Alternation of the spin-orbit coupling in the 2 Pi ground state of $\mathrm{HCnS} \mathrm{n}=1-12$ radicals

Alexander Mitrushchenkov, Roberto Linguerri, Pavel Rosmus, John P. Maier

- To cite this version:

Alexander Mitrushchenkov, Roberto Linguerri, Pavel Rosmus, John P. Maier. Alternation of the spinorbit coupling in the 2 Pi ground state of $\mathrm{HCnS} \mathrm{n}=1-12$ radicals. Molecular Physics, 2009, 107 (15), pp.1549-1553. 10.1080/00268970902973842 . hal-00513294

HAL Id: hal-00513294

https://hal.science/hal-00513294

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Alternation of the spin-orbit coupling in the 2 Pi ground state of $\mathrm{HCnS} \mathbf{n = 1 - 1 2}$ radicals

Journal:	Molecular Physics
Manuscript ID:	TMPH-2009-0103.R1
Manuscript Type:	Research Note
Date Submitted by the Author:	06-Apr-2009
Complete List of Authors:	Mitrushchenkov, Alexander; Universite Paris-Est Marne la Vallee, Chimie Theorique Linguerri, Roberto; Universite Paris-Est Marne la Vallee, Chimie Theorique Rosmus, Pavel; Universite Paris-Est Marne la Vallee, Chimie Theorique Maier, John P.; Universität Basel
Keywords:	spin-orbit coupling, HCnS radicals
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.	
articlerev.tex	

Alternation of the spin-orbit coupling in the ${ }^{2} \Pi$ ground state of $\mathbf{H C}_{n} \mathbf{S} n=1-12$ radicals

A. Mitrushchenkov, R. Linguerri, and P. Rosmus Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 5 boulevard Descartes, 77454 Marne-la-Vallée CEDEX 2, France.
J. P. Maier
Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.

(Dated: April 6, 2009)

Abstract

First-order calculations of spin-orbit constants, dipole moments and carbon-sulphur distances have been performed for the $\mathrm{HC}_{n} \mathrm{~S} n=1-12$ radicals in the ${ }^{2} \Pi$ electronic ground state. It is found that these molecular properties alternate with the even or odd number of carbon atoms in the chains and the spin-orbit constant $\mathrm{A}_{S O}$ is around $-300 \mathrm{~cm}^{-1}$ for $n=$ even and about +120 cm^{-1} for $n=$ odd throughout the series. This agrees with the experimentally determined ~-270 cm^{-1} for $\mathrm{HC}_{2} \mathrm{~S}$, but the theoretically predicted $\mathrm{A}_{S O}$ are much larger than the values given for $\mathrm{HC}_{3} \mathrm{~S}, \mathrm{HC}_{4} \mathrm{~S}$ from a fit of their mm-wave spectra. Also in the analysis of the rotational spectra of $n=4-8$ too low values were assumed.

The $\mathrm{HC}_{n} \mathrm{~S}(n=1-12)$ molecules in their $\mathrm{X}^{2} \Pi$ electronic ground state have two types of HOMO's: π^{3} or π^{1} depending on the even or odd number of carbon atoms in the chain. The alternation of the electronic configuration implies two different types of molecular properties depending on the number of carbon atoms. Because of the size of the chains first principle calculations can provide only semi-quantitative results. These are nevertheless useful as a guide for the analysis of experimental data.

