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Finite-size scaling study of the liquid-vapour critical point of

dipolar square-well fluids
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Departamento de F́ısica Atómica, Molecular y Nuclear, Area de F́ısica Teórica,

Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla, Spain
(Received 00 Month 200x; final version received 00 Month 200x)

We present Monte Carlo simulation study in the Grand-Canonical ensemble of the liquid-
vapour equilibrium of the dipolar square-well fluid for reduced dipolar moments m∗ ≡
m/

√
ǫσ3 in a range between 1 and

√
7, where ǫ is the square-well depth and σ the hard-

core diameter. We locate the critical points by using the Bruce-Wilding mixed-field finite-size
scaling method. In order to get the phase coexistence, we use a multiple-histogram reweight-
ing technique. Our results are consistent with previous estimations reported in the literature,
showing that the reduced critical temperature increases in terms of the square-well energy
unit as the dipolar moment increases, but decreases if we take as energy unit the nose-to-
tail configuration dipolar interaction. On the other hand, the critical density decreases by
increasing the dipolar moment. Finally we characterize how the microscopic structure of the
coexisting phases depends on the dipolar moment, paying special attention to the clustering
and chain formation.

Keywords: dipolar square-well fluid, Monte Carlo simulation, liquid-vapour phase
transition, critical point, finite-size scaling

1. Introduction

The fluids composed by dipolar particles has been object of extensive theoretical
and simulation study in the last decades [1–3]. The presence of strong permanent
electric dipolar moment changes dramatically the structural and thermodynamic
properties of the dipolar fluids, and it has a deep impact in their phase diagrams.
Even the simpler model of dipolar fluids (the dipolar hard-sphere system) shows
a quite complex behaviour. By averaging over the orientations the dipolar interac-
tion a Lennard-Jones-like effective potential is obtained [4, 5], so it was conjectured
that the dipolar hard-sphere would have a gas-liquid phase transition similar to the
observed in simple fluids. However the seminal NV T computer simulation study by
Weis and Levesque [6, 7] showed no indication of a liquid-vapour transition. This re-
sult was confirmed by NPT and Gibbs ensemble simulations [8], and also observed
in bidimensional and quasi-bidimensional systems [9, 10]. Furthermore the fluid
structure was not the usual for simple fluids: particles formed chainlike clusters
where nearest neighbour particles are in a nose-to-tail configuration. This strong
chaining would interfere with the isotropic aggregation preventing the liquid-gas
transition [11–15]. More recently Camp et al [16] reported Monte Carlo simulations
which seemed to indicate a liquid-vapor phase transition in the dipolar hard sphere
fluid with a reduced critical temperature T̃c = kBTcσ

3/m2 ≈ 0.15 − 0.16 and re-
duced critical density ρ∗c ≈ 0.1. A mechanism for the emergence of the liquid-vapour
transition was proposed by Tlusty and Safran [17]: both coexisting phases would
be composed by chainlike clusters, one with a higher density of “end” defects (the
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“vapour” phase) and another with higher density of branching points (the “liquid”
phase). However, the question about the existence of liquid-vapour transition in a
pure dipolar hard-sphere fluid remains unsettled.

One indirect way to confirm the existence of the liquid-vapour transition in the
dipolar hard-sphere fluid is to extrapolate the behaviour of a sequence of systems
which show usual vapour-liquid behaviour, but in some limit reduce to the dipolar
hard-sphere model. This has been done with charged hard dumbbells [18], or by
adding dispersive interactions. Different potentials for the dispersive contribution
have been considered in the literature: Yukawa [19], Lennard-Jones (i.e. the Stock-
mayer model) [20, 21] and more recently the square-well potential [22]. As the
relative strength of the dispersive interactions with respect to the dipolar forces
vanishes, the dipolar hard-sphere fluid is recovered. The most studied case in the
literature is the Stockmayer fluid (for a recent account of the available results, see
Refs. [23, 24]). Although theoretical studies predict that the critical density van-
ishes in the dipolar hard-sphere limit [13, 15], the computer simulation results are
not conclusive in this respect.

