
HAL Id: hal-00513281
https://hal.science/hal-00513281

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Crystal Stability of Diblock Copolymer Micelles in
Solution

John Jairo Molina, Carlo Pierleoni, Barbara Capone, Jean-Pierre Hansen, Igor
Oliveira

To cite this version:
John Jairo Molina, Carlo Pierleoni, Barbara Capone, Jean-Pierre Hansen, Igor Oliveira. Crystal
Stability of Diblock Copolymer Micelles in Solution. Molecular Physics, 2009, 107 (04-06), pp.535-
548. �10.1080/00268970902877779�. �hal-00513281�

https://hal.science/hal-00513281
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

Crystal Stability of Diblock Copolymer Micelles in Solution 
 
 

Journal: Molecular Physics 

Manuscript ID: TMPH-2009-0035.R1 

Manuscript Type: Special Issue Paper - Dr. Jean-Jacques Weis 

Date Submitted by the 
Author: 

05-Feb-2009 

Complete List of Authors: Molina, John; Université Pierre et Marie Curie, Laboratoire Liquides 
Ioniques et Interfaces Chargées; University of Rome "La Sapienza", 
Physics Dept. 
Pierleoni, Carlo; University of L'Aquila, CNISM and Physics Dept. 
Capone, Barbara; Cambridge, University Chemical Laboratory 
Hansen, Jean-Pierre; Cambridge, University Chemical Laboratory; 
Université Pierre et Marie Curie, Laboratoire Liquides Ioniques et 
Interfaces Chargées 
Oliveira, Igor; University of Twente, Computational Biophysics; 
University of Rome "La Sapienza", Physics Dept. 

Keywords: diblock copolymers, micelles, self-aggregation, effective potentials 

  

Note: The following files were submitted by the author for peer review, but cannot be converted 
to PDF. You must view these files (e.g. movies) online. 

TMPH-2009-0035.R1.tar.gz 

 
 

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics



For Peer Review
 O

nly

 

Page 1 of 22

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

February 5, 2009 14:39 Molecular Physics crystal-paper-all

Molecular Physics
Vol. 00, No. 00, Month 200x, 1–23

FULL ARTICLE
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We investigate the relative stability of the disordered phase and of four crystal structures
of micelles resulting from the self-assembly of AB diblock copolymers in semi-dilute solu-
tions. Starting from the micelle-micelle pair distribution functions determined previously in
the disordered fluid phase by Monte Carlo simulations of a coarse-grained model of diblock
copolymers, we extract effective pair potentials v(r) between micelle centres of mass by a novel
extrapolation/inversion technique. These v(r) are used in extensive Monte Carlo simulations
of micellar assemblies to determine the structures, mean-square displacements, and free ener-
gies of four ordered phases including FCC, BCC, diamond and the less common A15 crystals.
For micelle densities close to melting, we predict the most stable structures to be FCC and
A15, with the latter phase having the lowest free energy for micelles with small cores and
large coronae, in agreement with recent predictions for micelles forming in copolymer melts
(G.M. Grason et al., Phys. Rev. Lett. 91, 058304 (2003))

Keywords: diblock copolymers; micelles; self-aggregation; effective potentials

1. Introduction

Diblock copolymers are known to self-assemble into ordered or disordered supra-
molecular aggregates or microphases, including micelles, lamellae, cylinders or bi-
continuous structures, both in the melt [1, 2] and in selective solvents [3, 4]. Self-
consistent mean-field theory, which is well adapted to melts [5], does not apply to
semi-dilute solutions of copolymers, where concentration fluctuations are dominant,
as signalled by a large osmotic compressibility. Molecular simulation is well adapted
to copolymer solutions, but due to the large number of copolymers required to ob-
serve micro-phase separation, simulations of fully atomistic, monomer-level models
are restricted to rather short copolymer chains [6–8].

To overcome this limitation and model long chains, we have developed a system-
atic coarse-graining strategy which reduces the computational effort by orders of
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magnitude [9–11]. The basic idea generalises earlier work on homopolymer solu-
tions, where each polymer is represented by a single blob, and interactions between
polymer coils reduce to an effective pair potential between the centres of mass (CM)
of the coils [12–14].

The effective pair potential v(r) is calculated from a fully microscopic, monomer-
level simulation of two isolated polymer chains (corresponding to the infinite dilu-
tion limit); v(r) is easily extracted as the potential of mean force associated with
the measured CM-CM pair distribution function g(r), according to:

v(r) = −kBT ln g(r) (1)

where kB is the Boltzmann’s constant and T the temperature. Even for polymers
with excluded volume correlations between monomers, v(r) turns out to be soft
and finite at full overlap (i.e. for r = 0) [13–15]. In fact v(r) turns out to be ac-
curately represented by a gaussian function of amplitude v(r = 0) ≃ 2kBT and
width practically equal to the polymer radius of gyration Rg. At higher polymer
concentration v(r) is extracted from g(r) by the hypernetted chain (HNC) integral
equation [16] and turns out to depend weakly on concentration [14]. This concen-
tration dependence of the effective interaction may be eliminated by switching to
a multi-blob representation of long polymer chains [17].

