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The interaction between two parallel charged plates in ionic solution is a general starting
point for studying colloidal complexes. An intuitive expression of the pressure exerted on the
plates is usually proposed, which includes an electrostatic plus an osmotic contribution. We
present here an explicit and self-consistent derivation of this formula in the only framework
of the Poisson-Boltzmann theory. We also show that, depending on external constraints, the
correct thermodynamic potential can differ from the usual PB free energy. For asymmetric,
oppositely charged plates, the resulting expression predicts a non trivial equilibrium position
with the plates separated by a finite distance. The depth of this energy minimum is decisive
for the stability of the complex. It is therefore crucial to obtain its explicit dependence on
the plates charge densities and on the ion concentration. It happens that analytic expressions
for the position and depth of the energy minimum have been derived in 1975 by Ohshima
[Ohshima H., Colloid and Polymer Sci. 253, 150-157 (1975)] but, surprisingly, these
important results seem to be overlooked today. We retrieve these expressions in a simpler
formalism, more familiar to the physics community, and give a physical interpretation of the
observed behavior.
Keywords: Poisson-Boltzmann theory, parallel plates, oppositely charged, colloid complex,
energy profile.

1. Introduction

Poisson-Boltzmann theory is a statistical mean field theory that characterizes
coarse-grained quantities such as the average particle distribution function and
the electrostatic potential together with thermodynamic variables in systems com-
posed of many charged and point like particles at thermal equilibrium. Despite
the technical advances in the dilute and strong coupling regime [1–3], the statisti-
cal modeling of real solutions – often in an intermediate regime – is still an open
problem [4]. The PB approximation remains a good reference theory for describing
the essential features of electrolyte solutions at thermal equilibrium. It allows to
model plasmas in the equilibrium regime, colloidal suspensions through the famous
Cell Model [5], or polyelectrolytes in solution. Moreover, the increasing interest for
the biological mechanisms at the sub-cellular scale leads the community to deal
with the electrostatic interaction of biological objects in solution, as for the case
of protein-protein interaction [6], protein-DNA interaction [7], DNA-membrane in-
teraction [8], etc.

In the case where one is interested in the effective interaction between two charged
bodies surrounded by mobile charges, it is frequently useful, given the difficulty of
the equations that have to be solved, to rely on a one dimensional problem to
capture the physics of the system [9]. This essentially amounts to focus on the
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interaction between two parallel charged plates in solution. Besides, approximated
methods have been developed in the past century to correct the 1D problem as to
take into account the geometric effects in the interaction of two mesoscopic bodies,
thus increasing all the more the interest of one dimensional models [10–14].

In general, the main quantities to be derived in the one dimensional case are (i)
an expression for the free energy of the system in the framework of the Poisson-
Boltzmann approximation, (ii) a differential equation for the mean electrostatic
potential and, in order to evaluate the actual interaction between the two plates,
(iii) an explicit expression for the pressure exerted on each surface.

Various derivations of the Poisson-Boltzmann approximation actually exist. A
good review of many ways to obtain the Poisson-Boltzmann equation has been
presented by Lau [15] including a saddle point approximation in a path integral
formulation (see also [4]). Less straightforward derivations are also available via
the Density Functional Theory (DFT)[16–18] or exact equations hierarchy [19].
Finally a less formal procedure has been proposed by Deserno et al., in the field of
colloid physics, to obtain mean field quantities for charged systems [5].

Most presentations, despite their different approaches, lead to a same formula
for the pressure, which amounts to the sum of a purely electrostatic plus a purely
osmotic contribution. One merit of the Poisson-Boltzmann approximation is indeed
that this formula exactly matches the boundary-density theorem at the Wigner-
Seitz cell boundary [20] as well as the contact value theorem on the charged plates
[21]. The first question addressed in this paper is thus whether or not this intuitive
expression for the inter-plate pressure can be directly and exactly derived from
the Poisson-Boltzmann free energy, without need for additional arguments and
for any boundary conditions. After having introduced the system and its Poisson
Boltzmann free energy in Section 2, we derive in Section 3 the expected expression
for the pressure and show that a particular caution should be taken in the choice
of the right statistical ensemble when different “external” constraints are imposed
to the plates, as e.g. at constant potential or at constant charge conditions.

The pressure formula predicts the presence of a non trivial equilibrium distance
for plates of opposite and asymmetric charge densities. This has been shown in
the pioneering work of Parsegian and Gingell [9] who used the linear Debye-Hükel
theory in the case of high salt concentrations, and more recently, by Lau and Pincus
[22] in the framework of the nonlinear Poisson-Boltzmann equation restricted to
the case of no added salt.

The consequences of such an equilibrium on the effective behaviour of charged
bodies in solution can only be assessed by a study of the corresponding energy
profile, i.e. a comparison of the energy well depth to the thermal energy. If the
energy gain at the minimum is small with respect to kBT , the two charged bod-
ies will not stabilize in the bound complex and will behave as in the absence of
electrostatic interaction. Quite surprisingly, this aspect of the problem is rarely
addressed in the contemporary literature. Some authors [23] discuss in details how
the equilibrium distance (the limit between attraction and repulsion) depends on
the plate charges and on the salt conditions, but do not address the question of the
depth of the free energy well. Nevertheless, very nice analytic expressions for both
the position and the energy values at the equilibrium position have been obtained
in 1975 by Ohshima [24]. The paper by Ohshima deals with the more complex case
of two parallel plates of given thickness and dielectric constant, thus leading to a
rather complex notation. Nonetheless, the important results of Ref. [24] are worth
being reproduced today at least in the more usual case of two charged surfaces, in
that they represent an exact and synthetic description of their interaction whatever
their charges and the ionic strength of the solution.
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In order to illustrate the system behavior in the simple but crucial case of mono-
valent solutions, in Section 4 we first solve explicitly the Poisson-Boltzmann prob-
lem and obtain the pressure and energy profiles. Then, we focus on the origin of
the energy minimum and derive an expression for its position and depth in the
framework of the Poisson-Boltzmann theory. We check the agreement between the
analytic expression and the behaviour obtained by direct numerical integration of
the Poisson-Boltzmann equation. Finally, we discuss the physical origin of the re-
sults by investigating the role of the different parameters, as the plate charges and
the salt ions and counter-ions.

2. The Poisson-Boltzmann free energy of the two plates system

We are interested in the thermodynamic properties of a system composed of a fixed
distribution of charges and of N point-like mobile ions in a solution at temperature
T . The system is in contact with an infinite salt reservoir, so that the total number
of ions N is not fixed. ssss The valence, mass, position and momentum of the single
ion indexed by “i” are denoted by zi, mi, ri and pi, respectively. For a given N ,
the Hamiltonian of the system can be written as follows:

H({r}, {p}) = Hkin +Hpot =

=
N
∑

i=1

p2
i

2mi
+

1

2

N
∑

i=1

zieφ(ri) +
1

2

∫

eσ(r)φ(r)d3r (1)

where σ is the fixed volumic charge distribution in unit of the elementary charge
e and ε = ε0εr is the dielectric constant of the solvent. The function φ(r) is the
electrostatic potential,

φ(r) ≡
N
∑

j=1

zje

4πε|r − rj |
+

∫

σ(r ′)e

4πε|r − r ′|d
3r′

=

p
∑

α=1

∫

ezαnα(r
′)

4πε|r − r′|d
3r′ +

∫

σ(r ′)e

4πε|r − r ′|d
3r′ , (2)

where we introduced the number and ion density of the species α, respectively Nα

and nα(r) ≡
∑Nα

i=1 δ(r − ri), with
∑p

α=1Nα = N .
We now specify the geometry of our system. We consider two semi-infinite plane

surfaces, uniformly charged and separated by a distance L with the electrolyte
solution between them. The surfaces are positioned respectively at x = 0 and
x = L. Each surface separates the solution from a plate of thickness d and dielectric
constant εp (see Figure 1).