The main goal of this paper is to obtain accurate estimations of the critical pa-
rameters for the dipolar square-well model as the simplest dipolar fluid which takes
into account dispersive forces. The liquid-vapour transition for moderate dipolar
square-well fluid was already obtained by Gibbs ensemble Monte Carlo simula-
tions in Ref. [22]. The estimation of critical parameters was done by fitting the
coexistence to a power law and assuming a rectilinear diameter law. We will use
more sophisticated techniques (namely finite-size scaling and multiple-histogram
reweighting techniques) which are suitable for this model of dipolar fluids to obtain
more precise estimations of the critical parameters, at least for moderate dipolar
moments. The article is organized as follows. In Section 2 we describe the tech-
niques used to get the critical parameters, as well as the coexistence curves. Our
main results are presented in Section 3, where in addition to the discussion of
the critical behaviour, we characterize the microscopic structure of the coexisting
phases. Finally, we present our conclusions.

2. The model and simulation details

In the dipolar square-well fluid the particles interact through a pair potential which
depends on the point dipolar moments ~m1 and ~m2 of the particles of the pair and
their relative positions ~r12 as:

u(~m1, ~m2, ~r12) = uSW (r12) + uD(~m1, ~m2, ~r12) (1)

where r12 = |~r12|. Thus, the total potential energy U =
∑

i<j u(~mi, ~mj, ~rij). The
square-well contribution to the pair potential takes the form:

uSW (r) =











∞ r < σ

−ǫ σ < r < λσ

0 r > λσ

(2)

where σ is the hard-core diameter, which we will take as the length unit, ǫ is the
square-well depth and λ defines the square-well range. As in Ref. [22], we fix the
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value of λ = 1.5. The dipolar contribution has the following expression:

uD(~m1, ~m2, ~r12) = −m2

r3
12

(3(m̂1 · r̂12)(m̂2 · r̂12) − m̂1 · m̂2) (3)

where m = |~m1| = |~m2| is the dipolar moment strength, and we define the unit
vectors m̂1 = ~m1/m, m̂2 = ~m2/m and r̂12 = ~r12/r12. Due to the dipolar contribu-
tion, the pair potential has the nose-to-tail configuration as the global minimum
energy configuration.

We define the reduced dipolar moment as m∗ ≡ m/
√

ǫσ3. This value can be re-
garded as a measure of the ratio between the two relevant potential energy scales:
the dipolar interaction at the nose-to-tail configuration −2m2/σ3, and the square-
well depth −ǫ. We may choose either values as energy units but, in order to compare
our results with the reported in Ref. [22], we will choose ǫ as the energy length.
However we may obtain the reduced energies in terms of the dipolar scale m2/σ3

by dividing the square-well based reduced energies by (m∗)2. The reduced temper-
ature is then defined as T ∗ = kBT/ǫ, where kB is the Boltzmann constant, but
we may define a dipolar-reduced temperature T̃ = kBTσ3/m2 ≡ T ∗/(m∗)2. We
anticipate that the thermodynamic behaviour of the dipolar square-well resembles
the corresponding to the pure square-well fluid in the T ∗ scale for m∗ → 0, and to
the behaviour of the dipolar hard-sphere model in the T̃ scale for m∗ → ∞.