Returning to copolymers, the minimal coarse-grained model of an AB diblock
copolymer is a “soft dumbbell” representation, where each of the two blocks is rep-
resented by a single effective blob, and the two blobs are tethered by an entropic
spring [9–11]. In references [10] and [11], this representation was applied to a simple
athermal copolymer model, mimicking AB copolymers in a selective solvent, with
ideal (random walk) A-blocks (corresponding roughly to θ-solvent conditions) and
self-avoiding walk (SAW) B-blocks (corresponding to good solvent conditions); A
and B blocks are taken to be mutually avoiding, and the corresponding copoly-
mer solution is referred to as the ISS model. The model is characterised by three
effective intermolecular blob-blob pair potentials vAA(r), vAB(r), and vBB(r), and
by an intramolecular tethering potential φAB(r), which are determined from the
low density intermolecular pair distribution functions gαβ(r) and the intramolecu-
lar distribution function sAB(r) by an exact inversion procedure [9]. The resulting
soft-dumbbell representation was explored by extensive Monte Carlo (MC) simu-
lations in refs. [10] and [11] for several values of the size ratio:

f =
LA

LA + LB
(2)

where LA and LB are the lengths of the A and B strands. It was shown that at an
f -dependent critical micellar concentration (cmc), the copolymers self-assembled
into polydisperse spherical micelles with A-cores and B-coronae, and typical ag-
gregation numbers n ≃ 100. The micelles first arranged into a disordered, fluid-like
structure, but upon further increasing the copolymer concentration, the micelles
are found to undergo a disorder-order transition to a crystalline structure. The
symmetry of the crystal which is observed is strongly dependent on the number of
self-assembled micelles which form in the simulation box and the compatibility of
the structure with the imposed periodic boundary conditions [10, 11]. The crystals
which form may hence be merely metastable, and it would clearly be of inter-
est to determine the most stable (lowest free energy) structure at a given micelle
density as determined by the copolymer concentration and the mean aggregation
number n. This can be achieved by going one step further in the coarse-graining
strategy, i.e. by determining the effective pair interaction between micelle CM’s,
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Crystal Stability of Diblock Copolymer Micelles 3

and then by carrying out MC simulations of large arrays of micelles to determine
the relative stability of standard crystal structures, including FCC, BCC, and dia-
mond structures, as well as the less familiar A15 structure [18, 19], which has been
shown to be the most stable micellar crystal in the melt by a geometric argument
and a self-consistent mean-field calculation [19–21]. The same phase has been
shown to be stable for star polymer solutions at very high densities, at
least at zero temperature [22]. Since these arguments do not, a priori, apply
to diblock copolymer solutions, the main objective of the present paper is to
investigate the stability of the above crystal lattices by numerical simulation. The
inversion procedure used to extract the effective micelle-micelle pair potential is
detailed in Section 2. MC results for the micelle pair distribution functions in the
ordered phases and for the Lindemann ratios are presented in Section 3 while free
energy calculations are detailed in Section 4. The predictions for the relative stabil-
ities of the four crystal structures and the disordered (fluid) phase are summarised
in Section 5 while a discussion and conclusions are presented in Section 6.

2. Extracting effective pair potentials from structural data

In references [10] and [11] we reported the results of extensive MC simulations of
systems of 5000 “soft dumbbells” representing ISS diblock copolymers over a range
of size ratios 0.2 ≤ f ≤ 0.8 and of copolymer densities ρ/ρ∗, where ρ is the number
of copolymers per unit volume, while ρ∗ = 3/4πR3

g is the overlap density, i.e.

the density at which neighbouring copolymers start to overlap; Rg is the radius of
gyration of an isolated diblock copolymer, and will henceforth be our unit of length.
Note that for sufficiently long copolymers (L = LA + LB ≫ monomer size), their
size uniquely determines Rg, so that any copolymer size dependence scales with
Rg. For copolymer concentrations beyond the cmc, when most copolymers have
aggregated into micelles, the MC simulations yield the pair distribution function
g(r) of micelle CM’s. This g(r) must be understood as being averaged over all
micelles, irrespective of their size (i.e. their instantaneous aggregation number,
which fluctuates) and over all configurations of the remaining copolymers.

According to a uniqueness theorem [23] there is a unique effective pair poten-
tial associated with a measured g(r), irrespective of the microscopic Hamiltonian
governing the underlying physical system. We are hence faced with an inverse prob-
lem, namely how to extract the effective micelle-micelle pair potential from the pair
distribution function provided by the MC simulations of self-assembling soft dumb-
bells representing the diblock copolymers. Several inversion methods, usually based
on fluid integral equations, have been implemented in the past with varying degrees
of success [24–28]. The most accurate of the inversion schemes involves an itera-
tive predictor-corrector procedure based on MC simulations [26, 27]. All inversion
procedures require the input g(r) to be known over a wide range of inter-particle
distances, up to values of r where g(r) has converged to its asymptotic value 1.
This is unfortunately not the case for the micelle-micelle g(r) generated in the MC
simulations of references [10, 11] because of limitations on system size; even with
5000 copolymers, the number of micelles which form is of the order of 50, and for
such a system size, g(r) still differs significantly from 1 at densities close to freezing,
even at the largest accessible distance r = L/2, where L is the size of the cubic
simulation cell. Hence, before attempting an inversion, the MC data for g(r) must
be extended to distances r > L/2. Such an extension is easily achieved, provided
the underlying pair potential v(r) is known [29], which is precisely not the case in
the present situation.

We have overcome this problem by devising two independent extrapolation
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schemes. The first scheme is based on the observation that the static structure
factor S(k), which is the Fourier transform (FT) of the pair correlation func-
tion h(r) = g(r) − 1, is expected to behave smoothly at small wavenumbers
k ≃ kmin = 2π/L, which is the smallest wavenumber accessible in direct MC
estimates of S(k) calculated via [16]:

S(k) =
1

N

〈
ρ~kρ−~k

〉

= 1 +
1

N

〈
∑

i6=j

ei~k·(~ri−~rj)

〉 (3)

where N is the mean number of micelles in the simulation box. If the (unknown)
pair potential is assumed to be of sufficiently short range, then S(k) admits a
Taylor expansion in even powers of k at small k:

S(k) = S0 + S2k
2 + S4k

4 + S6k
6 + S8k

8 + O(k10) (4)

where S0 = S(k = 0) is related to the osmotic compressibility of the micelles. If

