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Contact values for disparate-size hard-sphere mixtures
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Morad Alawneh§ and Douglas Henderson¶
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A universality ansatz for the contact values of a multicomponent mixture of additive hard spheres is used to propose new formulae for
the case of disparate-size binary mixtures. A comparison with simulation data and with a recent proposal by Alawneh and Henderson
for binary mixtures shows reasonably good agreement with the predictions for the contact values of the large-large radial distribution
functions. A discussion on the usefulness and limitations of the new proposals is also presented.

Keywords: hard-sphere mixtures; radial distribution function; contact values

1 Introduction

A well known result in statistical mechanics is the close relationship between the structural and thermody-
namic properties of fluids. In the particular case of a multicomponent mixture of (additive) hard spheres
(HS), the compressibility factor Z ≡ p/ρkBT (where p, ρ and T are the pressure, density and temperature
of the system and kB is the Boltzmann constant) is given by

Z = 1 + 4η
N∑

i,j

σ3
ij

〈σ3〉xixjgij(σij), (1)

where N is the number of components in the mixture, xi is the mole fraction of species i, σij = 1
2(σi+σj), σi

being the diameter of a sphere of species i, η = (π/6)ρ〈σ3〉 is the packing fraction (with 〈σn〉 ≡ ∑N
i=1 xiσ

n
i )

and gij(σij) are the contact values of the radial distribution functions (RDFs) gij(r). Hence, in this system,
knowledge of the contact values of the RDFs suffices to completely determine the equation of state (EOS).
Exact results for gij(σij) are unfortunately only known to first order in the packing fraction, where one
simply has

gij(σij) = 1 + η

(
1 +

3
2
zij

)
+ O(η2), (2)
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where

zij ≡ σiσj

σij

〈σ2〉
〈σ3〉 . (3)

Therefore, in general one must rely on either approximations or values obtained from computer simula-
tions. Amongst the most important approximate analytical expressions for the contact values are the ones
that follow from the solution of the Percus–Yevick (PY) equation of additive HS mixtures by Lebowitz [1],
namely

gPY
ij (σij) =

1
1− η

+
3
2

η

(1− η)2
zij , (4)

and the results obtained from the Scaled Particle Theory (SPT) [2–5],

gSPT
ij (σij) =

1
1− η

+
3
2

η

(1− η)2
zij +

3
4

η2

(1− η)3
z2
ij . (5)

However, neither the PY nor the SPT lead to particularly accurate values and so Boubĺık [6] and,
independently, Grundke and Henderson [7] and Lee and Levesque [8] proposed an interpolation between
the PY and the SPT contact values, that we will refer to as the BGHLL values:

gBGHLL
ij (σij) =

1
1− η

+
3
2

η

(1− η)2
zij +

1
2

η2

(1− η)3
z2
ij . (6)

These lead, through Eq. (1), to the popular and widely used Boubĺık–Mansoori–Carnahan–Starling–Leland
(BMCSL) EOS [6, 9] for HS mixtures. For binary mixtures the BGHLL values are rather accurate except
for asymmetric mixtures in which large hard spheres are present in extreme dilution in a small hard-
sphere solvent. Since such mixtures represent good models for colloidal suspensions and there is growing
interest in these kinds of systems, there have been many efforts to correct the deficiencies of the BGHLL
values [10–20]. In this paper the recent proposal of Ref. [20] is of particular concern, so we also quote it
explicitly here. It relies heavily on the proposal of Viduna and Smith (VS) [18] which reads

gVS
ij (σij) =

1
1− η

+ η
3− η + η2/2

2(1− η)2
zij + η2 2− η − η2/2

3(1− η)3

(
1 +

〈σ〉〈σ3〉
2〈σ2〉2

)
z2
ij . (7)

Alawneh and Henderson (AH) [20] restrict themselves to binary mixtures (N = 2, σ2 ≥ σ1) and propose
to keep VS’s expression for g11(σ1) but amend g12(σ12) and g22(σ2) as

gAH
12 (σ12) = gVS

12 (σ12)− η3

16(1− η)3
(1−R−3)z3

12 +
5η4

32(1− η)3
(1−R−4)z4

12 −
η5

16(1− η)3
(1−R−5)z5

12, (8)

gAH
22 (σ2) = gVS

22 (σ2) +
3η

2
(z22 − 1)

1−R−1

R
exp

[
3η

2
(z22 + 1)

]
. (9)

Here R ≡ σ2/σ1 [21]. With these, they get good agreement for the large-small contact values and reasonably
good agreement for the large-large contact values as compared to Molecular Dynamics results for mixtures
with size ratios going from R = 1 to R = 10.