Grand-Canonical Monte Carlo (GCMC) simulations were performed using a cu-
bic simulation box of reduced length L∗ = L/σ under periodic boundary conditions,
at a reduced temperature T ∗ and chemical potential µ∗ ≡ µ/ǫ. In order to deal with
the electrostatic interactions, we used Ewald summation technique with conducting
boundary condition at infinity, with 518 Fourier-space wavevectors and real-space
damping parameter κ = 5. With this choice of Ewald parameters, the relative er-
ror due to the infinite sums truncation in the electrostatic energy was shown to be
less than 10−5 for charged systems at random configurations in small systems [25].
Other less computational intensive methods which deal with the long-range nature
of the electrostatic interactions have been used in the literature, such as the Reac-
tion Field [26] and the Wolf method [27, 28]. However, their application to systems
such as charged and dipolar liquid crystals lead to equivalent results [29–31], so
we expect that results will be also similar in our system. The basic steps of the
simulation are attempted insertion or deletions of particles, chosen at random with
the same probability. In the case of an attempted insertion, we place the particle
at a random position of the box and also oriented randomly, following an uniform
distribution in both cases. On the other hand, in an attempted destruction each
particle has the same probability to be chosen for deletion. Usual Metropolis crite-
rion is used to accept/reject the attempted new configuration [32]. After an initial
period of equilibration, we compute the averages of the reduced total potential
energy U∗ = U/ǫ as well as the dipolar contribution U∗

d = Ud/ǫ, and the number
of particles N . The reduced density ρ∗ = ρσ3 is defined as ρ∗ = 〈N〉/(L∗)3. In
order to use the reweighting techniques, we also compute during each simulation
the joint histogram of number of particles N and reduced potential energy U∗, the
latter discretized in bins of width ∆U∗ = 0.1.

We implement the procedure to get the liquid-vapour equilibrium as described in
Ref. [33]. First we locate the critical point by using a mixed-field finite-size scaling
method [34] combined with a multiple-histogram reweighting technique [35]. For
this purpose we run a few simulations (typically three) close to the critical point for
three different sizes L∗ = 6, 8 and 10.86. These simulations are different realizations
of a simulation at the same thermodynamic conditions T ∗ and µ∗. Close to the crit-
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Figure 1. (a): Rescaled marginal probability distributions pc

M
(x) for the dipolar square-well

fluid with λ = 1.5 and m∗ = 1. The solid line is the universal function corresponding to
the 3-dimensional Ising universality class, and the symbols correspond to the best-matching
simulation results: the squares correspond to L∗ = 6, the diamonds to L∗ = 8 and the
triangles to L∗ = 10.86. (b): Density marginal distribution function PL(ρ∗, T, µ) for the
dipolar square-well fluid with λ = 1.5 and m∗ = 2 for the same values of temperature and
chemical potential as the curves of the left panel.

ical point very long runs are needed in order to overcome the critical slowing down,
so typically we performed simulations of about 108 GCMC steps for L∗ = 6, 5×108

GCMC steps for L∗ = 8 and 2.5 × 109 GCMC steps for L∗ = 10.86. For each size,
we combine the histograms from the different runs as shown in Ref. [35] and esti-
mate the effective size-dependent critical parameters by minimizing the deviation
of the appropriately scaled mixed-field M ∝ (N − sU)/(L∗)3 marginal probability
distribution (s is the mixing parameter) with respect to the corresponding critical
3-dimensional Ising universal function [33, 34]. Their standard errors are estimated
by comparing the values obtained with the histograms corresponding to different
combinations of the three runs. The dependence of the critical parameters on the
simulation length L∗ is due to corrections to scaling, which asymptotically behave
as:

T ∗
c (∞) − T ∗

c (L∗) ∝ (L∗)−(1+θ)/ν ρ∗c(∞) − ρ∗c(L
∗) ∝ (L∗)−(1−α)/ν (4)

where α ≈ 0.119 and ν ≈ 0.629 are the Ising model critical exponents associated
to the heat capacity and the correlation length, respectively, and θ ≈ 0.54 is the
correction-to-scaling exponent. We will fit our size-dependent critical parameters
to this expression in order to extrapolate the values of the critical parameters of
an infinite system.

Once the critical point is located, we obtain the liquid-vapour envelope up to
. 0.98Tc by reweighting a histogram which combines the near-critical ones for
L∗ = 8 with other histograms obtained from shorter simulations at different ther-
modynamic conditions. These conditions are chosen in such a way that the com-
bined histogram covers the relevant range of number of particles and energies for
the coexisting states. At coexistence, the areas under each peak of the resulting bi-
modal histogram (corresponding to the vapour and liquid branches) are requested
to be the same. This condition ensures pressure equality for both coexisting phases.
The coexisting densities are then obtained by locating the number of particles cor-
responding to the two maxima of the combined histogram.
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Figure 2. The same as Fig.1 but for m∗ =
√

7.