If the plates are conductors (εp = ∞), the electric field inside the plates is zero.
Similarly, for dielectric plates of infinite thickness (d = ∞), the electric field van-
ishes in the dielectric, thanks to the electroneutrality of the whole system (charged
surfaces plus solution). We can therefore reasonably assume that, for thick enough
plates, the same conditions hold, as indeed observed either analytically [25] or nu-
merically [26, 27] (The case of thin plates should be treated differently, as discussed
in [25–27]). In all these cases, the contribution to the system free energy of the re-
gion inside each plate vanishes. Furthermore, as we will see, the contribution of the
solution beyond the outer faces of the two plates can be easily evaluated. In the
following, we will therefore limit our system to the region between the two facing
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surfaces. In order to take into account properly the boundaries at x = 0 and x = L
we introduce a parameter h for the calculations and then take the limit for h→ 0.

The fixed charge distribution in our geometry is then

σ(x) = σ0δ(x) + σLδ(x− L) (3)

where σ0 and σL correspond to the surface charge densities of the two plates. Only
the x coordinate is relevant due to the translation invariance along the z and y
directions. In the following, we will focus on the volume delimited by a given finite
surface A of the two facing plates.

In the presence of an ion reservoir the natural statistical ensemble is the grand
canonical one. In this condition, the mean number of ions included between the
two surfaces at equilibrium is of course a function of the plate separation L. Nev-
ertheless, for a given plate separation, the grand canonical mean value 〈Nα〉(L) is
fixed. This allows us to work, at given L, in the canonical ensemble, i.e. at fixed
Nα, provided Nα is opportunely chosen, i.e. Nα = 〈Nα〉. This ensures indeed the
statistical equivalence between the two ensembles at the thermodynamic limit.

Then, we can obtain the free energy of the system from the system partition
function Z, as F ≡ −kBT lnZ. The kinetic part Zkin can be easily calculated

[28] and reads Zkin =
∏p
α=1(Λ

−3Nα

α /Nα!), where Λα ≡ h (2πmαkBT )−1/2 is the de
Broglie thermal wavelength. The potential part of the partition function is not that
simple to compute, because the electrostatic part of the Hamiltonian is a function
of the position of all ions and cannot reduce to a product of uncorrelated functions.
The simplest method to solve the problem is to rely on a mean field approximation.
The Gibbs-Bogoliubov inequality allows one to find an upper bound for the free
energy from an average of the Hamiltonian with a trial distribution P0(x) plus
a Shannon type entropy built from the same distribution P0(x) [5]. For a given
surface A, one gets therefore the following expression for the free energy functional
per unit surface – that is the Poisson Boltzmann free energy functional:

FPB [{n0}]
A

= lim
h→0

1

2

∫ L+h

−h
ρ0(x)φ0(x)dx (4)

+ kBT

p
∑

α=1

∫ L+h

−h

{

n0
α(x)

(

ln
(

Λ3
αn

0
α(x)

)

− 1
)}

dx ,

where we have introduced n0
α(x) ≡ NαP0(x) following the normalization relation

Nα ≡ A
∫

n0
α(x)dx, and the global charge density ρ0 defined by

ρ0(x) =

p
∑

α=1

zαen
0
α(x) + eσ(x) . (5)

We recognize, in the first term of this functional, the electrostatic part of the en-
ergy of the system, while the second term corresponds to the entropic contribution
of an ideal gas of ions.

We have therefore to minimize the functional FPB[{n0}]/A with respect to the
relevant functions n0

α. Moreover, the minimization should be performed under the
condition

A

∫ L+h

−h
n0
α(x) dx = 〈Nα〉 , (6)
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this leading to define a new energy functional per unit area,

fPB =
FPB[{n0}]

A
− lim
h→0

p
∑

α=1

µα

∫ L+h

−h
n0
α(x) dx (7)

where µα is a Lagrange multiplier and the integral equals Nα/A.
The minimization leads to the following relation between the mean field ion

distributions nα minimizing fPB and the corresponding mean field potential φ(x):

nα(x) = Λ−3
α eβµαe−βezαφ(x) . (8)

The reader will recognize in this result an explicit expression of the Boltzmann
law, here rigorously re-obtained in the framework of the mean field approach.

The previous Equation still requires a closure relationship in order to determine
the µα parameters. This can be obtained by replacing nα(x) from Equation (8)
into Equation (6). Then, by performing the usual derivation of the mean values
〈Nα〉 in the grand canonical ensemble, one can show that the ensemble equivalence
is ensured by identifying the Lagrange multiplier µα to the chemical potential of
ions of type α in the salt reservoir, i.e. µα = kBT ln(nb,αΛ

3
α) (where nb,α = Nα/V

is the ion concentration).
Together with Equation (2), giving the electric field as a function of the charge

distribution in the system, the previous Equation (8) constitute the solution of the
problem. Equation (8) allows to obtain a simpler expression for the potential φ(x)
in terms of the free and fixed charge distributions in the system. Recalling that the
electric potential and the charge density are linked by the Poisson equation, i.e.

∆φ0(r) = −ρ
0(r)

ε
(9)

and combining with Equation (8), we obtain indeed an ordinary differential equa-
tion for the adimensional mean field potential ψ(x) = βeφ(x). The resulting
Poisson-Boltzmann (PB) equation reads in our one-dimensional case:

d2ψ(x)

dx2
= −4π`B

p
∑

α=1

zαnα(x), x ∈ lim
h→0

[+h,L− h] (10)

with the boundary conditions

lim
h→0

dψ

dx

∣

∣

∣

∣

+h

= −4π`Bσ0 ,

lim
h→0

dψ

dx

∣

∣

∣

∣

L−h

= 4π`BσL . (11)

where `B ≡ e2/4πεkBT denotes the Bjerrum length and where we used electroneu-
trality of the considered system to get the boundary condition.

Before going on, we should note that it is possible to get a constant of motion C

by multiplying (10) by dψ
dx and then integrating in the [+h,L− h] range. One gets

1

2

(

dψ

dx

)2

− 4π`B

p
∑

α=1

nα(x) = C . (12)
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This result will have a crucial role in the definition of the pressure between the two
plates as we will see in the next section.

In order to compute a general expression for the pressure from a thermodynamic
definition, we have now to evaluate the PB functional free energy at n0

α(x) = nα(x).
The result, written in an equivalent but more practical form, will be identified with
the system free energy. Indeed, at the h→ 0 limit, the integrals of any non diverging
function in the two external regions vanish. Thus, after an integration by parts for
the electrostatic contribution, we obtain for the PB free energy expressed in terms
of the adimensional field ψ:

βfPB[{n}, σ] = lim
h→0

{

1

8π`B

∫ L−h

+h

(

dψ

dx

)2

dx (13)

+

p
∑

α=1

∫ L−h

+h
nα(x)

[

ln
(

Λ3
αnα

)

− 1 − βµα
]

dx
}

,

where we used Eqs. (11).

3. Determination of the pressure

We can now address the problem of finding an explicit expression for the pressure
Π on the plates, according to the Poisson-Boltzmann theory. In the case of two
constant charged densities on the plates, i.e. two plates whose charge densities
are fixed once for ever, the plates self energy is independent of L and the usual
derivation of the pressure from the free energy can therefore be used:

Π ≡ −A ∂fPB[{nα}]
∂V

∣

∣

∣

∣

σ,µα

= − ∂fPB[{nα}]
∂L

∣

∣

∣

∣

σ,µα

. (14)

To take into account the presence of the salt reservoir, we take the derivatives in
the previous Equation at constant µα.