Smod(k) refers to the above Taylor expansion, and the MC data for k ≥ k̃ are
referred to as Sdat(k), then the total structure factor is taken to be:

S(k) =

{
Smod(k), k < k̃

Sdat(k), k ≥ k̃
(5)

with k̃ chosen to ensure continuity of S(k). The corresponding pair correlation
function is then given by the FT of (5)1, i.e.:

ρh(r) =
4π

(2π)3

{∫ ek

0
dk

k sin (kr)

r
[Smod(k) − 1]

+

∫ ∞

ek
dk

k sin (kr)

r
[Sdat(k) − 1]

} (6)

If hdat(r) are the MC data for the pair correlation function, available up to
r = L/2, we define the two functions:

Φdat(r) = ρhdat(r) −
4π

(2π)3

∫ ∞

ek
dk

k sin (kr)

r
[Sdat(k) − 1] (7a)

Φmod(r) =

∫ ek

0
dk

k sin (kr)

r
[Smod(k) − 1] (7b)

In view of eq. (6), we now require that:

Φdat(r) = Φmod(r) (8)

1in order to perform the Fourier integrals in eq. (6), Sdat(k) was determined on a uniform grid by a cubic
spline interpolation of the coarser grid of MC data.
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Crystal Stability of Diblock Copolymer Micelles 5

This is achieved by minimising the following weighted mean square deviation with
respect to the expansion coefficients S2l in eq. (4):

χ2 =

kmax∑

k=kmin

[Sdat(k) − Smod(k)]2

δS2
dat(k)

+

rmax∑

r=rmin

[Φdat(r) − Φmod(r)]
2

δΦ2
dat(r)

(9)

where δS2
dat(k) and δΦ2

dat(r) are statistical errors of the MC data; kmin = 2π/L,

kmax = k̃, rmax = L/2 and rmin is the distance at which the MC-generated g(r)
differs significantly from zero.

An alternative extrapolation procedure is based on the assumption that the
(unknown) v(r) is of finite range, i.e. v(r) = 0, r > rc. If rc is the node of the MC-
generated correlation function hdat(r) closest to L/2, then we adopt the following
(approximate) closure relation:

{
h(r) = hdat(r) ; r < rc

c(r) = 0 ; r > rc

}
(10)

where c(r) is the direct correlation function related to h(r) by the familiar Ornstein-
Zernike (OZ) relation [16] (in k-space):

ĥ(k) = ĉ(k) + ρĉ(k)ĥ(k) (11)

Eqs. (10) and (11) form a closed set, which can be solved by iteration to yield
h(r) for r > rc and c(r) for r < rc. The two extrapolation procedures yield similar
results. Yet another extrapolations scheme, based on fitting the available
MC data to an exponentially damped sinusoidal function, was found to
be inadequate because the simulations yield too few oscillations in g(r),
due to the small system size. Once h(r) and c(r) are known for all r, the
effective potential between micelles can be extracted from the HNC closure:

v(r) = kBT [h(r) − c(r) − ln (1 + h(r))] (12)

This closure is only approximate, and has proved inadequate in earlier attempts
to extract pair potentials from structural data of atomic liquids, like liquid metals.
However the effective interaction between micelles is expected to be much softer
than atom-atom potentials and to stay finite, even at full overlap, since the pair
interactions of the self-assembled soft dumbbells are gaussian-like, with a range
≃ Rg and an amplitude ≃ kBT . The HNC closure has been shown to be very
accurate for such soft, bounded potentials [30], and hence we believe that eq. (12)
is sufficient to extract reliable estimates of v(r) without resorting to more advanced
inversion schemes which are necessary for strongly repulsive potentials between
atoms [26, 27].

The accuracy of the HNC inversion procedure is illustrated in Fig. 1, where the
pair distribution function g(r) determined in the dumbbell level MC simulations,
which is the starting point of our inversion procedure, is compared to the g(r)
calculated with the resulting effective micelle-micelle potential v(r) (shown in Fig.
3). The agreement is seen to be excellent (a similar conclusive comparison for
f = 0.5 and ρ/ρ∗ = 5 was made in ref. [10] and for f = 0.6 and ρ/ρ∗ = 3.5 in
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ref. [11]). It is worth stressing that micelle-level MC simulations are considerably
faster (by two orders of magnitude) than the effective dumbbell-level simulations.

A comparison between the v(r) extracted from MC data for g(r) via eqn. (12),
based on the two extrapolation procedures described earlier is made in Fig. 2.
The agreement is seen to be quite satisfactory, and we will henceforth only present
results obtained from MC simulations using the effective potentials derived from the
S(k) extrapolation scheme. As expected, the effective potential is seen to be quite
soft. Nonetheless there remain large uncertainties for micelle CM-CM distances r .
2Rg, because the pair distribution function g(r) is practically zero when micelles
overlap strongly, due to a potential barrier of several kBT . This is not a major
problem for our subsequent results, because strong micelle overlap is a very rare
event due to the strong (but finite) repulsion between the coronae.

It is important to stress that the extrapolation and inversion schemes of the
pair structure only apply to disordered (fluid) states of the micelle solutions, since
they explicitly assume continuous translational invariance, i.e. a homogeneous one-
particle density, which does not hold for ordered (crystalline) states. In the remain-
der of this paper we will use the micelle-micelle g(r) generated in the MC simu-
lations of references [10] and [11] at the highest f -dependent densities where no
spontaneous crystallisation of the micelles was observed, to determine the effective
pair potential v(r) for three values of f (f = 0.4, 0.5, and 0.6). The corresponding
effective pair potentials are plotted in Fig. 3, together with a v(r) at a lower den-
sity (for f = 0.4), to illustrate the strong density dependence of v(r). For r . 3Rg,
where statistical uncertainties become very large, the potentials are extrapolated
linearly to r = 0, yielding values at full overlap of a few tens of kBT . It is these po-
tentials which were used to obtain the data reported in the following sections. We
have checked that different extrapolations do not lead to any significant differences
in the results.