3. Results

Using the Bruce-Wilding procedure [33, 34] explained in the previous section,
we have located the critical points of the dipolar square-well fluids for (m∗)2 =
1, 2, 3, 4, 5, 6 and 7. As examples, we show the results of this procedure for m∗ = 1
and m∗ =

√
7 in Figs. 1 and 2, respectively. The left panels in both figures

show the optimal matching for L∗ = 6, 8 and 10.86 of the marginal distribution
functions for the magnetization-like variable x = a−1

M(L∗)β/ν(M − 〈M〉), being
M = (N − sU)/(L∗)3, with the universal distribution function P c

M(x) correspond-
ing to the Ising universality class. We estimate the critical values of reduced tem-
perature T ∗

c and chemical potential µ∗
c , as well as the mixing parameter s, as those

which minimize the deviation of the marginal distribution function with respect to
the expected universal distribution. On the other hand, the value of the nonuni-
versal parameter a−1

M is chosen in such a way that each marginal distribution has
variance 1. The excellent data collapse observed for these values of m∗ is a com-
mon feature of all the studied cases, although the matching is slightly better as the
system is larger and/or the dipolar moment is smaller.

The density distribution function corresponding to the values of temperature
and chemical potential which optimize the matching with the Ising magnetization
distribution function are shown at the right panels of Figs. 1 and 2 for m∗ = 1
and m∗ =

√
7, respectively. As expected, they cover a large range of densities,

and they become narrower as L∗ increases. Two characteristics are obvious from
their comparison: first the probability distributions at a given size shift towards
lower values of the density as the dipolar moment increases. On the other hand,
the critical distributions become more asymmetric for larger dipolar moment. Both
features are observed to vary smoothly with the reduced dipolar moment m∗ in
the considered range.

We summarize the values of the critical parameters obtained by our matching
procedure in Table 1. We confirm that the reduced temperature increases as the
dipolar moment increases, but the critical density decreases. We can also see that
the mixing parameter is of the same order as the reported for the pure square-
well fluid s = −0.025(4) [36], but it seems to decrease slightly for larger dipolar
moments, in agreement with the previous observation that the density probability
distributions become more asymmetric. However, the large uncertainties in the crit-
ical value of this parameter prevents us from giving a more categorical statement.
After locating the critical point, we obtained the liquid-vapor coexistence curves
by using the multiple-histogram reweighting technique described in the previous
section. The results are shown in Fig. 3, and they are in reasonable agreement with
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Table 1. Apparent critical parameters of the dipolar square-well

fluid with λ = 1.5. The 1σ statistical uncertainties refer to the last

decimal places.

(m∗)2 L∗ T ∗
c −µ∗

c ρ∗c −s

1 6 1.309(1) 2.9799(2) 0.306(5) 0.031(4)
8 1.311(1) 2.962(1) 0.305(2) 0.021(4)

10.86 1.309(1) 2.971(1) 0.305(1) 0.027(5)
∞ 1.309(1) - 0.305(1) -

2 6 1.460(1) 3.1123(7) 0.299(5) 0.027(2)
8 1.459(1) 3.095(1) 0.298(2) 0.028(2)

10.86 1.460(1) 3.0906(6) 0.296(1) 0.024(5)
∞ 1.460(1) - 0.294(1) -

3 6 1.624(1) 3.280(3) 0.287(5) 0.033(2)
8 1.627(3) 3.265(6) 0.286(2) 0.023(9)

10.86 1.627(1) 3.2689(8) 0.285(1) 0.031(6)
∞ 1.628(1) - 0.284(1) -

4 6 1.798(4) 3.460(7) 0.275(5) 0.031(2)
8 1.796(1) 3.488(2) 0.271(2) 0.032(2)