To facilitate the calculation, let introduce the adimensional variable ξ = x/L,

[15] and define a rescaled electric field E for the adimensional potential, E ≡ −∂ψ
∂x .

We then get directly from (10)

p
∑

α=1

zαnα =
1

4π`B

1

L

∂E
∂ξ

. (15)

The entropic part of (13) can be written as

sPB[{n}, σ] = lim
h→0

∫ 1−h

+h

(

− ψ

4π`B

1

L

∂E
∂ξ

−
p
∑

α=1

nα

)

Ldξ (16)

by using Equation (8). We can now take the derivative of Equation (16) with
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respect to L, and get

∂

∂L
sPB[{n}, σ] = lim

h→0

∫ 1−h

+h

[

− 1

4π`B

(

∂ψ

∂L

dE
dξ

+ ψ
∂

∂L

∂E
∂ξ

)

−L ∂

∂L

(

p
∑

α=1

nα

)

−
(

p
∑

α=1

nα

)

]

dξ

(17)

Finally, using again Equation (8) and recalling that nα are functions of x = ξL,
the derivative of the entropic term in the free energy, Equation (17), becomes

lim
h→0

∫ 1−h

+h

(

− 1

4π`B
ψ
∂

∂L

∂E
∂ξ

−
p
∑

α=1

nα

)

dξ

In the same way, we calculate the partial derivative of the electrostatic part of
Equation (13). Grouping the previous results and using Equation (12), one gets for
the pressure:

Π = − kBT

4π`B
C + lim

h→0

kBT

4π`B

[

ψ
∂E
∂L

]ξ=1−h

ξ=+h

(18)

In the present case of constant charge densities on the plates, the electric field at
the boundaries is independent of L and then the second term of Eq. (18) vanishes.
The final expression for the pressure is therefore:

Π = − kBT

4π`B
C = − kBT

8π`B

(

dψ

dx

)2

+ kBT

p
∑

α=1

nα(x) (19)

The latter result is quite intuitive since it represents the sum of the electrostatic
stress and the osmotic pressure. It is indeed widely used in the literature. However,
in the general case of non constant plate charge densities, the second term in Eq.
(18) is a priori non zero. Such a term arises for instance when the potential on the
plates is kept constant. Consider for instance the case of the pressure between the
two parallel plates of a capacitor. If, for a given distance L between the plates and
a given potential difference, we try to evaluate the pressure by differentiating the
energy of the capacitor CU2/2 with respect to L, then we get two different results
whether the differentiation is done at constant charge or at constant potential. Of
course the two derivations should give the same result since they refer to the same
state of the system. The explanation of this apparent paradox is actually quite
simple: when differentiating at fixed potential we include implicitly the energy
supplied by the generator to keep the potential difference constant while varying L.
Since this work only modifies the self energy of the plates and not their interaction,
we have to subtract this part from the result. We retrieve in this way the correct
result of the constant charge case [29].

In our case, one can easily realize that, at the boundaries, the expression ψ ∂E/∂L
is equivalent to ψ ∂σ/∂L and thus corresponds to the energy used to bring charges
to the plates when varying the distance L. Then, the second term that arises in
Eq.(18) is exactly the analogous of the generator term in the capacitor problem,
and appears only because, using Gibbs terminology, we don’t work in the correct
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statistical ensemble. Indeed Eq.(14) represents a very useful and systematic proce-
dure to get an expression for the pressure provided that the ensemble or equivalently
the effective potential is chosen carefully. For instance, in the case of constant po-
tential on the plates we have to make a functional Legendre transform to get the
relevant thermodynamic potential:

gPB[{n}, {ψ}b] = fPB[{n}, σ] − lim
h→0

∫ L+h

−h
ψ(x)σ(x)dx (20)

where {ψ}b denotes the electrostatic potential at the boundaries. In this case Equa-
tion (14) must be replaced by:

Π ≡ − ∂gPB[{nα}]
∂L

∣

∣

∣

∣

{ψ}b

. (21)

Since the derivative of the additional term in gPB exactly balances the second
term of Equation (18), we finally retrieve the general result (19). For a different
but equivalent discussion, see also Ref.[30].

4. Existence and characterization of the energy minimum for asymmetric

charged plates

4.1. Zero pressure distance Lmin

It can be interesting to illustrate the implications of Equation (19) for the case of
two charged bodies in a 1:1 solution. The extension to a multivalent solution is
straightforward1, but the simpler case is more instructive. Let nb,1 = nb,−1 = nb
be the bulk concentrations of the positive and negative monovalent ions.

First of all, we recall that our calculations apply to thick plates. Equation (19)
has been obtained by minimizing the free energy of the region x ∈ [0, L] and repre-
sents then the pressure due to the inhomogeneous electrolyte solution between the
plates, which we call the inner pressure. A similar calculation can be performed
for the solution beyond the outer face of each plate, leading to the outer pressure
Πext. This pressure can be calculated in the same way as the inner pressure. In-
deed, Equation (19) is valid as well in the outer part of the system. Thanks to
the overall system electroneutrality, the electric field vanishes at infinity and then
Equation (19) leads to Πext = 2nbkBT . The net force pr unit surface exerted on
each plate is given by the difference between the inner and the outer value of the
pressure. We thus introduce the excess pressure P

P = Π(x) − Πext =

= − kBT

8π`B

(

dψ

dx

)2

+ kBT
∑

α

(nα(x) − nb) (22)

that vanishes when L increases toward infinity. The reservoir ions are here assumed
to behave like an ideal gas, coherently with the mean field approximation.

1Note however that the Poisson-Boltzmann approach is known to be less accurate in the case of multivalent
salt solutions. It has been shown e.g. that a qualitatively different behavior can appear in the presence of
divalent ions, as the attraction between equally charged plates [31].
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Now, P is a function of L, that can be obtained by solving the PB Equation (10)
for each L ∈ ]0;+∞[.

We then numerically analyse the sign of P as a function of L and of the plate
charge ratios r = σL/σ0. For r > 0 (charges of same sign) the plates always repel
each other, which is a general consequence of the PB theory [9]. For the particular
case r = −1 the interaction is instead always attractive. Interestingly, in the more
general case of r < 0, and r 6= −1, there always exists one and only one equilibrium
distance Lmin(r) between the plates for which we observe a transition between
attraction and repulsion (i.e. a vanishing P ). The transition occurs at a distance
that depends on the charge densities of the plates, and a pronounced repulsion
always appears at short distances, despite the fact that the plates are oppositely
charged.

Such transitions were already predicted in linearized treatments of the problem
[9] in 1972. More recently, the non linear case has been reconsidered [23], although
an exact derivation of the transition distance as a function of the plates charges
and salt concentration had already been obtained by Ohshima [24] in 1975.

Following the main lines of Ref. [24], it is possible to obtain an analytic expression
for the equilibrium position explicitly dependent on the plate charge densities and
on the salt concentration, for the case of a monovalent solution. We perform this
calculation explicitly in Appendix A. We obtain the following expression for the
position of the energy minimum Lmin:

Lmin = λD

∣

∣

∣
ln
( |σ′0|(2 +

√

σ′L
2 + 4)

|σ′L|(2 +
√

σ′0
2 + 4)

)
∣

∣

∣
(23)

where we have introduced the Debye length, λD = 1/
√

8π`B nb and the adimen-
sional charge densities σ′0 = 4π`BλDσ0 and σ′L = 4π`BλDσL. A similar
expression for the distance at which P = 0 is given in Ref. [23], Equation (9)1.