The ground electronic states of the $\mathrm{HC}_{n} \mathrm{~S}$ radicals ($n=2-8$) have been studied by millimeter wave spectroscopy $[1-4]$. These show that the lowest doublet rotational pattern is regular (i.e. the ${ }^{2} \Pi_{1 / 2}$ component is the lowest in energy) for $n=$ odd but inverted for $n=$ even (${ }^{2} \Pi_{3 / 2}$ being the lowest). The linear structures of the $\mathrm{HC}_{n} \mathrm{~S}$ radicals in their ground states contrast with the isovalent $\mathrm{HC}_{n} \mathrm{O}(n=1-4)$ species, in which either the $\mathrm{A}_{0}(n=$ odd $)$ or $\mathrm{A}_{00}(n=$ even $)$ Renner-Teller components are the lowest bent electronic states. In addition the ${ }^{2} \Pi-X^{2} \Pi$ transitions in their electronic spectra[5] have been observed by a number of methods: $\mathrm{HC}_{2} \mathrm{~S}, \mathrm{HC}_{4} \mathrm{~S}$, and $\mathrm{HC}_{6} \mathrm{~S}$ by fluorescence[6-8], $\mathrm{HC}_{6} \mathrm{~S}$ by resonant two-color two-photon ionization[9], and $\mathrm{HC}_{8} \mathrm{~S}$ and $\mathrm{HC}_{10} \mathrm{~S}$ by cavity ringdown absorption spectroscopy [9]. These data show that the wavelengths of the $\mathrm{A}^{2} \Pi-\mathrm{X}^{2} \Pi$ origin band in the $\mathrm{HC}_{6} \mathrm{~S}, \mathrm{HC}_{8} \mathrm{~S}$, and $\mathrm{HC}_{10} \mathrm{~S}$ spectra exhibit a near linear relationship with chain length.

The analysis of the spectral data of multidimensional Renner-Teller open shell systems is very demanding. For instance, several close low-lying Renner-Teller bending levels, anharmonic polyads and torsion modes make the assignments of the spin-orbit coupled states a challenge. Several effective Hamiltonians have been developed to interpret the spectra of the tetra-atomic radical $\mathrm{HC}_{2} \mathrm{~S}$ and so far the most detailed theoretical approach including Renner-Teller is that of Perić et al.[10]. Only recently a new variational method has been reported and applied to acetylene radical cation[11]. For open-shell Renner-Teller molecules with a larger number of atoms the determination of the electronic spin-orbit constant $\mathrm{A}_{S O}$ is difficult.

In a recent study of the $\mathrm{A}^{2} \Pi_{3 / 2}-\mathrm{X}^{2} \Pi_{3 / 2}$ electronic transition of $\mathrm{HC}_{4} \mathrm{~S}$ by cavity ringdown spectroscopy using a supersonic slit-jet expansion within a discharge[12], it was concluded that the spin-orbit splitting in the ground state can not be about $-33 \mathrm{~cm}^{-1}$ as indicated earlier[2]. In the cavity ringdown measurements at different temperatures, $\mathrm{A}_{S O}$ of the order of magnitude of $-270 \mathrm{~cm}^{-1}$ was consistent with the observations. It should be pointed out that $\mathrm{A}_{S O}$ of $-33 \mathrm{~cm}^{-1}$ in the ground state was not directly measured in the mm wave spec-
trum, but was used in the fit of the data, in analogy with $\mathrm{HC}_{3} \mathrm{~S}$. This discrepancy prompted the current ab initio calculation of the spin-orbit constant in the whole homologous series, $\mathrm{HC}_{n} \mathrm{~S} n=1-12$.

In Table I results are given for the spin-orbit constants of the smaller $\mathrm{HC}_{n} \mathrm{~S} n=1-4$ radicals calculated with different basis sets[13] by HF, CASSCF[14] or MRCI[15] methods using the Breit-Pauli formulation as coded in MOLPRO[16]. Depending on the size of the molecule, either full-valence or very large active spaces have been used. The resulting CASSCF expansions were used as reference wavefunctions in subsequent MRCI computations. The geometric parameters have been taken from the published data (Table I) and from geometry optimisation at the open-shell SCF/cc-pVTZ level of the linear molecular structures (Table II). The ground state configurations given in Table I are found to be the dominating ones in all correlated wavefunctions.