On a different vein, in recent papers [22–25] three of us have advocated a “universality” approach as a
guide to propose simple and accurate approximate expressions for the contact values gij(σij) of additive
HS mixtures. In this approach, if the packing fraction η is fixed, the expressions for the contact values of
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the RDF for all pairs ij of like and unlike species depend on the diameters of both species and on the
composition of the mixture only through the single dimensionless parameter zij [cf. Eq. (3)], irrespective
of the number of components in the mixture. Note that this feature is shared by the PY, SPT and BGHLL
results but not by the VS or the AH approximations. The aim of this paper is two-fold. On the one hand,
we will assess whether the new simulation data of Ref. [20] comply with the universality ansatz. On the
other hand, we will introduce a refinement of some of the simple proposals of Refs. [22–25] that retain the
universality feature but are able to improve the performance in the case of highly asymmetric mixtures.

The paper is organized as follows. In Sect. 2 and in order to make the paper self-contained, we provide
a rather brief account of the simple proposals based on the universality ansatz and a simple extension to
deal with highly asymmetric systems. This is followed in Sect. 3 by a comparison between the AH contact
values, those of the new proposals and the simulation data. The paper is closed in Sect. 4 with further
discussion and some concluding remarks.

2 Proposals for contact values including the “universality” assumption

We start by recalling the main aspects of the “universality” approach that has ben used recently [22–25] as
a guide to propose simple and accurate approximate expressions for the contact values gij(σij) of additive
HS mixtures. According to this approach, at a given total packing fraction η, gij(σij) depends on the size
and concentration distributions only through the single parameter zij :

gij(σij) = G(η, zij), (10)

where the function G(η, z) is a common function for all the pairs (i, j), regardless of the composition and
number of components of the mixture. Note that the exact contact values to first order in density [cf. Eq.
(2)] are consistent with the ansatz (10) with G(η, z) → 1 + η

(
1 + 3

2z
)
.

In order to propose specific forms for G(η, z) use is made of three basic consistency conditions. First, in
the limit in which one of the species, say i, is made of point particles (i.e., σi → 0), gii(σi) must take the
ideal gas value, except that one has to take into account that the available volume fraction is 1− η. Thus,

lim
σi→0

gii(σi) =
1

1− η
. (11)

Next, if all the species have the same size, {σk} → σ, the system becomes equivalent to a single component
system, so that

lim
{σk}→σ

gij(σij) = gp(η), (12)

where gp(η) is the contact value of the RDF of the single component fluid at the same packing fraction η
as that of the mixture.

The third condition is the equality between the pressure in the bulk and near a hard wall [24, 25]:

1 + 4η
∑

i,j

σ3
ij

〈σ3〉xixjgij(σij) =
∑

j

xjgwj , (13)

where gwj is the wall-particle correlation function at contact. Since a hard wall can be seen as a sphere of
infinite diameter [26], the contact value gwj can be obtained from gij(σij) as

gwj = lim
σi→∞

xiσ3
i→0

gij(σij). (14)
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In the special case of a pure fluid plus a hard wall, Eq. (13) becomes

lim
σ2→∞

x2σ3
2→0

g12(σ12) = 1 + 4ηgp(η) ≡ Zp(η), (15)

where Zp(η) is the compressibility factor of the pure fluid.
Assuming the validity of the ansatz (10), conditions (11), (12), (13) and (15) become

G(η, 0) =
1

1− η
, (16)

G(η, 1) = gp(η), (17)

1 + 4η
∑

i,j

σ3
ij

〈σ3〉xixjG(η, zij) =
∑

j

xjG(η, zwj), zwj ≡ 2σj
〈σ2〉
〈σ3〉 , (18)

G(η, 2) = Zp(η), (19)

respectively. Conditions (16), (17) and (19) are fulfilled by the quadratic proposal [22,25]

Ge2(η, z) =
1

1− η
+

[
gp(η)− 1

1− η

]
z +

[
1− η/2
1− η

− (1− 2η)gp(η)
]

z(z − 1). (20)

However, Ge2 does not satisfy Eq. (18) for an arbitrary number of components N ≥ 3. This is accomplished
by a cubic form [23–25]:

Ge3(η, z) = Ge2(η, z) + (1− η)
[
gSPT
p (η)− gp(η)

]
z(z − 1)(z − 2), (21)

where

gSPT
p (η) =

1− η/2 + η2/4
(1− η)3

(22)

is the SPT contact value of the pure fluid. The proposals Ge2 and Ge3 are very flexible in the sense that
they can accommodate any reasonable choice for gp(η). In particular if gp(η) = gSPT

p (η) then Ge2(η, z) =
Ge3(η, z) and one recovers the SPT contact values given in Eq. (5).