3. Micellar crystal structures and Lindemann ratios

The effective micelle-micelle potentials determined in Section 2 have served as in-
put in extensive MC simulations of samples of several hundred micelles confined to
a periodically repeated cubic simulation cell. In order to explore the four crystal
structures FCC, BCC, A15, and diamond (2 interpenetrating FCC lattices dis-
placed along the body diagonal of the unit cell by 1/4 of its length), we have
placed N effective micelles on the equilibrium lattice sites for each of these crystal
structures to construct initial configurations. Thereafter new configurations were
generated and accepted or rejected according to the usual Metropolis algorithm
[31]. For convenience we use the reduced copolymer density ρ/ρ∗ = 4πρR3

g/3 as
density variable. The corresponding reduced micelle density follows by dividing the
reduced copolymer density by the mean aggregation number n. For the original sys-
tem of soft dumbbells the initial configuration is irrelevant to study the fluid phase
of self-assembled micelles. However the spontaneous crystallisation of micelles upon
increasing density is difficult to trigger and in general provides imperfect structures
due to finite size effects. In order to study the properties of crystalline states of
different symmetry we have prepared the system in those states as follows. We
have placed the system in a periodic external field, acting only on the A blob of
the dumbbells, which is attractive and has the symmetry of the required crystalline
structure. Starting from a random configuration of dumbbells in the presence of
such a field we have observed, during a standard Monte Carlo run, a rapid forma-
tion of polydisperse micelles around the lattice sites for all structures considered
except the diamond structure. In the latter case the system prefers to occupy only
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the sites of one of the two interpenetrating FCC lattices rather than forming smaller
micelles on each lattice site. This is strong indication that the diamond structure is
not a stable one for our system. Upon releasing the external field, crystalline arrays
of dumbbell micelles in FCC, BCC and A15 structures remain stable if the density
is large enough (see discussion below). At lower density the prepared crystals are
found to melt rapidly leading the fluid equilibrium state.

Fig. 4a shows the micelle-micelle pair distribution function in the effective micelle
representation calculated with an initial FCC configuration (represented by the
vertical segments of length equal to the coordination numbers). Clearly the initial
crystal has melted and g(r) is typical of a dense fluid. Identical g(r)’s (within the
very small statistical uncertainties) are obtained starting from each of the perfect
crystal configurations.

Fig. 4b shows the corresponding structure factor S(k). The amplitude of the main
peak is close to 2.85 which suggests, according to the Hansen-Verlet criterion [32],
that the liquid is very close to freezing. Fig. 4b also shows S(k) obtained by a full
soft dumbbell simulation. Because the latter is much more computer intensive, the
statistical uncertainties are much larger, but the agreement between the structure
factor, obtained within the two representations, is excellent, vindicating once more
our coarse-graining strategy and the inversion procedure. The good agreement
between the two representations is observed throughout the micellar liquid phase.
An example of a state (f = 0.4, ρ/ρ∗ = 5) close to the cmc is shown in Fig. 5.
Near the cmc, S(k) exhibits a central (k = 0) peak associated with the incipient
clustering of the dumbbells. It is interesting to note that the coarse-grained effective
micelle representation clearly preserves this feature.

Pair distribution functions obtained, starting from the four crystal structures as
initial configurations, for f = 0.4 but at the higher density ρ/ρ∗ = 7 are shown in
Fig. 6. The peak positions for the FCC, BCC, and A15 crystals are seen to coincide
with the corresponding positions of neighbouring shells in a perfect lattice. This
is no longer true when the starting configuration is a perfect diamond lattice. The
final structure is clearly no longer crystal like, but resembles that of a disordered,
glassy system. The diamond structure is thus unstable, and this is confirmed by the
time evolution of the mean-square displacement of the micelles from their initial
positions, to be discussed later in this Section. Note that a similar instability has
been found for the full dumbbell representation as mentioned above.

Very similar behaviour is observed for f = 0.5, ρ/ρ∗ = 6 and f = 0.6, ρ/ρ∗ = 4
(not shown). While the FCC, BCC, and A15 structures appear to be stable under
those conditions, the diamond lattice always melts into a disordered structure.
The reason for this appears to be the low (four-fold) coordination which forces the
first shell of neighbours to be at a distance from a central micelle well inside the
repulsive part of the effective pair potential v(r), while for the other three crystal
structures, the corresponding distances fall into the attractive part of v(r).

The previous observations are confirmed by inspection of the static structure
factor S(k), shown in Fig. 7 for f = 0.5, ρ/ρ∗ = 6 for both the soft dumbbell
and the effective micelle representations. The agreement between both sets of data
is seen to be reasonable, keeping in mind that the effective micelle representation
ignores the polydispersity of micelles observed in the full dumbbell representation.

The S(k) of the FCC, BCC, and A15 crystals are dominated by Bragg peaks
at their expected locations, while the structure factor resulting from an initial
diamond structure no longer exhibits Bragg peaks, but resembles that of a dense
disordered fluid or glass. Similar behaviour is observed for the other two cases
studied, f = 0.4, ρ/ρ∗ = 7 and f = 0.6, ρ/ρ∗ = 4. Within harmonic theory, the
amplitude of the Bragg peaks is governed by the Debye-Waller factor proportional
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to the mean-square displacement of particle positions ~ri from the equilibrium lattice
sites ~ri,0:

W =
k2

6

〈
γ2
〉

=
k2

6

〈
1

N

N∑

i=1

(~ri − ~ri,0)
2

〉
(13)

namely [33]:

S(k) = 1 + (N − 1) e−2W (k) (14)

If first-order anharmonic corrections are included, the amplitude of the Bragg peaks
is determined by [34]:

S(k) = 1 + (N − 1) exp



−k2

〈
γ2
〉

3
+

κk4

12

(〈
γ2
〉

3

)2


 (15)

where the non-gaussian parameter κ is:

κ = 3

( 〈
γ4
〉

〈γ2〉2
− 1

)
(16)

By fitting the MC S(k) data to the functional forms (14) or (15) we have ex-
tracted estimates of the mean-square displacements

〈
γ2
〉
, which can be compared

to the values measured directly in the simulations. The latter estimates, plotted
against the number of MC configurations, are shown in Fig. 8, in the form of the
dimensionless Lindemann ratio,

L =

√
〈γ2〉
d

(17)

where d is the nearest neighbour distance in the crystal lattice at a given micelle
density. In all three cases shown, L is seen to stabilise rapidly at a constant value for
the FCC and A15 crystals, while it grows continuously with MC “time” when the
initial configuration is the diamond structure, confirming the fact that the latter
is unstable i.e. melts into a disordered structure. The BCC structure is somewhat
intermediate; for f = 0.5 and ρ/ρ∗ = 6, the corresponding L stabilises rapidly,
but at a value nearly 20% higher than for FCC and A15. In the case of f = 0.4,
ρ/ρ∗ = 7, LBCC is more than twice as large as the corresponding FCC and A15
values, and may eventually diverge, suggesting that the BCC phase may only be
metastable under those conditions. Finally, for f = 0.6 and ρ/ρ∗ = 4, LBCC first
appears to stabilise at a value about 20% above those for FCC and A15, but
when the MC run is extended to longer “times”, LBCC is eventually seen to drift
continuously to larger values, suggesting that the BCC phase is unstable under
those conditions.

To summarise the above results, we have found that in the three cases which
we have examined in detail, the diamond structure is always highly unstable while
the FCC and A15 phases are always stable. The BCC phase is stable for f = 0.5,
ρ/ρ∗ = 6, metastable (and possibly unstable) for f = 0.4, ρ/ρ∗ = 7, and unstable
for f = 0.6, ρ/ρ∗ = 4. According to the Lindemann melting criterion, a crystal
will melt when L ≃ 0.15 (this value is not universal, but depends somewhat on
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the interatomic forces) [16]. We may conclude accordingly that the states f = 0.4,
ρ/ρ∗ = 7 and f = 0.5, ρ/ρ∗ = 6 are well inside the stable FCC and A15 crystal
phases, or alternatively that these crystals will melt at somewhat lower micelle
densities, while the state f = 0.6, ρ/ρ∗ = 4 is close to melting of the FCC and A15
crystals.

In Table 1 we compare the Lindemann ratios L obtained from direct MC esti-
mates to those deduced from an analysis of the structure factors based on eqs. (14)
and (15). Good agreement between the two estimates is only achieved when the
anharmonic correction (eq. (15)) is taken into account. A reasonable agreement
is also observed between the results of the effective micelle and the full dumbbell
representations for all structures, confirming the validity of the coarse graining
strategy in the symmetry broken phase.

4. Free Energy Calculations

In order to assess the relative stabilities of the FCC, A15, and BCC crystal phases,
and of the disordered (liquid) micellar phase, we have computed the Helmholtz
free energies of all competing phases for the three (f, ρ/ρ∗) states considered in
the previous Section. Here we limit our study to the effective micelle representation.
A free energy calculation for the full dumbbell representation, using a novel method
for cluster crystals [35], would be much more demanding and is left for future work.

Since the free energy F at a given state point is not expressible as a Boltzmann
weighted statistical average, it cannot be estimated in a single MC simulation. The
most direct and robust method is to evaluate F by thermodynamic or Kirkwood
coupling constant integration along a reversible path, starting from a reference
state point for which the free energy is known [31, 32]. For the free energy of the
disordered (fluid) phase, it is natural to take a low density fluid as a reference, for
which the free energy can be estimated from the virial expansion [16]. Thermody-
namic integration then links the free energies of the low (ρII) and high density (ρI)
states via:

βF (ρI , T )

N
=

βF (ρII , T )

N
+

∫ ρI

ρII

dρ′
βP (ρ′, T )

ρ′ 2
(18)

where P denotes the pressure, which is easily estimated by MC for each interme-
diate density ρ′ using the virial theorem [16, 31].

However the effective potentials determined in Section 2 exhibit an attractive
well of depth ǫ, such that ǫ/kBT & 1 (cf. Fig. 3); it is hence to be expected that
the thermodynamic path in eq. (18) will cross a vapour-liquid coexistence line, and
will hence no longer be reversible. One way to overcome this difficulty is to replace
the thermodynamic path (18) along a single isotherm, by two successive paths,
one along a higher (supercritical) temperature TII to go from the low density state
(ρII , TII) to the high density state (ρI , TII), and a second path along the isochore
ρ = ρI , to link the high temperature state (ρI , TII) to the final temperature state
(ρI , TI). Along the latter path the thermodynamic variable to be integrated is
the internal energy U = ∂ (βF ) /∂β, so that the final expression linking the free
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energies of the reference and actual states is:

βIF (ρI , TI)

N
=

βIIF (ρII , TII)

N
+

∫ ρI

ρII

dρ′
P (ρ′, TII)

ρ′ 2

+

∫ βI

βII

dβ′ U(ρI , β
′)

N

(19)

The free energies of the initial low density, high temperature state is easily eval-
uated using the second virial coefficient (B2) approximation for the excess free
energy:

βIIF
ex(ρII , TII)

N
= B2(TII)ρII (20)

where B2 is calculated using the relevant effective pair potential, βIIv(r) =
(βII/βI)βIv(r), with βIv(r) the dimensionless effective pair potential appropri-
ate for the final state of interest.

