.6 82 75 7.2

25 90.70 3.00 1.50 0.3 0.75 0.75 3.00 85 156 60.7 57 85 5.3

26 91.25 2.50 1.00 0.7 0.50 0.50 3.55 100 289 51.5 104 88 5.3

27 91.85 3.00 0.00 0.9 0.25 0.25 3.75 110 469 53.6 140 82 7.6

28 92.85 1.50 0.00 0.9 0.75 0.25 3.75 110 477 51.8 143 81 8.9

29 91.60 3.00 0.00 0.9 0.75 0.75 3.00 85 144 58.4 70 115 5.2

30 92.20 1.50 1.50 0.3 0.75 0.75 3.00 110 275 50.5 113 90 4.4

31 91.45 3.00 0.00 0.3 0.75 0.75 3.75 110 471 52.7 158 86 4.1

32 93.45 1.50 0.00 0.3 0.25 0.75 3.75 110 708 62.7 217 96 9.2

33 90.60 3.00 1.50 0.9 0.75 0.25 3.00 110 273 49.8 85 79 9.7

34 92.10 3.00 0.00 0.9 0.25 0.75 3.00 110 292 50.4 105 83 8.6

Mechanical PropertiesChemical Formulae 

Run 
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ABSTRACTTheformulation  ofpolyurethanes  (PUs)is  afield  sometimesviewed  moreas  anart  thana  science,since  knowledgeis  onlywon  afteryears  ofexperience  andonly  afew  expertsin  thearea  havemastered  it.Such  expertiseis  largelyheld  bythe  majorraw  materialmanufacturers  whoare  reticentabout  revealinginformation  abouttheir  experiencesand  theirformulating  approach;and  iftransferred,  theprocess  entailslong  apprenticeships.Furthermore,  inthis  process,knowledge  caneasily  belost  throughretirement  orpersonnel  moves.Formulationof  polyurethanesis  acomplex  task.This  taskis  evenmore  complexwhen  novelproducts  meetingsustainable  goalsneed  tobe  developed.  Thedesign  ofnew  productsis  characterisedby  creativity,intuition  andconceptual  reasoning.ACase-Based  PolyurethaneFormulation  System(CBPUF)  isproposed  toperform  efficientlythe  PUformulation  task.With  theCase-Based  module,problem  solvingexperiences  collectedin  theform  of“cases”  arereused  tosolve  anew  problemexplaining  orjustifying  atthe  sametime  thesolution  path.CBPUF  hasthree  maincomponents,  whichare  activatedto  performspecific  tasks(The  four“Rs”)  ofthe  casebased  problemsolving  process.Firstly,  aproblem  descriptionis  analysedand  indicesare  assignedto  keyfeatures.  Thensuitable  casesare  retrievedfrom  thecase  libraryby  matchingindexes.  Theinformation  andknowledge  inthe  retrievedcase  arethen  usedto  providean  initialsolution  tothe  problemposed.  Wherethe  initialsolution  doesnot  fullysatisfy  theproblem  specification,the  retrievedcase’ssolution  isadapted  usingdomain  rules,heuristics  orhuman  intervention.The  adaptedsolution  isthen  tested.If  thetest  isnot  successful,sources  offailure  areinvestigated  andthe  solutionis  repairedand  testedagain  untila  suitablesolution  isfound.  Ifthe  testis  successful,the  solutionis  setwith  newindices  andstored  inthe  caselibrary.Inthe  Case-Basedfor  PolyurethaneFormulation  (CBPUF)a  caseis  dividedinto  twoparts:  theformulation  (compositionaland  processingconditions),  whichis  theobject  ofthe  investigation,and  therelated  models,each  ofwhich  isemployed  tosimulate  aspecific  physicalphenomenon  forthat  formulation.The  formulationdescription  containsindices  representingthe  featuresof  thePU  formulationdomain,  whilethe  modeldescription  includesinformation  aboutthe  modelcharacteristics  andthe  formulationproblem  simulated.
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ABSTRACTTheformulation  ofpolyurethanes  (PUs)is  afield  sometimesviewed  moreas  anart  thana  science,since  knowledgeis  onlywon  afteryears  ofexperience  andonly  afew  expertsin  thearea  havemastered  it.Such  expertiseis  largelyheld  bythe  majorraw  materialmanufacturers  whoare  reticentabout  revealinginformation  abouttheir  experiencesand  theirformulating  approach;and  iftransferred,  theprocess  entailslong  apprenticeships.Furthermore,  inthis  process,knowledge  caneasily  belost  throughretirement  orpersonnel  moves.Formulationof  polyurethanesis  acomplex  task.This  taskis  evenmore  complexwhen  novelproducts  meetingsustainable  goalsneed  tobe  developed.  Thedesign  ofnew  productsis  characterisedby  creativity,intuition  andconceptual  reasoning.ACase-Based  PolyurethaneFormulation  System(CBPUF)  isproposed  toperform  efficientlythe  PUformulation  task.With  theCase-Based  module,problem  solvingexperiences  collectedin  theform  of“cases”  arereused  tosolve  anew  problemexplaining  orjustifying  atthe  sametime  thesolution  path.CBPUF  hasthree  maincomponents,  whichare  activatedto  performspecific  tasks(The  four“Rs”)  ofthe  casebased  problemsolving  process.Firstly,  aproblem  descriptionis  analysedand  indicesare  assignedto  keyfeatures.  Thensuitable  casesare  retrievedfrom  thecase  libraryby  matchingindexes.  Theinformation  andknowledge  inthe  retrievedcase  arethen  usedto  providean  initialsolution  tothe  problemposed.  Wherethe  initialsolution  doesnot  fullysatisfy  theproblem  specification,the  retrievedcase ’ssolution  isadapted  usingdomain  rules,heuristics  orhuman  intervention.The  adaptedsolution  isthen  tested.If  thetest  isnot  successful,sources  offailure  areinvestigated  andthe  solutionis  repairedand  testedagain  untila  suitablesolution  isfound.  Ifthe  testis  successful,the  solutionis  setwith  newindices  andstored  inthe  caselibrary.Inthe  Case-Basedfor  PolyurethaneFormulation  (CBPUF)a  caseis  dividedinto  twoparts:  theformulation  (compositionaland  processingconditions),  whichis  theobject  ofthe  investigation,and  therelated  models,each  ofwhich  isemployed  tosimulate  aspecific  physicalphenomenon  forthat  formulation.The  formulationdescription  containsindices  representingthe  featuresof  thePU  formulationdomain,  whilethe  modeldescription  includesinformation  aboutthe  modelcharacteristics  andthe  formulationproblem  simulated.