Taking either the gp(η) values that follow from the Carnahan–Starling or the Carnahan–Starling–Kolafa
(CSK) EOS as input, both approximations Ge2 and Ge3 yield in general very good predictions for gij(σij)
in binary and polydisperse mixtures under a wide range of conditions [22–25], which typically implies
zij ≤ 2. However, in the case of very disparate mixtures, the parameter zij can take larger values. For
instance, in a binary mixture with R > 1 one has

z22(x2, R) = R
1− x2 + x2R

2

1− x2 + x2R3
. (23)

The behaviour of z22 as a function of 1/R is shown in Fig. 1 for different values of x2. It follows that, at
fixed x2, there exists a value R = Rmax(x2) at which z22 reaches a maximum zmax

22 (x2). The peak zmax
22 (x2)

becomes narrower and higher as x2 decreases, its location moving to the left (larger values of R). An
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Figure 1. (Colour online) Plot of z22(x2) as a function of 1/R for, from top to bottom, x2 = 0.001, 0.002, 0.005, 0.01, 0.02 and 0.05.
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Figure 2. (Colour online) Plot of Rmax(x2) (solid line) and the corresponding zmax
22 (x2) (dashed line). Also shown is the behaviour of

the quantity x2R3
max (dotted line, right vertical scale) as a function of x2.

explicit expression for Rmax(x2) can be derived by differentiation of z22 with respect to R, which yields a
cubic equation for R whose real solution is

Rmax(x2) =
1
2

[
1 +

(
2x−1

2 + 2x−1
2

√
1− x2 − 1

)1/3 +
(
2x−1

2 + 2x−1
2

√
1− x2 − 1

)−1/3
]
. (24)

A plot of Rmax(x2) and the associated values of zmax
22 (x2) is shown in Fig. 2. In the limit x2 → 0 one gets
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Rmax → (2x2)−1/3, so that limx2→0 x2R
3
max = 1/2. For x2 > 0 one has x2R

3
max > 1/2. This means that,

when z22 reaches its maximum value, the partial volume fraction occupied by the big spheres is always
larger than half the one occupied by the small ones. Figure 2 shows that zmax

22 (x2) can reach rather high
values for sufficiently small x2. In particular, zmax

22 (x2) > 2 if x2 ≤ 0.036, irrespective of the value of R.
Since G(η, z) is a monotonically increasing function of z, the larger z22, the higher g22(σ2). Thus, Eq. (24)
gives the value of R at which g22(σ2) has a maximum, according to the ansatz (10). Note that Rmax(x2)
is independent of η.

The polynomial forms (20) and (21) are constructed by imposing exact properties at z = 0, z = 1 and
z = 2. On the other hand, in disparate mixtures where one can have values of z higher than 2, Eqs. (20)
and (21) are not accurate enough. In fact, again in the binary case, there exists evidence indicating that
g22(σ2) grows exponentially for large R, as explicitly incorporated in the AH proposal [20], Eq. (9). This
translates, in the context of the ansatz (10), into an exponential dependence of G(η, z) on z for large z.
Thus, here we propose to amend Eqs. (20) and (21) as

Ge2+(η, z) =

{
Ge2(η, z), 0 ≤ z ≤ 2,

Zp(η) exp [Ae2(η)(z − 2)] , 2 ≤ z,
(25)

Ge3+(η, z) =

{
Ge3(η, z), 0 ≤ z ≤ 2,

Zp(η) exp [Ae3(η)(z − 2)] , 2 ≤ z,
(26)

where Ae2(η) andAe3(η) are determined by requiring continuity of the first derivative at the matching
point z = 2. Their expressions are

Ae2(η) =
1

Zp(η)

[
2− 3η/2

1− η
− 2(1− 3η)gp(η)

]
, (27)

Ae3(η) =
1

Zp(η)

[
4− 9η/2 + η2

1− η

2

− 4(1− 2η)gp(η)

]
. (28)

Note that the amended proposals (25) and (26) also share with Eqs. (20) and (21) the flexibility to
accommodate any reasonable choice for gp. In what follows we will use the one corresponding to the CSK
EOS, namely

gCSK
p (η) =

1− η/2 + η2(1− 2η)/12
(1− η)3

. (29)

3 Comparison with simulation data

Once the new universal proposals have been introduced, the question now arises as to whether the available
simulation data are consistent with the universality ansatz. Were this to be the case, for a given packing
fraction η plots of gij vs zij of different mixtures should lie on a common curve and this will be tested
next.