An alternative procedure, which short-cuts the first part of the reversible path
(from (ρII , TII) to (ρI , TII)) is to use the Widom particle insertion method, which
yields the excess part of the chemical potential βIIµ

ex(ρI , TII), in a single MC run
[31]. The method works well at high temperatures, because of the weakness of the
reduced effective potential βIIv(r); it would be inadequate at the temperature of
interest, when βI >> βII . The excess Helmholtz free energy βIIF

ex(ρI , βII)/N
follows then directly from the thermodynamic relation:

βF ex

N
= βµex − βP ex

ρ
(21)

To evaluate the free energies of the three stable or metastable crystalline phases
(FCC, A15 and BCC), we have used the Frenkel-Ladd method [36], which takes a
harmonic Einstein crystal as reference system. The total interaction energy of the
Einstein crystal, made up of N independent harmonic oscillators is of the form:

UE(~rN ) = EM + UH(~rN )

= U(~rN
0 ) +

α

2

N∑

i=1

(~ri − ~ri,0)
2

(22)

where the ~ri,0 are the equilibrium lattice positions of the particles, EM = U(~rN
0 ) is

the Madelung energy (the total energy of a perfect crystal), while UH(~rN ) is the
harmonic energy, with α an appropriate spring constant. If,

U(~rN ) =
∑

i<j

v (|~ri − ~rj |) (23)

denotes the total interaction energy of N micelles interacting by the effective pair
potential v(r), one introduces a continuous set of systems intermediate between
the Einstein crystal and the system of interest, with total potential energy:

Uλ(~rN ) = UE(~rN ) + λ
[
U(~rN ) − UE(~rN )

]
(24)

where, by varying the dimensionless coupling constant λ from λ = 0 to λ = 1 we
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continuously switch from the reference system to the full system. The free energy
of the latter is then given by the following Kirkwood λ-integration [16, 36]:

F = FE +

∫ 1

0
dλ
〈
U(~rN ) − EM − UH(~rN )

〉
λ

= FE + ∆F

(25)

where the ensemble average < · · · >λ is weighted by the Boltzmann factor involving
the interaction energy Uλ(~rN ), defined in eq. (24). This average is computed by
MC simulations for a discrete number of values of λ (typically 4 − 8). The free
energy of the Einstein crystal is known analytically and the integration over λ is
calculated numerically, using gaussian quadrature.

To improve the numerical accuracy it is convenient to implement the simulations
for a fixed CM of the total system of N micelles, thus preventing the crystal as a
whole from drifting when λ → 1, and the harmonic restoring forces deriving from
UH(~rN ) no longer operate [36]. Details of the method, together with the expression
for the corresponding constrained Einstein crystal, can be found in reference [31].
The excess free energy per micelle is given by

βF ex

N
=

β∆FCM

N
+

βEM

N
−
(

1 − 1

N

)
ln

[
ρ

(
2π

βα

)3/2
]
− 2

N
ln N− 1

N
ln

√
2πnWS+1

(26)
where ∆FCM is the ensemble average defined in (25) evaluated from MC simula-
tions for a fixed CM and nWS is the number of micelles per Wigner-Seitz cell1.

The numerical results for the free energies based on the methods described in
this Section are presented next.

5. Competing micellar phases

We now turn to numerical applications of the free energy expressions of the previous
Section, in order to determine the relative stabilities of the disordered and ordered
(FCC, A15, BCC) phases. As shown in Section 3, the diamond structure is unstable
against melting, at least for the three states (f ; ρ/ρ∗) examined in the present work.

Consider first the free energy of the disordered (fluid) phase, which is calculated
via eq. (19). The reference state is chosen to be at inverse temperature βII =
βI/15 and density ρII = ρI/100, and only excess (non-ideal) contributions are
considered; the ideal contribution to the free energy is trivially known. Detailed
results for the various contributions to βF ex/N (eq. (19)) are given below for the
state (0.5; 6). Using 33 and 14 equally spaced intervals for the integration over
density and temperature, respectively, we found the following estimates for the
dimensionless integrals:

Iρ =

∫ ρI

ρII

dρ′
βIIP

ex(ρ′, TII)

ρ′ 2
= 0.1142(1) (27)

Iβ =

∫ βI

βII

dβ′ U ex(ρI , β
′)

N
= −12.957(1) (28)

1We take nWS = 1, which means that eq. (26) gives an upper bound to F ex for the A15 lattice
(since it is not a Bravais lattice); this correction is negligible.
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The excess free energy of the reference state is calculated from eq. (20); a simple
quadrature yields the second virial coefficient for the state under consideration,
with the result B2 = −5.2695R3

g , so that:

βIIF
ex(ρII , TII)

N
= −0.0007 (29)

gathering results we find the total excess free energy of the liquid phase:

βF ex
liq

N
= −12.843(1) (30)

As explained in Section 4, the free energy of the intermediate state (ρI , βII) may
also be estimated by the Widom insertion method (eq. (21)), which yields:

βIIF
ex(ρI , βII)

N
= −0.123(2) (31)

and should be compared to the value −0.113(0) obtained by thermodynamic in-
tegration (Iρ + B2ρI). The agreement is seen to be satisfactory, and the small
discrepancy on this small contribution leads to an error of less than 0.1% on the
total excess free energy.

We have carried out similar calculations for the other (f, ρ/ρ∗) states, and the
results will be summarised in Table 3.