We have performed a series of calculations of the spin-orbit splitting in the ${ }^{3} \mathrm{P}$ ground state of the sulphur atom. The atomic orbital basis sets used in these computations are the cc-pVTZ, cc-pVQZ, cc-pV5Z and the corresponding augmented basis sets[13]. The experimental energy difference between the ${ }^{3} P_{1}$ and ${ }^{3} P_{2}$, and the ${ }^{3} P_{0}$ and ${ }^{3} P_{1}$ components are 396 and $178 \mathrm{~cm}^{-1}$, respectively. The neglect of the core-valence contributions in the RHF and full-valence CASSCF wavefunctions results in deviations from the experimental values up to $30 \mathrm{~cm}^{-1}$. The influence of the ${ }^{1} D$ and ${ }^{1} S$ states on the spin-orbit splitting in the ground state has been investigated as well and the deviations from the full-valence-CASSCF computations with the ${ }^{3} P$ only are calculated to be few cm^{-1}. With the aug-cc-pV5Z basis set we obtained $372 \mathrm{~cm}^{-1}$ (all states) and $366 \mathrm{~cm}^{-1}\left({ }^{3} P\right.$ only) for the ${ }^{3} P_{1}-{ }^{3} P_{2}$ splitting and $171 \mathrm{~cm}^{-1}$ (all states) and $183 \mathrm{~cm}^{-1}$ (${ }^{3} P$ only) for the ${ }^{3} P_{0^{-}}{ }^{3} P_{1}$ splitting. For semi-quantitative trends of molecular properties in $\mathrm{HC}_{n} \mathrm{~S}$ radical chains the present approach is expected to give results with an accuracy better than about $10-30$ percent.

In Figure 1 the α spin densities are plotted. The densities within the thiocarbonyl group strongly alternate, mainly due to corresponding neighboring C-C moiety. This result leads to n dependent even/odd saw-tooth pattern of molecular properties such as the spin-orbit constants (Tables I, II and Figure 2), thiocarbonyl distances (Table II and Figure 2) or dipole moments (Figure 2). The spin densities also suggest different carbenoid type reactivity along the carbon chains. For the species with odd number of carbons the density is larger at the atom next to the sulphur. Hence the size of $\mathrm{A}_{S O}$ is mainly determined by the
spin-orbit coupling at sulphur atom and is calculated for any n as being larger than -150 cm^{-1}.

The present calculations show that for the species $\mathrm{HC}_{n} \mathrm{~S}$ with $n=$ even $\mathrm{A}_{S O}$ is around $-300 \mathrm{~cm}^{-1}$, whereas for $n=$ odd it is $+120 \mathrm{~cm}^{-1}$ in magnitude. This is of significance in view of the analysis of the mm-wave spectra which have been measured for the species $\mathrm{HC}_{n} \mathrm{~S} n=2-8$. In the case of $\mathrm{HC}_{2} \mathrm{~S}$ the value $\mathrm{A}_{S O}=-185 \mathrm{~cm}^{-1}$ was obtained by fitting the rotational transitions observed for both the ${ }^{2} \Pi_{3 / 2}$ and ${ }^{2} \Pi_{1 / 2}$ components[17]. In a latter investigation the intensity variation of the lines within these two components led to $\mathrm{A}_{S O}=-270 \mathrm{~cm}^{-1}[18]$, in agreement with the presently ab initio calculated value. According to the authors of the latter study, the quality of the fit to the experimental lines is the same whether $\mathrm{A}_{S O}=-270$ or $-185 \mathrm{~cm}^{-1}$ is used. The analysis of the ${ }^{2} \Pi-\mathrm{X}^{2} \Pi$ electronic spectrum of $\mathrm{HC}_{2} \mathrm{~S}$ also led to the larger value of $-259 \mathrm{~cm}^{-1}$ [19].