In Figure 2 we compare the previous expression Equation (23) for Lmin with
the corresponding values directly obtained from the numerical solution of the PB
equation, for different salt concentrations and charge density ratios. The minimum
positions Lmin are numerically estimated directly from the energy profiles. As
expected, the formula of Equation (23) exactly agrees with the numerical results.

Two limiting regimes can now be considered. Let introduce the Gouy-Chapman
lengths for both plates, λ0 = |1/2π`Bσ0| and λL = |1/2π`BσL|. In low salt condi-
tions, one has λD � λ0 and λD � λL and, as a consequence, the position of the
energy minimum is approximately given by

Lmin ' 2λD

∣

∣

∣

1

|σ′L|
− 1

|σ′0|
∣

∣

∣
= |λL − λ0| (low salt), (24)

In this limit, Lmin becomes therefore independent of the salt concentration and
is only a function of the plates charge densities, i.e. of the ratio r for the cases
considered here since λ0 is always kept fixed. In Figure 3, we report the local ion
distribution in the inter-plate space as a function of x/L for a given choice of the
plate charges and for different bulk ion concentrations nb. At low salt (Figure 3 a),
the concentration of the counter-ions of the most charged plate is much larger than

1We noticed a difference of sign in the definition of the parameters γ± of Ref. [23] with respect to our
notation. This discrepancy arises from a different choice of the boundaries at which the pressure is evalu-
ated, and has no consequences on the results, provided that the absolute value of the equilibrium distance
d (= Lmin) is taken in equation (9) of Ref. [23]. for the case where σ0 > σL.
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the salt concentration. In this case, the short range repulsion is therefore mainly
due to the counter-ions of the most charged plate. We stress that the solid and
dotted curves in Figure 2 also correspond to this low salt regime.

Inversely, at high salt, λD � λ0 and λD � λL, and the equilibrium is

Lmin ' λD

∣

∣

∣
ln | σ

′
0

σ′L
|
∣

∣

∣
= λD

∣

∣

∣
ln | σ0

σL
|
∣

∣

∣
(high salt). (25)

In this limit the estimated equilibrium length Lmin is then proportional to the

Debye length, i.e. to n
−1/2
b . As shown in Figure 3 b, the short range repulsion is

indeed essentially due to the salt ions whose osmotic effect is modulated by the
charges on the plates. The dashed and dot-dashed curves in Figure 2 correspond
to the high salt regime. In this high salt regime, a good approximated expression
for the equilibrium position can also be obtained in the framework of the linearised
PB equation, as expected. We checked indeed that the resulting expression [9]
matches well the curves in Figure 2 for any ratios r at high salt concentrations
(data not shown). Instead, the linear PB approximation cannot reproduce the
observed behavior at low salt, whereas the expression of Equation (23) remains
exact.

How the P = 0 condition should be interpreted in terms of electrostatic and
osmotic contributions? The mechanism leading to an equilibrium position is not
difficult to understand, starting from the expression of the excess pressure, Equa-
tion (22). As already observed, the pressure is proportional to the constant of
motion C and is therefore constant in the inter-plate space x ∈ [0, L]. Let then
consider the pressure P exerted on one plate, e.g. at x = 0. In this limit, the
electrostatic term in Equation (22) simply reads −kBT σ2

0 /2, and is therefore
independent of L. On the contrary, the osmotic term depends on the ion concen-
tration and is therefore a function of L. We then note that the expression for the
ion density, Equation (8) can be rewritten in terms of the bulk concentrations and
of the reduced potential as

nα(x) = nbe
−zαψ(x) . (26)

The equilibrium condition P = 0, when calculated both on the left and right plates,
can thus be written as a condition for the mean field potential at the boundaries
that reads

coshψ0(Leq) =
π`Bσ

2
0

nb
+ 1 . (27)

coshψL(Leq) =
π`Bσ

2
L

nb
+ 1 . (28)

where we introduced ψ0(L) = ψ(x = 0) and ψL(L) = ψ(x = L) ∀L ∈ [0,∞[, and
where Leq is a distance between the plates for which P = 0.

From now on we will focus on the case of asymmetrically and oppositely charged
plates, r < 0. In Figure 4 we compare the adimensional potential ψ0(L) to the two
roots ±arccosh

(

π`Bσ
2
0/nb + 1

)

of Equation (27). A trivial solution to Eqs. (27)
and (28) corresponds to the limit L → ∞, where P = 0 by construction. In this
limit, and typically for L � λ0 + λL, each plate charge is neutralized by its cloud
of counterions as if the other plate didn’t exist. At a large enough distance x from
the plates, therefore, the ionic atmosphere behaves as an ideal gas and its pressure
contribution Π(x) exactly compensates the reservoir pressure Π∞. We also note
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that, in this case, according to (26), the sign of ψ0 and ψL at infinity are opposite
for oppositely charged plates.

Let now look for another, finite solution of Eqs. (27) and (28) leading to Leq =
Lmin. For this case, we only have to determine the signs of ψ0(Lmin) and ψL(Lmin).
It easy to see that the only possible solution is that the counterions of one plate
prevail on both plates, so that ψ0(Lmin) and ψL(Lmin) should have the same sign.
It is the potential of the less charged plate that will change its sign at a given
distance L between infinity and Lmin. In Figure 4 we show indeed that the sign
of the adimensional potential ψ0 changes for r < −1 whereas it remains the same
when r > −1. The opposite arises for ψL (data not shown).

The physical interpretation of the observed equilibrium is thus straightforward.
The most charged plate carries its cloud of condensed counterions when approach-
ing the less charged one. The counterions of the less charged plate are more easily
released in the bulk when the two ion clouds overlap. This process continues until
the electroneutrality constraint precludes a further release of ions, this leading the
ion concentration, and therefore the repulsive osmotic pressure, to increase. The
equilibrium is then obtained at the distance Lmin where electrostatic attraction
and osmotic repulsion exactly balance.

4.2. Energy value Emin at the minimum

We have shown that the pressure always vanishes at a given inter-plate distance for
oppositely, asymmetric charged plates. Nevertheless, if the presence of a vanishing
pressure always corresponds in principle to an equilibrium position between the
plates, it does not guarantee by itself that this equilibrium position will be stable
enough to be relevant from a thermodynamic point of view. Indeed, in order to
assess the real existence of a stable equilibrium, we need to estimate the corre-
sponding energy gain. We stress again that, if the energy gain at the minimum is
small with respect to kBT , the two charged bodies will behave as in the absence
of electrostatic interaction (the energy going to zero at large distances). On the
contrary, a deep minimum will make the bodies stabilize at a non-zero equilibrium
distance.

The explicit calculation of the whole function P (L) allows us to evaluate the
energy profile E(L) and compare the depth of the potential well to the thermal
energy kBT . The energies per unit area are shown in Figure 5 (bottom), for the
same charge densities as considered above. In order to use more natural units,
energies are given in units of kBT/ 100 nm2. As expected, an energy minimum
always exists for r < 0 and r 6= −1. Interestingly, while for 0 < r < 1 the energy
minimum depth shows a relevant dependence on the second plate charge density
σL, this dependence disappears for r < −1 where the depth becomes constant.

A more systematic investigation of the energy minimum depth for varying charge
densities and salt conditions is shown in Figure 6. The value of the energy per a
unit area of 100 nm2 for different ionic strengths is given as a function of the ratio
of the plates charge densities r, again for σ0 fixed at −0.05 e/nm2. In low salt,
the energy minimum depends on the ratio r and on the salt concentration, and
it reaches its maximum value for r = −1, i.e. when the position of the minimum
degenerates to L = 0. Energy depths are up to roughly 10 kBT per 100 nm2.
Figure 6 also confirms that the minimum depth becomes constant for r < −1, and
coincides in this case with its (maximum) value at the singular value r = −1.