We next turn to the free energies of three crystalline phases, which were calcu-
lated from eq. (26). Numerical values of various terms are provided in Table 2 for
the state (f = 0.5; ρ/ρ∗ = 6). The total excess free energies of the disordered and
ordered phases for all three (f, ρ/ρ∗) state points are summarised in Table 3. Note
that the ideal contribution to the free energies, is not included, because βF id/N
is identical for all phases at a given density. For all three states, the free energies
of the FCC and A15 phases are significantly lower than those of the liquid and of
the BCC phase; the latter melts for f = 0.6, ρ/ρ∗ = 4, and is nearly unstable for
f = 0.4, ρ/ρ∗ = 7. In the latter case, the free energy of the A15 phase lies well
below that of the FCC phase, and A15 is hence the stable phase. Note that the A15
phase has the lowest Madelung energy, but the rather large difference in Madelung
energies of the FCC and A15 phases is partly cancelled by the larger entropy (the
sum of the negative excess term listed in Table 3 and the positive ideal term) of the
FCC phase. In the case f = 0.5, ρ/ρ∗ = 6, the free energy differences are smaller ,
but A15 still appears to be the most stable phase. In the case f = 0.6, ρ/ρ∗ = 4,
the free energies of the FCC and A15 phases are practically identical and only
slightly lower than the corresponding free energy of the liquid phase. Note that in
this case the BCC crystal eventually melts (cf. Fig. 8), while the FCC and A15
phases are expected to be close to melting, in view of the value L ≈ 0.14 of the
Lindemann ratio .

6. Discussion and Conclusion

We have investigated the stability of ordered phases of micelles resulting from
the self-assembly of a simple model of diblock copolymers in a selective solvent.
Our analysis is based on a coarse-grained representation of the micelles, which
are treated as monodisperse soft, spherical particles interacting via central forces
which derive from an effective, state-dependent potential v(r). The latter is deter-
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mined by an inversion of the pair distribution function of micelles, averaged over
copolymer configurations. In order to cope with the relatively small numbers of mi-
celles (typically 50) generated in copolymer-level simulations, we have developed
a novel extrapolation/inversion scheme to extract reliable effective potentials from
structural MC data in the disordered (fluid) phase. The v(r) turn out to depend
sensitively on the copolymer size ratio f and on the overall copolymer density
ρ/ρ∗. This is not surprising, since the mean aggregation number n of the micelles
varies significantly upon varying these two basic parameters of the athermal ISS
model [11]. The soft effective repulsion between overlapping micelles may be ratio-
nalised in terms of the finite repulsive interaction between A and B blobs of the
self-assembling copolymers. The physical origin of the attraction between micelles
separated by more than their diameter is less obvious, and may be due to a combi-
nation of depletion of non-aggregated copolymers, and of exchange of copolymers
between neighbouring micelles which leads to fluctuations in their instantaneous
aggregation number.

The analysis of the micelle-micelle pair distribution functions, structure factors,
mean square displacements, and free energies generated by extensive MC simula-
tions based on the effective pair potentials v(r) for three values of the copolymer
size ratio f lead to the following conclusions:

(1) For f = 0.4 (micelle core smaller than corona), the micelles remain in a
disordered fluid state for ρ/ρ∗ = 6, but crystalline for ρ/ρ∗ = 7. While the
diamond structure is unstable (melts), the FCC and A15 structures are stable,
while the BCC phase is highly metastable (“overheated”). The A15 phase has
a free energy significantly lower than the other phases, and is hence the most
stable ordered phase.
(2) For f = 0.5, ρ/ρ∗ = 6, FCC, A15, and BCC phases are all stable relative
to the disordered (liquid) phase. The excess free energies of the three ordered
phases are close (within 1%), but the A15 structure has again the lowest free
energy, and is hence the stable crystal phase.
(3) For f = 0.6 (micelle core larger than micelle corona), ρ/ρ∗ = 4, the BCC
phase slowly melts, while the FCC and A15 phases are stable and have nearly
identical free energies.

It must be underlined that for all three values of f , the A15 structure has the
lowest Madelung energy, but this advantage is partially cancelled by the larger
entropy of the FCC and BCC phases. The relative stability of the FCC and A15
phases varies with f , smaller size ratios (f < 0.6) apparently favouring the A15
phase. It would be worthwhile to check this trend in the future, by considering
the case f = 0.8, for which micellar structure data are available [11]. The larger
mean aggregation number (n > 100) observed for that case points to a “harder”
micelle-micelle repulsion, and hence could favour FCC over A15.

The stability of the A15 phase (at least up to f ≃ 0.6) seems to confirm pre-
dictions of Kamien and co-workers for micellization in the solvent-free copolymer
melt [20, 21]. The somewhat unusual A15 structure (which is not a Bravais lattice)
may hence be a common phase in self-assembling soft matter systems, although
free energy differences with respect to other crystal structures could be very small,
as suggested by the present calculation.

Returning finally to the copolymer level, the only limitation of the present coarse-
graining approach (which replaces block copolymers by “soft dumbbells”) is that
the effective interactions between A and B blobs of an AB copolymer were ini-
tially determined in the dilute copolymer solution limit [10, 11], while clearly local
copolymer concentrations within micelles can be quite substantial. This limitation
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can be overcome by switching to a multi-blob representation of each block, similar
to a recent proposal for homopolymers in concentrated solutions [17]. Work along
these lines is in progress. Recently a novel method has been devised to compute
the free energies of cluster crystals of soft core particles[35]. This method could
allow the study of the relative stability of crystalline structures of micelles at the
full dumbbell representation level and therefore more firmly establish the validity
of the coarse grained effective micelle representation.
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Table 1. Lindemann ratios estimated by direct MC calculations of
˙
γ2

¸
(L),

and by fitting eqs. 14 (L2) or 16 (L4) to the structure factor data.