In the mm-wave spectrum of $\mathrm{HC}_{3} \mathrm{~S}$, transitions within both spin-orbit manifolds were observed. By means of a fit of the appropriate Hamiltonian a spin-orbit splitting in the $X^{2} \Pi$ ground state of $+44 \mathrm{~cm}^{-1}$ was inferred $[3]$. This is much smaller than the $+120 \mathrm{~cm}^{-1}$ constant calculated here. It can be excluded that the ab initio values are too big by a factor of 3 . Quenching of the spin-orbit by Renner-Teller is possible but this would be an unusually large effect. It is thus suggested that the determination of the $\mathrm{A}_{S O}$ from the fit of the lines in the rotational spectrum is too insensitive to give a reliable value. In all the other studied species $\mathrm{HC}_{n} \mathrm{~S} n=4-8$ the fits of the rotational line positions assumed the $\mathrm{A}_{S O}$ of +43 or $-33 \mathrm{~cm}^{-1}$, for $n=$ odd or $n=$ even respectively [4]. The specific case of $\mathrm{HC}_{4} \mathrm{~S}$ was discussed in connection with the ${ }^{2} \Pi-X^{2} \Pi$ electronic spectrum of $\mathrm{HC}_{4} \mathrm{~S}[4]$. There it was argued that the observations are consistent with $\mathrm{A}_{S O}-270$ but not $-33 \mathrm{~cm}^{-1}$ and furthermore the re-fit of the rotational spectrum with $\mathrm{A}_{S O}=-270 \mathrm{~cm}^{-1}$ gave agreement not significantly different to the original work. The results of the present study show that the values of $\mathrm{A}_{S O}$ of around $+120 \mathrm{~cm}^{-1}$ and $-270 \mathrm{~cm}^{-1}$ should be used for the $n=$ even or odd chains respectively. The results of this note are also expected to reflect the pattern in some other carbon-heteroatom chains.

Acknowledgements

The work in Basel has been supported by the Swiss National Science Foundation (project 200020-124349/1).
[1] E. Kim, H. Habara, and S. Yamamoto, J. Mol. Spectrosc. 212, 83 (2002).
[2] Y. Hirahara, Y. Ohshima, and Y. Endo, J. Chem. Phys. 101, 7342 (1994).
[3] M. C. McCarthy, J. M. Vrtilek, E. W. Gottlieb, F.-M. Tao, C. A. Gottlieb, and P. Thaddeus, Astrophys. J. 431, L127 (1994).
[4] V. D. Gordon, M. C. McCarthy, A. J. Apponi, and P. Thaddeus, Astrophys. J. Suppl. S. 138, 297 (2002).
[5] N. J. Reilly, G. C. Cupitt, S. H. Kable, and T. W. Schmidt, J. Chem. Phys. 124, 194310 (2006), and references therein.
[6] M. Nakajima, Y. Sumiyoshi, and Y. Endo, Chem. Phys. Lett. 351, 359 (2002).
[7] S.-G He and D. J. Clouthier, J. Chem. Phys. 123, 014317 (2005).
[8] M. Nakajima, Y. Sumiyoshi, and Y. Endo, Chem. Phys. Lett. 355, 116 (2002), and references therein.
[9] A. Denisov, T. W. Schmidt, A. E. Boguslavskiy, H. Ding, M. Araki, and J. P. Maier, Int. J. Mass Spectrom. 233, 131 (2004).
[10] M. Perić, C. M. Marian, and S. D. Peyerimhoff, J. Chem. Phys. 114, 6086 (2001), and references therein.
[11] L. Jutier, C. Léonard, and F. Gatti, J. Chem. Phys., (2009) in press.
[12] F. J. Mazzotti, R. Chauhan, Z. Jamshidi, M. Tulej, P. P. Radi, and J. P. Maier, Mol. Phys. 106, 2709 (2008).
[13] T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989); D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
[14] H.-J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985); P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985).
[15] H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988); P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
[16] MOLPRO, version 2008.1, a package of ab initio programs, H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schtz, and others, see http://www.molpro.net.
[17] J. M. Vrtilek, C. A. Gottlieb, E. W. Gottlieb, W. Wang, and P. Thaddeus, Astrophys. J. 398, L73 (1992).
[18] J. Tang and S. Saito, J. Chem. Phys. 105, 8020 (1996).
[19] S. -G. He and D. J. Clouthier, J. Chem. Phys. 120, 8544 (2004).
[20] Y. Liu, C. Duan, J. Liu, L. Wu, C. Xu, Y. Chen, P. A. Hamilton, and P. B. Davies, J. Chem. Phys. 116, 9768 (2002).
[21] J. Senekowitsch, S. Carter, P. Rosmus, and H.-J. Werner, Chem. Phys. 147, 281 (1990).