10.86 1.799(1) 3.452(2) 0.272(2) 0.030(7)
∞ 1.798(3) - 0.269(3) -

5 6 1.968(3) 3.658(10) 0.262(5) 0.032(1)
8 1.972(1) 3.657(2) 0.260(2) 0.031(3)

10.86 1.971(1) 3.633(2) 0.257(1) 0.035(2)
∞ 1.973(2) - 0.253(1) -

6 6 2.141(1) 3.824(3) 0.251(5) 0.033(2)
8 2.142(1) 3.881(4) 0.247(2) 0.033(1)

10.86 2.144(2) 3.795(5) 0.247(2) 0.036(4)
∞ 2.144(1) - 0.243(2) -

7 6 2.313(4) 4.018(3) 0.241(5) 0.033(2)
8 2.317(2) 3.973(6) 0.237(2) 0.033(1)

10.86 2.319(2) 4.011(6) 0.234(2) 0.035(2)
∞ 2.321(2) - 0.229(2) -

the data obtained by Monte Carlo simulations in the Gibbs ensemble in Ref. [22].
Fig.4 shows the reduced temperature in terms of the dipolar energy unit and the

reduced density in terms of the inverse of the squared value of the reduced dipolar
moment (i.e. the reduced value of the square-well depth ǫ in the dipolar energy
scale). The values of the reduced temperature for m∗ ≥ 2 are fitted quite nicely
by the straight line T̃c = 0.1713(7) + 1.116(3)/(m∗)2, so the extrapolated value
in the dipolar hard-sphere limit m∗ → ∞ is consistent with previous estimations
T̃c ∼ 0.15 − 0.16 reported in the literature [16, 18]. On the other hand, the critical
density decays much steeper than the critical temperature, so we are not able to
give an extrapolation for the dipolar hard sphere critical value from our results,
but in any case the values are still far away from the estimated critical density for
the dipolar hard-sphere fluid. This observation indicates that the considered range
for the dipolar moments is not broad enough to observe completely the crossover
to the regime in which the square well contribution may be completely neglected.

Finally we characterize the change of the microscopic structure as the dipolar
moment increases. For this purpose we run NV T Monte Carlo simulations with
N = 256 for each dipolar moment at corresponding states T = 0.9Tc and ρ = ρc/3
(vapour phase) and ρ = 2ρc (liquid state). In each simulation we move and reorient
each particle 105 times in average. The trial movement parameters are taken such to
get 40%-50% as acceptance rate. From each simulation we obtain some correlation
functions hl1l2l(r) obtained as projections of the pair distribution function on to
rotational invariants [38]. We pay special attention to the function h112 which
indicates the occurrence of nose-to-tail conformations:

h112(r) =
3〈∑i<j δ(rij − r)[3(m̂i · r̂ij)(m̂j · r̂ij) − m̂i · m̂j]〉

4πNρ∗r2
(5)

Additionally we perform an analysis of the cluster formation in the vapour and the
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Figure 3. Liquid-vapour coexistence curves for the dipolar square well fluid for λ = 1.5 and reduced
dipolar moments, from bottom to top, m∗ = 1,

√
2,
√

3, 2,
√

5,
√

6 and
√

7. Open symbols correspond
to our results with the multiple-histogram reweighting technique, and filled symbols correspond to the
coexistence curves for m∗ = 1,

√
2 and

√
3 obtained by Gibbs ensemble Monte Carlo simulations in Ref.

[22]. For comparison we include the coexistence curve for the square well (SW) fluid (m∗ = 0) obtained by
the multiple histogram reweighting technique [36] (stars) and by Gibbs ensemble simulations [37] (filled
diamonds).

average number of near neighbours of each particle. Two particles are considered
near neighbours if the distance between their center of masses is less than some cut-
off radius Rc which we take as 1.1σ. However, two near neighbours are considered to
be in the same cluster if their separation is less than Rc and (m̂i ·r̂ij)(m̂j ·r̂ij) < R2

α,
where the angular cutoff is taken to be Rα = 0.8. In this way we identify the chain-
like clusters formed in the vapour phase. Other criteria have been proposed in the
literature [15], and although the obtained results depend on the considered cutoffs,
the qualitative picture is preserved.