In his paper, Ohshima [24] also obtains an analytic expression for the energy at
the minimum. An equivalent calculation, adapted to our formalism, is presented
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in Appendix B. The final result reads

βEmin = 8nbλD

{

√

|σ′m|2 + 4 − 2 − |σ′m| arcsinh|σ
′
m

2
|
}

, (29)

where σ′m is the adimensional charge parameter related to the smallest plate charge
density, i.e. σ′m = min (σ′0, σ

′
L). In Figure 6 we compare the previous expression for

the value of the energy depth with the results obtained by direct integration of the
Poisson-Boltzmann equation. The two results show a perfect agreement. Together
with Equation (23), the last result allows to a rapid and precise estimate of the
equilibrium position and strength, and represent therefore a powerful tool in order
to study the effective interaction between charged bodies in solution.

Nevertheless, we have to stress finally that Equation (29), as well as Figures 5
and 6, only give the energy per unit area (fixed to 100 nm2 in the Figures). To
obtain the total energy between two charged bodies in solution and compare it to
the thermal energy, the surface and geometry of the bodies should be taken into
account. This roughly amounts to multiply the energy by an effective interaction
area, but the estimation of this area is not easy in that it depends on the bodies
shape. Indeed, the variation of the interaction with the distance should be included
in the calculation of the effective interaction area. A typical choice is the use of the
Derjaguin approximation [32, 33], that calculates the interaction energy U between
two curved surfaces by integrating the interaction energy per unit area between
two flat plates E(L) as

U '
∫

A
E(L)dA ' f([R1], [R2])

∫ ∞

Dmin

E(L)dL , (30)

where Dmin is the distance of closest approach between the two curved surfaces,
dA is the differential area of the surfaces facing each other, [R1] and [R2] represent
the sets of principal radii of curvature of the surfaces 1 and 2, respectively, at the
distance of closest approach, and f([a1], [a2]) is a function of the radii of curvature
of the surfaces. A very rough estimate should consider that the interaction between
the two surfaces becomes negligible when their distance becomes larger than the
screening Debye length λD. In a 0.1 M solution, the Debye length is of the order
of 1 nm. For the case of two spherical colloids of 100 nm diameter, (it varies
from approximately 0.3 nm for an 1 M solution to 10 nm for 0.01 M). If the two
spheres are in contact (i.e. for L = 0), a simple geometric construction (depicted
schematically in Figure 7) allows to calculate the surface area on each sphere that
is separate by less than a Debye length from the facing one, this leading to a
surface of the order of 300 nm2 (roughly 1 % of the whole sphere surface). As a
consequence, the depth of the energy well would reach approximately ∼20 kBT in
these conditions, and be thus large enough to ensure the kinetic stability of the
complex at ordinary thermal conditions. Note however, that the two spheres will
not be in contact anymore at equilibrium, but at a distance close to Lmin, which can
vary from 0 to approximately 2 nm depending on the value of the ratio r. When this
distance becomes comparable to λD, the interaction area decreases considerably.
Therefore, the actual interaction surface will be in general reduced to a value that
depends on the two lengths Lmin and λD, and should be calculated case by case.
Note that, in this sense, the shape of the two interacting bodies is bound to play
a crucial role, in that it can modify considerably the distances between the facing
surfaces and consequently the effective interaction area.
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5. Summary and conclusion

In this paper we derived, within the genuine framework of the Poisson-Boltzmann
approximation, the main quantities of interest for the interaction between two
charged surfaces in solution.

Interestingly, such a rigorous derivation brings up an extended formula for the
interplate pressure, formally differing from the usual expression (giving the sum
of electrostatic and osmotic contributions) by an extra-term. While in the consid-
ered case of fixed charges boundary conditions, this additional term vanishes and
we recover the standard expression for the pressure, the question arises whether
it leads to a modified result when different boundary conditions are considered.
We stressed that the Poisson-Boltzmann free energy is properly used as the ref-
erence thermodynamic potential only at fixed charges. To show how the choice of
the thermodynamic potential depends on the boundary conditions, we explicitely
solved the problem in the fixed potential case, and show how to recover the physical
meaningful pressure in that case. These precisions on the interplay between bound-
ary conditions and thermodynamic ensemble have been obtained here thanks to a
detailed and deductive derivation from the very basis of the Poisson-Boltzmann ap-
proach. Let us stress once again that shortcutting the details of the mathematical
derivation potentially leads to underappreciate the role of the boundary conditions.

We then explicitely solved the problem in the simple case of a 1:1 salt solution
and observed a very rich behavior as a function of the ratio of the plates charge
densities and of the salt concentration, with a non trivial equilibrium position aris-
ing in large intervals of these parameters. The distance at which the osmotic and
electrostatic pressures are in equilibrium is finely tuned by the system parame-
ters. Such equilibrium position can stabilize two asymmetrically charged bodies
at a nonzero distance, provided that the corresponding free energy gain is large
enough compared to the thermal noise. At a given temperature, the stability of the
complex can therefore be assessed only by explicitly calculating the depth of the
corresponding energy well. We obtained a readily available answer to this problem
by deriving analytic expressions for the position and depth of the energy well, by
a reactualized version of the overlooked derivation of Ohshima [24].

In order to compare the energy values with the thermal energy, an estimation
of the interaction area is also necessary. As an example, we gave an estimation for
the typical case of spherical colloids, and found that the interaction energy well is
typically of the order of several kBT , this leading to a quite deep minimum. This
estimation is only a rough approximation because, for a given problem either in bi-
ological or colloidal systems, the behavior of the two interacting bodies is strongly
dependent not only on salt conditions and on the bodies charge but also on their
shape. Indeed, the shape could affect sensibly the extent of the interacting areas
and the ion confinement, with relevant consequences on the interaction profile, as
we recently discussed in the framework of DNA-protein interaction [34]. Interest-
ingly, shape effects become also extremely important in the rapidly growing field
of nanoparticles and colloidal building blocks synthesis [35]. More generally, the
results presented herein could be of interest for the theoretical modeling of ionic
colloidal crystals of oppositely charged particles recently obtained experimentally
[36–38]. The formation of structures with packing density significantly lower than
for close packing, and the large diversity of structures observed, should indeed
strongly depend on the specific interaction potential between the colloidal par-
ticles. While these first studies have been based on simplified interaction models
(linear PB with no osmotic pressure [36], pure Coulomb interaction [37]), the imple-
mentation of the more accurate interaction energy profile as described in our work
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should substantially improve the description of such complex colloidal systems and
the prediction of the observed lattice structures.
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APPENDICES

A. Determination of the minimum position.

Starting from Equation (13) and taking into account the contribution of the sur-
rounding ions as in Equation (22), one can obtain a suitable form for the excess
free energy that will allow one to evaluate its amplitude at a given position x. We
start by writing the excess free energy as

βFPB [σ, {n}] =

∫ L

0

[

1

8π`B

(

dψ

dx

)2

−
2
∑

α=1

nα(x)

]

dx

+ 2nb L +

2
∑

α=1

∫ L

0
nα[−zαψ(x)] dx (A1)

where the 2nb L term arises from the Π∞ contribution. Now, using (12) and (10)
one finds:

βFPB [σ{n}] = 2nb

{(

1

2
C ′ + 1

)

L+

∫ L

0
ψ(x) sinhψ(x) dx

}

= 2nb

{

(

1

2
C ′ + 1

)

L+ λ2
D

[

ψ(x)
dψ

dx

]L

0

− λ2
D

∫ L

0

(

dψ

dx

)2

dx

}

(A2)

where we have introduced the Debye length, λD = 1/
√

8π`B nb, C
′ = C/(4π`Bnb)

and we performed an integration by part for the last equation.
In order to calculate Lmin, it is convenient to introduce the following adimen-

sional parameters:

η = x/λD (A3)

γ(η) = ψ(x) (A4)

θ(η) =
dγ

dη
. (A5)

In terms of these variables, the Poisson-Boltzmann equation just writes

dθ

dη
= sinh γ (A6)

with the boundary conditions

θ(0) = −σ′0 = −4π`BλDσ0

θ(ηL) = σ′L = 4π`BλDσL (A7)

and the equivalent of Equation (12), giving the constant of motion for the system,
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reads θ2 = 2cosh γ + C ′. From this equation one gets

(θ2 − C ′)2

4
= cosh2 γ = 1 + sinh2 γ

(θ2 − C ′)2

4
− 1 =

(

dθ

dη

)2

⇒
∣

∣

∣

∣

dη

dθ

∣

∣

∣

∣

=
1

√

(θ2 − C ′)2/4 − 1
(A8)

By integrating η from 0 to ηL, with |dη| = dη, we thus obtain

∫ θ(ηL)

θ(0)

∣

∣

∣

∣

dη

dθ

∣

∣

∣

∣

dθ =

∫ ηL

0
dη

dθ

|dθ| .

We are interested here in the case of oppositely charged plates, where the energy
minimum does exist. We have therefore to consider different cases. Let assume for
the moment that |σ′0| > |σ′L|. If now σ′0 < 0 and σ′L > 0, then θ(0) and θ(ηL)
have both positive values and |dθ| = −dθ. We then have

ηL =

∫ |σ′

0|

|σ′
L|

∣

∣

∣

∣

dη

dθ

∣

∣

∣

∣

dθ σ′0 < 0, σ′L > 0 . (A9)

On the other hand, if σ′0 > 0 and σ′L < 0, then θ(0) and θ(ηL) have both negative
values and |dθ| = dθ. We thus obtain

ηL = −
∫ −|σ′

0|

−|σ′
L|

∣

∣

∣

∣

dη

dθ

∣

∣

∣

∣

dθ σ′0 > 0, σ′L < 0 . (A10)

Nevertheless, since | dη/dθ| is only a function of θ2 we can make the change of
variable Θ = −θ in Eq.(A10) and retrieve the result (A9). Therefore, we always
have

ηL =

∫ |σ′

0|

|σ′
L|

2
√

(θ2 − C ′ + 2)(θ2 − C ′ − 2)
dθ (A11)

If now L = Lmin, then P = 0, i.e. Π = Π∞ = 2kBTnb, and therefore C ′ = −2.
At the equilibrium position, Eq.(A11) becomes then

ηLmin
=

∫ |σ′

0|

|σ′
L|

2

θ
√
θ2 + 4

dθ =

∫ |σ′

0|/2

|σ′
L|/2

1

α
√
α2 + 1

dθ

where we introduced α = θ/2. As a primitive function of 1/(x
√
x2 + 1) is

ln
(

x/(1 +
√
x2 + 1)

)

, we get for the case |σ′0| > |σ′L|

ηLmin
= ln

(

|σ′0|(2 +
√

|σ′L|2 + 4)

|σ′L|(2 +
√

|σ′0|2 + 4)

)

. (A12)

The extension to the opposite case of |σ′0| < |σ′L| is straightforward, this leading
to the following final formula for the position of the energy minimum Lmin =
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λDηLmin
:

Lmin = λD

∣

∣

∣
ln
( |σ′0|(2 +

√

σ′L
2 + 4)

|σ′L|(2 +
√

σ′0
2 + 4)

)∣

∣

∣
.

B. Determination of the energy value at the minimum.

Following the main lines of the calculation presented in [24], we here look for
an analytic expression for the energy at the minimum. In our framework, the
interaction energy computed numerically directly from the integration of the excess
pressure writes formally (by definition of the integration):

βE(L) = β(F(L) −F(∞)) (B1)

where F(L) is given by (A2). By using the dimensionless parameters defined in the
previous section, we have

βF = {(K(L) + J(L) − I(L)} 2nbλD , (B2)

with

K(L) = (
1

2
C ′ + 1)ηL ,

J(L) =
[

γ(η)θ(η)
]ηL

0
,

I(L) =

∫ ηL

0
θ2 dη .

We will now, first, calculate the three contributions to F(Lmin), and then the
corresponding contributions to F(∞).

Let start by calculating I(Lmin). From the definition, we have

I(Lmin) =

∫ ηLmin

0
θ2

(

dη

dθ
dθ

)

= −
∫ |σ′

L|

|σ′
0|

θ2

∣

∣

∣

∣

dη

dθ

∣

∣

∣

∣

dθ

=

∫ |σ′

0|

|σ′
L|

2θ

θ2 + 4
dθ

= 2(
√

|σ′0|2 + 4 −
√

|σ′L|2 + 4) (B3)

where we used the fact that, on the [0, ηL] range, dη/dθ = −|dη/dθ|.
To calculate J(Lmin) we recall that when L = Lmin we have cosh γ(0) = σ′20/2+1.

By using the relation (cosh x−1)/2 = sinh2(x/2), we then get sinh2 γ(0)/2 = σ′20/4,
and thus

| sinh
γ(0)

2
| =

1

2
|σ′0| (B4)
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In the same way we have

| sinh
γ(ηLmin

)

2
| =

1

2
|σ′L| . (B5)

We can now easily calculate J(Lmin) starting from

J(Lmin) = γ(ηLmin
) θ(ηLmin

) − γ(0) θ(0)

= γ(ηLmin
) |σ′L| + γ(0)σ′0 .

Now, at Lmin, γ(ηLmin
) and γ(0) have the same sign, which is governed by the

most charged plate. Let again focus on the case where σ′0 < 0 and |σ′0| > |σ′L|, as
used in our illustrations. In this case, the sign of γ(ηLmin

) and γ(0) is the same as
the sign of σ′0 (cf. Figure 4), this leading to

J(Lmin) = −2 |σ′L| arcsinh|σ
′
L

2
| − 2 |σ′0| arcsinh|σ

′
0

2
| (B6)

We easily obtain that K(Lmin) = 0 since C ′ = −2 for L = Lmin.
The overall result for F(Lmin) reads therefore

βF(Lmin) = 4nbλD

{

−|σ′L| arcsinh|σ
′
L

2
| (B7)

−|σ′0| arcsinh|σ
′
0

2
| −(

√

|σ′0|2 + 4 −
√

|σ′L|2 + 4 )
}

.

Let now calculate F(∞). We have to be quite cautious to compute I(∞). Indeed,
we have

I(∞) = lim
ηL→∞

∫ ηL

0
θ2

(

dη

dθ
dθ

)

,

and the point is that dη/dθ has not the same sign all over the range [0,∞[. Actually
because of the infinite distance between the two plates, each plate tends to behave
as a single plate in this limit, and thus there exists a distance for which θ = 0. So,
θ will be initially equal to |σ′0|, then decrease to zero and increase again to |σ′L|.
We have therefore:

I(∞) = −
∫ 0

|σ′
0|
θ2

∣

∣

∣

∣

dη

dθ

∣

∣

∣

∣

dθ +

∫ |σ′

L|

0
θ2

∣

∣

∣

∣

dη

dθ

∣

∣

∣

∣

dθ

= −
[

2
√

θ2 + 4
]0

|σ′
0|

+
[

2
√

θ2 + 4
]|σ′

L|

0

= −8 + 2
√

|σ′0|2 + 4 + 2
√

|σ′L|2 + 4 . (B8)

Besides, we have for J(∞):

J(∞) = γ(∞)|σ′L| − γ(0)|σ′0| (B9)

= 2 |σ′L| arcsinh|σ
′
L

2
| − 2 |σ′0| arcsinh|σ

′
0

2
|
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because it’s only the reduced potential γ corresponding to the plate with the lowest
charge (in absolute value) that changes its sign between Lmin and L∞ (cf. again
Figure 4).