${ }^{a}$ The active space is specified by the number of occupied and closed-shell orbitals in the A_{1}, B_{1} and B_{2} irreducible representations of $C_{2 v}$ point group.
${ }^{b}$ Ref. [20].
${ }^{c}$ Geometry at the barrier to linearity. Ref.[21].
TABLE II: Spin-orbit coupling constants $\mathrm{A}_{S O}\left(\mathrm{~cm}^{-1}\right)$ and optimized bond distances (\AA), calculated at the HF/cc-pVTZ level, for the lowest
${ }^{2} \Pi$ state of CS^{+}and linear $\mathrm{HC}_{n} \mathrm{~S}(n=1-12)$

System				$\mathrm{A}_{\text {SO }}$					System				$\mathrm{A}_{S O}$
CS ${ }^{+}$				-302					$\mathrm{HC}_{7} \mathrm{~S}$				120
HCS				136					$\mathrm{HC}_{8} \mathrm{~S}$				-309
$\mathrm{HC}_{2} \mathrm{~S}$				-302					$\mathrm{HC}_{9} \mathrm{~S}$				120
$\mathrm{HC}_{3} \mathrm{~S}$				121					$\mathrm{HC}_{10} \mathrm{~S}$				-310
$\mathrm{HC}_{4} \mathrm{~S}$				-311					$\mathrm{HC}_{11} \mathrm{~S}$				120
$\mathrm{HC}_{5} \mathrm{~S}$				121					$\mathrm{HC}_{12} \mathrm{~S}$				-310
$\mathrm{HC}_{6} \mathrm{~S}$				-309									
n	$r_{\mathrm{C}_{n} \mathrm{~S}}$	$r_{\mathrm{HC}_{1}}$	$r_{\mathrm{C}_{1} \mathrm{C}_{2}}$	$r_{\mathrm{C}_{2} \mathrm{C}_{3}}$	$r_{\mathrm{C}_{3} \mathrm{C}_{4}}$	$r_{\mathrm{C}_{4} \mathrm{C}_{5}}$	$r_{\mathrm{C}_{5} \mathrm{C}_{6}}$	$r_{\mathrm{C}_{6} \mathrm{C}_{7}}$	$r_{\mathrm{C}_{7} \mathrm{C}_{8}}$	$r_{\mathrm{C}_{8} \mathrm{C}_{9}}$	$r_{\mathrm{C}_{9} \mathrm{C}_{10}}$	$r_{\mathrm{C}_{10} \mathrm{C}_{11}}$	$r_{\mathrm{C}_{11} \mathrm{C}_{12}}$
1	1.531	1.058											
2	1.664	1.054	1.189										
3	1.537	1.054	1.196	1.340									
4	1.653	1.054	1.184	1.377	1.194								
5	1.538	1.054	1.186	1.369	1.205	1.325							
6	1.650	1.054	1.183	1.379	1.187	1.371	1.196						
7	1.537	1.054	1.183	1.377	1.190	1.361	1.208	1.322					
8	1.650	1.054	1.183	1.379	1.187	1.373	1.188	1.370	1.196				
9	1.537	1.054	1.183	1.379	1.187	1.371	1.192	1.360	1.208	1.321			
10	1.650	1.054	1.183	1.379	1.187	1.374	1.188	1.372	1.189	1.370	1.196		
11	1.537	1.054	1.183	1.379	1.187	1.373	1.188	1.370	1.192	1.359	1.209	1.320	
12	1.650	1.054	1.183	1.379	1.186	1.374	1.188	1.373	1.188	1.372	1.189	1.370	1.196

Figure Captions:

Figure 1: Contour cuts of the electron spin density distribution in CS^{+}radical cation and $\mathrm{HC}_{n} \mathrm{~S}$ chain radicals $n=1-4$. Spin densities are obtained from CASSCF wavefunctions (Table I).

Figure 2: Molecular properties calculated at the $\mathrm{HF} / \mathrm{cc}-\mathrm{pVTZ}$ level for $\mathrm{HC}_{n} \mathrm{~S}$ chain radicals ($n=1-12$).
a) Electron spin-orbit coupling constants in cm^{-1}. Values in the upper and lower part refer to regular and inverted ${ }^{2} \Pi$ ground states respectively.
b) Dipole moments in debye.
c) Equilibrium carbon-sulfur bond lengths in ångström.

[1] A. Mitrushchenkov et al.

[^0]
[^0]: [2] A. Mitrushchenkov et al.