Case

Problem
i.e. Mechanical

Properties

Solution
i.e. Formulation

Ingredients

Probe Case 1

Problem
i.e. Mechanical

Properties

?
Formulation

for case i = case j

1. Retrieve 5 closest cases for each case i
2. Calculate difference between case i and its

retrieved cases

Feature Differences between each case and its

first 5 retrieved cases

for case i = case j

1. Calculate difference between case i and case j

Feature Differences between each case with

each other

1

2

Total no. of

remaining cases = 29

29 X 5=
145 exemplars

29 X 28=
812 exemplars
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1, 0, 0,        0, 1, 0,            1, 0, 0,          0, 0, 1,            0, 0, 1,          0, 0, 1,           0, 1, 0,          1, 0, 0

Increase,     No change,      Increase,      Decrease,    Decrease,   Decrease,     No change,   Increase

Formulation ingredients in Case i to minimise difference

Case i

Case j

(Case i -Case j)

Case-Solution (i.e. Formulation Ingredients)

Ingredient 1  Ingredient 2   Ingredient 3   Ingredient 4   Ingredient 5     Ingredient 6   Ingredient 7   Ingredient 8

20                  60                  10                  40                 110                 1.5                  15                 10

30                  60                  20                  35                  85                    0                   15                 50

-10                   0                  -10                   5                  25                   1.5                  0                 -40
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Initialise too

few neurons

Train

Add Neuron

Select

Architecture

Yes

No
Train error

acceptable?