When there is an infinite distance between the plates we also have C ′ = −2
(intuitively because there is no more interaction between the plates) and thus
K(∞) = 0. We then have:

βF(∞) = 4nbλD

{

|σ′L|arcsinh|σ
′
L

2
| (B10)

−|σ′0|arcsinh|σ
′
0

2
| −(−4 +

√

|σ′0|2 + 4 +
√

|σ′L|2 + 4)
}

.

From the evaluation of Equation (B1) at L = Lmin, we get then finally the
following expression for the energy at the minimum in the case when σ′0 < 0 and
|σ′0| > |σ′L|:

βEmin = 8nbλD

{

√

|σ′L|2 + 4 − 2 − |σ′L| arcsinh|σ
′
L

2
|
}

. (B11)

On the other hand, one can easily be convinced that inverting the roles of |σ′0|
and |σ′L| leads to the same expression as Equation (B11) where |σ′0| and |σ′L| are
inverted. Therefore, the very general result writes (Equation (29))

βEmin = 8nbλD

{

√

|σ′m|2 + 4 − 2 − |σ′m| arcsinh|σ
′
m

2
|
}

, (B12)

where σ′m is related to the smallest plate charge density, i.e. |σ′m| = min (|σ′0|, |σ′L|).
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C. Holm, P. Kékicheff and R. Podgornik (Kluwer, Dordrecht, 2001)

[6]Tang, C., Iwahara, J. and Clore, G. M. Visualization of transient encounter complexes in protein pro-
tein association Nature 444 383-386 (2006)

[7]von Hippel, H. Diffusion driven mechanism of protein translocation on nucleic acids. III. The E. coli
lac repressor-operator interaction: kinetic measurements and conclusions Biochemistry 20 6961-6977
(2007)

[8]Sens P. and Joanny J.-F. Counterion Release and Electrostatic Adsorption Phys. Rev. Lett. 84
4862-4865 (2000)

[9]Parsegian V. and Gingell D. On the electrostatic interaction across a salt solution between two bodies
bearing unequal charges Biophys. J. 12 1192-1204 (1972)

[10]Verwey E. J. W. and Overbeek J. TH. G. Theory of the stability of Lyophobic Colloids (Elsevier,
Amsterdam, 1948)

[11]Bhattacharjee S., Elimelech M.and Borkovec M. DLVO Interaction between Colloidal Particles: Beyond
Derjaguin’s Approximation CROATICA CHEMICA ACTA CCACAA 71 883-903 (1998)

[12]Bhattacharjee S. and Elimelech M. Surface Element Integration: A novel Technique for Evaluation of
DLVO Interaction between a particle and a flat plate Journ. Coll. and Inter. Sci. 193, 273-285 (1997)

[13]Tamashiro M. N. and Schiessel H. Where the linearized Poisson-Boltzmann cell model fails: the planar
case as a prototype study Phys. Rev. E, 68, 066106 (2003)

[14]Zypman F. R. Exact expressions for colloidal plane-particle interaction forces and energies with
applications to atomic force microscopy J. Phys. Condens. Matter 18 2795-2803 (2006)

[15]Lau A. W-C. Fluctuation and correlations effects in electrostatics of Highly-Charged Surfaces PhD
Thesis (Oct. 2000)

[16]Hansen J-P. and McDonald I. R. Theory of Simple Liquids (Academic Press, London, Third Edition,
2006)

[17]Denton A. R. Electroneutrality and phase behavior of colloidal suspensions Phys. Rev. E 76 051401
(2007)

[18]Zoetekouw B. and van Roij R. Volume terms for charged colloids: a grand-canonical treatment Phys.
Rev. E 73 021403 (2006)

[19]Carnie S. L. and Torrie G. M. The Statistical Mechanics of the Electrical Double Layer Adv. Chem.
Phy. 56 141 (1984)

[20]Marcus R. A. Calculation of Thermodynamic Properties of Polyelectrolytes J. Chem. Phys. 23 1057
(1955)

[21]Wennerström H., Jönsson B. and Linse P. The cell model for polyelectolyte systems J. Chem. Phys.
76 4665 (1982)

[22]Lau A. and Pincus P. Binding of oppositely charged membranes and membrane reorganization Eur.
Phys. J. B 10 175 (1999)

[23]Ben-Yaakov D., Burak Y., Andelman D. and Safran S. A. Elecrostatic interactions of asymmetrically
charged membranes Europhys. Lett., 79 48002 (2007)

[24]Ohshima H. Diffuse double layer interaction between two parallel plates with constant surface charge
density in an electrolyte solution III: Potential energy of double layer interaction Colloid and Polymer
Sci. 253 150-157 (1975)

[25]Ohshima H. Diffuse double layer interaction between two parallel plates with constant surface charge
density in an electrolyte solution II: the interaction between dissimilar plates Colloid and Polymer
Sci. 252 257-267 (1974)

[26]Torres A., van Roij R. and Téllez G. Finite thickness and charge relaxation in double-layer interactions
Colloid Interface Sci. 301 176-183 (2006)

[27]Torres A. and van Roij R. Finite-Thickness-Enhanced Attractions for Oppositely Charged Membranes
and Colloidal Platelets Langmuir 24 1110 1119 (2008)

[28]Huang K. Statistical Mechanics (Wiley, New-York, Second Edition, 1987)
[29]Feynman R. P., Leighton R. B. and Sand M. The Feynman Lectures on Physics, Volume 2 (Addison-

Wesley, Pearson PLC, 2006)
[30]Trizac E. Electrostatically Swollen Lamellar Stacks and Adiabatic Pair Potential Charged Platelike

Colloids in an Electrolyte Langmuir 17 4793-4798 (2001)
[31]Bohinc K., Iglic, A. and May S. Interaction between macroions mediated by divalent rod-like ions

Europhys. Lett. 68 494-500 (2004)
[32]Derjaguin B. V. Untersuchungen uber die Reibung utid Adhusion Kolloid-Z. 69 155 (1934)
[33]White L. R. On the Deryaguin approximation for the interaction of macrobodies J. Colloid Interface

Sci. 95 286 (1983)
[34]Dahirel et al. Non-specific DNA-protein interaction: Why proteins can diffuse along DNA

arXiv:0902.2708v1 (2009)
[35]Glozer S. C. and Solomon M. J. Anisotropy of building blocks and their assembly into complex structures

Nature Materials 6 557-562 (2007)
[36]Leunissen M. E. et al Ionic colloidal crystals of oppositely charged particles Nature 437 235-240 (2005)

Page 20 of 27

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

March 11, 2009 11:34 Molecular Physics Paillusson˙et˙al-MolPhys

REFERENCES 21

[37]Bartlett P. and Campbell A. I. Three dimensional binary superlattices of oppositely charged colloids
Phys. Rev. Lett. 95 128302 (2005)

[38]Shevchenko E. V. et al Structural diversity in binary nanoparticle superlattices Nature 439 55-59
(2006)

Page 21 of 27

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

March 11, 2009 11:34 Molecular Physics Paillusson˙et˙al-MolPhys

22 REFERENCES

Figure caption

FIG. 1: A schematic view of the system considered throughout the paper. The two
semi-infinite planes of charge density σ0 and σL, positioned respectively at x = 0
and x = L, are immersed in the ionic solution. An ion reservoir freely exchanges
ions with the system.