Plots of the correlation functions h112 for the vapour and liquid phases are shown
in Fig.5. A sudden increase (over one decade) of the value at contact r = σ is
observed in both phases as the dipolar moment changes from m∗ = 1 to m∗ =√

7 (note the log scale for h112). On the other hand, the function becomes more
structured in both phases as a second peak at around r ≈ 2σ is already observed
for m∗ = 2 in the vapour phase (although is already present in the liquid phase
for m∗ = 1), and even a third one emerges in the vapour phase m∗ =

√
7. The low

densities involved in the vapour phase preclude a packing origin of this structure,
but to the onset of chaining of the particles. This is confirmed by the peak positions
(multiples of σ) and by the cluster analysis. In the left panel of Fig. 6 we plot
the reduced densities of particle clusters in the vapour phase, It is clear that the
population of dimers and larger clusters increases with the dipolar moment. On the
other hand, the distribution of particles with N near neighbours xN becomes flatter
for small N ≤ 2, which is another indication of the formation of chains. However
even for m∗ =

√
7 most of the particles are isolated. Larger dipolar moments m∗

are needed to observe chaining in the near-critical vapour phase.

4. Conclusions

In this paper we have done a GCMC simulation study of the liquid-vapour critical-
ity and coexistence of the dipolar square-well potential. We have obtained accurate
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Figure 4. Plot of the dipolar-reduced critical temperature T̃c (upper panel) and the reduced temperature
ρ∗c (lower panel) as a function of (m∗)−2. The arrows indicate the previous estimations of the critical
temperature and density for the dipolar hard sphere fluid [16, 18]. The lines which join the data points are
only for eye guide.
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Figure 5. (a): Plot of the correlation function h112 at the vapour phase in a corresponding
state T = 0.9Tc and ρ = ρc/3 for m∗ = 1 (dotted line), m∗ = 2 (dashed line) and m∗ =√

7 (continuous line). (b): Plot of the correlation function h112 at the liquid phase in a
corresponding state T = 0.9Tc and ρ = 2ρc. The meaning of the symbols is the same as in
the left panel.

estimations of the critical parameters by using multiple-histogram reweighting and
mixed-field finite-size scaling methods. Additionally we have obtained the coexis-
tence curves and characterized the microscopic structure of the coexisting phases.
Although the temperature has the expected trend with the dipolar moment and its
extrapolation to the dipolar hard-sphere case is consistent with previous estima-
tions, the obtained values of critical density are still far from the predicted value
for the dipolar hard-sphere fluid. This observation, together with the low cluster-
ing observed in the vapour phase even for m∗ =

√
7, shows that the considered

range of dipolar moments is not broad enough to crossover to the regime where
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Figure 6. (a): Plot of reduced cluster densities ρ∗
N

≡ ρN σ3 as a function of the number of

particles N which compose them, for m∗ = 1 (circles), m∗ = 2 (triangles) and m∗ =
√

7
(squares). The lines are only for eye guide. (b): Plot of fraction of particles xN with N near
neighbours. The meaning of the symbols is the same as in the left panel.

the dispersive interactions can be neglected. This can be rationalized by the fact
that close to criticality and for the larger considered dipolar moment the reduced
value of the square-well depth (in terms of the dipolar energy unit) ǫ̃ = 1/(m∗)2 is
of the same order as the thermal energy T̃ ∼ T ∗

c /(m∗)2, although both are smaller
than unity. This fact suggests we should continue for larger values of m∗ to get
faithful extrapolations of the critical parameters in the dipolar hard-sphere model.
As the acceptance rate is lowered when we increase the dipolar moment, we antic-
ipate that we will need configurational bias techniques in order to get results with
the same accuracy as the considered in this paper. This issue is beyond the scope
of this paper, and further work is needed in that direction to solve convincingly
the question of whether the dipolar hard-sphere model has liquid-vapour phase
transition or not.
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