Generate new

Training and Test Set

Train

Merge test set

into train set

Yes

No

Validation error

acceptable

Train error

acceptable?

Yes

No

Implement

with real data

Collect more

Data

Matlab Implementation

Ghost Implementation

Inputs

Outputs

Training Function

Transfer Function

No. of epochs to train

Performance goal

5 real valued variables [-1,1]

8 bipolar valued variables [1,0,-1]

Levenberg-Marquardt

Hyperbolic sigmoid

100

1e-5

!

!

!

Easy implementation

Slow training

First tool available

Inputs

Outputs

Training Function

Transfer Function

No. of epochs to train

Performance goal

5 real valued variables [-1,1]

24 binary valued variables [1,0]

Back-propagation

Sigmoid

20000

1e-3

!

!

!

Easy implementation

Faster training

Limited training
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Present the input patterns P and targets T  

inputs = P 

targets = T 

 

Create a two-layer feed-forward network  

for iteration =1:50 

 for Number of Neurons in Layer2 = 0:100 

       for Num Neurons Layer1 = fixed at optimum number 

              net = newff([Inputs range],[No units of each layer],{‘transfer function 

for    each layer'}); 

   

Network Training  

      net.trainParam.epochs = 50; 

[net,tr,Yo,E] = train(net,P,T);   

end 

 end 

      end 

 

Network Simulation  

Present the input patterns P to simulate the network.  

inputs = P 

   [Y] = sim(net,P)  
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Mechanical Properties [0,1] Chemical Formulae (pphp) 

Hardness Density
Tensile 

Strength
Elongation

Compression 

Set

Polyether 

Polyol 1

Polyether 

Polyol 2

Amine 

Crosslinker

Amine 

Catalyst 1

Amine 

Catalyst 2
Silicone Water Index 

Query 0.009 0.218 0.413 0.675 0.883 ? ? ? ? ? ? ? ?

Retrieved Case 0.007 0.211 0.412 0.686 0.908 92.95 1.5 0 0.3 0.75 0.75 3.75 85

Difference 0.002 0.007 0.001 -0.011 -0.025

92.95 1.5 0 0.3 0.75 0.75 3.75 85

Neural Network decrease no change increase increase decrease no change no change no change

But how to apply these changes?
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Calculate for each attribute i, 

 

for i=1: p  

 IF Adapt1 (i) == Adapt2 (i)  // i.e. adapted responses are the same e.g. decrease  

   

  New_Adjusted (i) = Adapt1 (i)*f1 + Adapt1 (i)*f2 

 ELSE  

  New_Adjusted (i) = Adapt1 (i) 

 

// NOTE  

//  Adapt1 (i): NN value for the retrieved case 1; f1= relevant factor for the retrieved case 1.  

//  Adapt2 (i): NN value for the retrieved case 1; f2= relevant factor for the retrieved case 2. 

//  New_Adjusted (i): adjusted values for attribute i. 
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Euclidean 

distance

Polyether 

polyol 1

Polyether 

polyol 2

Amine 

Crosslinker

Amine 

Catalyst 1

Amine 

Catalyst 2
Silicone Water Index

Retrieved 

Case 1 0.142
decrease no change increase increase no change no change no change no change 

Retrieved 

Case 2 0.189
decrease no change increase no change no change no change increase decrease

Relevance 

factor

Retrieved 

Case 1 0.572
92.95 1.5 0 0.3 0.75 0.75 3.75 85

Retrieved 

Case 2 0.428
93.1 1.5 0 0.9 0.75 0.75 3 110

Predicted Formulation Using Neural Network Ourtput data and Relevance factor f

Polyether 

polyol 1

Polyether 

polyol 2

Amine 

Crosslinker

Amine 

Catalyst 1

Amine 

Catalyst 2
Silicone Water Index

Adapted 

Case
92.95 1.5 0 0.3 0.75 0.75 3.75 85

Retrieved Formulation [CBR output data]

Adapt case [neural network output data]
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