FIG. 2: Comparison between the estimation for the position of the energy
minimum of Equation (23) (solid lines) and the values of Lmin obtained on
the basis of the direct resolution of the Poisson-Boltzmann model (points). We
chose σ0 = −0.05 e/nm2. Lengths are given in nm, and as functions of the ratio
r = σL/σ0, for different salt concentrations: 0.001 M (asterisks), 0.01 M (circles),
0.1 M (squares), 1 M (diamonds).

FIG. 3: Positive (solid line) and negative (dashed line) ion distributions in
the inter-plate space, at the equilibrium distance L = Lmin, for the case of two
charged plates with charge densities σ0 = −0.05 e/nm2 and σL = 0.1 e/nm2, and
for two different salt concentrations nb: 0.001 M (low salt, a) and 1 M (high salt,
b). The thick grey line indicates the value of the bulk ion concentration nb.

FIG. 4: The adimensional mean field potential at x = 0, ψ(0), as a function
of the inter-plate distance L (nm) and for the same ionic strength and charge
density ratios of Figure 5. The two horizontal lines correspond to the two roots
± arccosh

(

π`Bσ
2
0/nb + 1

)

of the left plate equilibrium condition, Equation (27).
The circles emphasize the non trivial solutions leading to an equilibrium position.

FIG. 5: The interaction energy per unit surface E (kBT/100 nm2) for the
interaction of a plate of charge density σ0 = −0.05 e/nm2 at x = 0 with different
plates of charge densities σL, as a function of the distance L (nm) between them.
The ratio r = σL/σ0 between the densities varies from −2 to 1 according to the
figure legend. The plates are immersed in a 0.1 M monovalent solution.

FIG. 6: Comparison between the estimation of the energy minimum of Equa-
tion (29) (solid lines) and the values of the energy at the minimum position
Lmin obtained by direct integration of the Poisson-Boltzmann model, for different
salt concentrations: 0.001 M (asterisks), 0.01 M (circles), 0.1 M (squares), 1 M
(diamonds). We have udes again σ0 = −0.05 e/nm2. In order to use more natural
units, energies are given in units of kBT/ 100 nm2.

FIG. 7: Sketch for the calculation of the interacting area for the case of two
identical spheres. The area of each dashed spherical surface is S = π

4 (d2 + 4h2).
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Figure 3. F. Paillusson et al

Figure 4. F. Paillusson et al

Figure 5. F. Paillusson et al
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NEW APPENDIX

We propose to the Editor and the referees this new appendix toour paperPoisson-Boltzmann for oppositely charged bodies:
an explicit derivation. We let them judge on the opportunity of adding it to our manuscript.

A. DETERMINATION OF THE POISSON BOLTZMANN FREE ENERGY.

Gibbs-Bogoliubov inequality

Consider a physical system in contact with a thermostat at temperatureT . One can thus work in the canonical ensemble, where
the probabilityPλ for the system to be in a microscopic stateλ at energyHλ is given by the Boltzmann law:Pλ ≡ Z−1e−βHλ

whereβ ≡ (kBT )−1 and the partition functionZ defined as usual:

Z ≡ ∑
{λ}

e−βHλ
. (A1)

Note that the previous general definition ofZ should be rewritten, in the case of a continuous energy as an integral over the
system conjugate variables. Nevertheless, we will use herethe notation of Eq. (A1) for the sake of simplicity.

By introducing a yet unspecified distribution of probability for the microscopic states,P0(λ), we can write:

Z = ∑
{λ}

e−βHλP0(λ)e− lnP0(λ) = 〈e−βH−lnP0(λ)〉0 (A2)

where〈. . .〉0 indicates a statistical averaging over the distributionP0.
Using the definition of the free energy given in the main text,we get the following expression for the free energy:

F = −kBT ln
(

〈e−βH−lnP0(λ)〉0
)

. (A3)

By using the well known relation〈lnX〉 ≤ ln〈X〉 (valid for any random variableX) one obtains the inequality

F ≤−kBT 〈ln{e−βH−lnP0(λ)}〉0

which can be written finally

F ≤ 〈H〉0−TS0 (A4)

where

S0 ≡−kB ∑
{λ}

P0(λ) lnP0(λ) (A5)

is the corresponding entropy term.
Eq.s(A4) and(A5) constitute the so called Gibbs-Bogoliubov inequality which is always valid in the canonical ensemble.

The potential term

In order to calculate the free energy contribution arising from the potential terms in the partition function we will make a
mean field approximation by applying the Gibbs-Bogoliubov inequality (A4) to Zpot . Let P0(λ) be the corresponding position
probability of independent particles satisfying the two relations:

P0({r})≡ P0(r1)P0(r2) . . .P0(rN) (A6)
Z

d3riP0(ri) = 1 (A7)

∀ i ∈ {1, . . . ,N}. The introduction ofP0({r}) leads to a statistical averaged description of the charge distribution:

n0
α(r) ≡ NαP0(r) . (A8)
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2

Note thatn0
α(r) has to be distinguished from the actual ion densitynα(r) previously defined. More explicitly, one can write

nα(r) = n0
α(r)+ δnα(r).

Let first calculate〈Hpot〉0. By using the definedHpot and (A6) we obtain

〈Hpot〉0 =
1
2

p

∑
α=1

zαe
Nα

∑
i=1

Z

. . .

Z

φ(ri)
N

∏
i=1

P0(ri)d
3ri

+
1
2

Z

eσ(r)φ(r)d3r (A9)

where we used the fact that
R

eσ(r)φ(r)d3r does not depend onr1 . . . rN . By using the normalization Eq. (A7) and introducing
the ion distributionsn0

α(r), Eq. (A9) can be written as:

〈Hpot〉0 =
1
2

Z

eσ(r)φ(r)d3r +
1
2

p

∑
α=1

zαe
Z

n0
α(r)φ(r)d3r .

(A10)

To be coherent with the statistical approach just introduced, we have to functionally expand the electric potential as afunctional
of nα(r). One gets:

φ[nα] = φ[n0
α]+

Z δφ
δnα(r′)

∣

∣

∣

∣

n0
α

δnα(r′)d3r′ + O((δnα)2) .

(A11)

In the following, we will note

φ0(r) ≡ φ[n0
α](r) (A12)

the mean field electric potential. Neglecting terms of orderhigher than zero in Eq. (A10), i.e. in the framework of the mean field
approximation, we finally get an expression of the averaged potential term as a functional ofφ0(r):

〈Hpot〉0 =
1
2

Z

eσ(r)φ0(r)d3r +
1
2

p

∑
α=1

zαe
Z

n0
α(r)φ0(r)d3r (A13)

The Poisson-Boltzmann free energy

Once having obtained〈Hpot〉0, we need to calculate the correspondingS0, the entropic contribution arising from the position
degrees of freedom. The calculation is straightforward. Using equations (A6) and (A8),S0 becomes

S0 = −kB

p

∑
α=1

Z

n0
α(r) lnP0(r) d3r . (A14)

We are now able to writeZ = Zkinetic.Zpot , hence the Gibbs free energyF = −kBT lnZpot − kBT lnZkin. The application of the
Gibbs-Bogoliubov inequality then leads toF ≤ 〈Hpot〉0−TS0

pos − kB lnZkin. By using Eq.s (A2), (A13) and (A14), we get from
the previous inequality:

F . FPB

WhereFPB is thePoisson-Boltzmann functional free energy that can be written as:

FPB[{n0}] ≡
1
2

Z

(

eσ(r)φ0(r)+
p

∑
α=1

zαen0
α(r)φ0(r)

)

d3r

+ kBT
p

∑
α=1

Z

n0
α(r)

(

ln
(

Λ3
αn0

α(r)
)

−1
)

d3r

where we used the Stirling approximation to approximate thekinetic term of Eq. (A2) and the normalization relationNα ≡
R

n0
α(r)d3r.
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