State Structure L L2 L4

f = 0.4, ρ/ρ∗ = 7
Micelles

BCCa 0.1971(3) 0.1(1) 0.2(1)
FCC 0.08210(4) 0.08(1) 0.08(1)
A15 0.07543(1) - -

f = 0.5, ρ/ρ∗ = 6
Micelles

BCC 0.1156(1) 0.11(1) 0.11(2)
FCC 0.0992(1) 0.09(1) 0.099(5)
A15 0.09414(2) - -

Dumbbells
BCC 0.0982(3) 0.0969(2) 0.0986(4)
FCC 0.104(1) 0.1038(2) 0.1060(2)
A15 0.0931(4) - -

f = 0.6, ρ/ρ∗ = 4
Micelles

BCCb - - -
FCC 0.1392(1) 0.13(1) 0.13(2)
A15 0.1415(1) - -

a This system is highly metastable.

b This system is unstable.

Table 2. Excess free energies for FCC, A15 and BCC structures; f = 0.5, ρ/ρ∗ = 6.

Lattice N nWS βα βEM/N No. Points β∆F CM/N βF ex/N

BCC 432 1 10.28 −20.2833
4 0.854 −13.419(1)
6 0.855 −13.418(1)
8 0.852 −13.421(1)

FCC 500 1 13.70 −20.7511
4 0.798 −13.508(1)
6 0.798 −13.508(1)
8 0.798 −13.508(1)

A15 512 8a 18.97 −21.0378
4 0.555 −13.554(1)
6 0.554 −13.555(1)
8 0.5546 −13.5546(5)

a The Wigner-Seitz cell of the A15 lattice is a fourteen-faced polyhedron with
8 sites per cell [19].
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Table 3. Per particle values for the excess free energy F ex/N (obtained from (26) using a 4 point Gaus-

sian quadrature), internal energy Uex/N , entropy Sex/N = β (Uex − F ex) /N , and Madelung energy

βEM/N for the three ordered structures (FCC, BCC, and A15) together with the excess free energy of

the disordered (fluid) state.

State Structure N βEM/N βUex/N Sex/N βF ex/N

f = 0.4, ρ/ρ∗ = 7
BCCa 432 −27.2319 −26.270(1) −5.835(1) −20.4343(4)
FCC 500 −28.5653 −26.9416(3) −6.0998(3) −20.8418(1)
A15 512 −29.1443 −27.5170(3) −6.4162(3) −21.1049(1)
FLUIDb - - - - -

f = 0.5, ρ/ρ∗ = 6
BCC 432 −20.2833 −18.730(3) −5.311(3) −13.419(1)
FCC 500 −20.7511 −19.118(2) −5.610(2) −13.508(1)
A15 512 −21.0378 −19.382(2) −5.832(2) −13.554(1)
FLUID 500 - −17.88(1) −5.03(1) −12.843(1)

f = 0.6, ρ/ρ∗ = 4
BCCc 432 −7.4076 - - -
FCC 500 −7.4093 −5.7663(4) −4.6441(4) −1.1222(1)
A15 512 −7.6190 −5.9128(4) −4.7953(4) −1.1215(1)
FLUID 500 - −4.969(3) −3.893(3) −1.076(1)

aThe Frenkel-Ladd thermodynamic integration, as applied here, is probably not suitable for this
highly metastable BCC phase.

bAt this density the system is deeply inside the ordered regime and there is no point to compute
the free energy of the fluid phase.

cThis structure is unstable.
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Figure 1. Micelle-micelle pair distribution function g(r) calculated from dumbbell-level and micelle level
MC simulations, for f = 0.4 and ρ/ρ∗ = 6. The former data have large statistical uncertainties for the

range of micelle-micelle distances L

2
< r < L

√
3

2
, where the upper limit is the largest distance accessible

in a cubic simulation box.
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Figure 2. Effective micelle-micelle pair potentials v(r) extracted from data in ref. [11] using the HNC
closure with the two extrapolation schemes detailed in Section 2, for f = 0.4 and ρ/ρ∗ = 5. The solid curve
gives the (linearly extrapolated) potential obtained by fitting the structure factor S(k) at small values of
k (eqs. (4) and (5)) while the points represent the potential obtained by assuming c(r) = 0 for r > rc (eq.
(10)).
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Figure 3. Effective micelle-micelle pair potentials extracted from the HNC closure (12) and the S(k)
extrapolation scheme (eqs. (4) and (5)) for 4 couples (f, ρ/ρ∗).
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Figure 4. (a) MC-generated g(r) for f = 0.4, ρ/ρ∗ = 6, starting from a perfect FCC configuration of
the micelles. The vertical segments indicate the positions of the first shells of nearest neighbours in the
initial FCC lattice, and their height indicates the corresponding coordination number (right hand scale).
(b) Corresponding structure factors S(k) (plusses). The structure factor calculated directly from dumbbell
level MC simulations is shown as crosses.
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Figure 5. Micelle-micelle structure factors at f = 0.4 and ρ/ρ∗ = 5. Comparison between the full dumbbell
representation (solid squares) and the effective micelle model (open squares).
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Figure 6. g(r) at f = 0.4, ρ/ρ∗ = 7, starting from perfect FCC (top left), BCC (bottom left), A15 (top
right), and diamond (bottom right) lattice configurations. Vertical segments show positions of neighbouring
shells in the corresponding initial perfect lattice configuration. Their heigh indicates the coordination
number (right hand scale).
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Figure 7. [S(k)/N ] vs k at f = 0.5, ρ/ρ∗ = 6, for FCC, A15, and BCC lattices in both the soft dumbbell
(diamonds) and effective micelle (plusses) representations. The Bragg peaks are the large amplitude points
decreasing with k according to eq. 14
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Figure 8. Lindemann ratios (eq. 17) for the three (f, ρ/ρ∗) cases considered as functions of the number
of MC blocks (each block corresponds to 500 configurations). The FCC,BCC, and A15 values are shown
on the left hand axis while the values for the diamond structure are shown on the right hand axis. From
top to bottom, (f = 0.4, ρ/ρ∗ = 7), (f = 0.5, ρ/ρ∗ = 6), and (f = 0.6, ρ/ρ∗ = 4).
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