The approximations Ge2(η, z), Ge3(η, z), Ge2+(η, z) and Ge3+(η, z), given in Eqs. (20) (21), (25) and
(26), respectively, complemented with the CSK expression for gp(η) given in Eq. (29), are compared with
simulation data of gij(σij) [20, 27] in Figs. 3–6. We can observe that Ge2 and Ge3 perform very well for
0 < z < 2, except for the higher values of g22(σ2) in that region (see the insets of Figs. 3–6). Since,
by construction, both Ge2 and Ge3 give the correct value at z = 2 [cf. Eq. (19)], the deviations of the
simulation values of g22(σ2) from the theoretical curves in the region 0 < z < 2 can be interpreted as a
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Figure 3. (Colour online) Plot of gij(σij) as a function of zij for η = 0.2. Dash-dot-dot line: Ge2(η, z); dash-dot line: Ge3(η, z); dotted
line: Ge2+(η, z); solid line: Ge3+(η, z); solid circles: simulation data of g11(σ1) from Ref. [20]; solid triangles: simulation data of

g12(σ12) from Ref. [20]; solid squares: simulation data of g22(σ2) from Ref. [20]; open circles: simulation data of gw1 and gw2 from
Ref. [27]. The inset shows the region 0 ≤ zij ≤ 2. Note that Ge2+(η, z) and Ge3(η, z) are practically indistinguishable at this density.
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Figure 4. (Colour online) Same as in Fig. 3, but for η = 0.3. At this density there are no simulation data for gwj .
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Figure 5. (Colour online) Same as in Fig. 3, but for η = 0.4.
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Figure 6. (Colour online) Same as in Fig. 3, but for η = 0.5. At this density there are no simulation data for gwj .
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Figure 7. (Colour online) Plot of g22(σ2) as a function of 1/R for η = 0.4 and x2 = 0.002 (as given by different approximations) and

simulation results from Ref. [20]. Dash-dot-dot line: ge2
22(σ2); dash-dot line: ge3

22(σ2); dotted line: ge2+
22 (σ2); solid line: ge3+

22 (σ2); dashed

line: gAH
22 (σ2); solid circles: simulation data of g22(σ2) from Ref. [20].

manifestation of the approximate character of the universality ansatz (10). This seems to be confirmed by
the scatter of the simulation data of g22(σ2) for z > 2. On the other hand, the overall behaviour of g22(σ2)
in that region seems to be reasonably well captured by both Ge2+ and Ge3+.

Once the question of universality has been examined, in order to complement the perspective of the
present results, in Figs. 7–10 we illustrate some other issues. In particular, we want to assess the perfor-
mance of the theoretical approximations obtained with the universality assumption, denoted by g∗22(σ2)
(where the asterisk will be either e2, e3, e2+ or e3+ depending on whether one uses Ge2(η, z), Ge3(η, z),
Ge2+(η, z) or Ge3+(η, z), respectively, to compute the contact value) and that of the AH approximation
gAH
22 (σ2) [cf. Eq. (9)] as compared to simulation data. Hence, in Fig. 7 we have plotted g22(σ2) as a function

of 1/R taking x2 = 0.002 and η = 0.4, while in Fig. 8 the large-large contact value has been plotted as a
function of x2 for η = 0.4 and R = 5. These plots suggest that the new approximations may indeed improve
the already reasonable agreement between the AH formula and simulation results, but all theories seem to
underestimate the height of the peak in the g22(σ2) vs. 1/R plot. The region of interest, namely relatively
large R and small x2, is further examined in Figs. 9 and 10 which illustrate two additional points. On the
one hand, one can clearly see that the curves are almost indistinguishable for low densities (up to η ' 0.2
in these cases) but at higher densities the new proposals Ge2+(η, z) and Ge3+(η, z) indeed improve on the
performance of the earlier ones Ge2(η, z) and Ge3(η, z). On the other hand, they also show that, in the
high density region, the AH formula performs a little bit better than either Ge2+(η, z) or Ge3+(η, z) as R
becomes larger.

4 Concluding remarks

The above results deserve some further consideration. In this paper, following the universality approach
that some of us have followed for some years, we have introduced two new proposals [cf. Eqs. (25) and (26)]
for the contact values of HS mixtures which improve on the earlier proposals in the case where one has
disparate in size mixtures. These proposals fulfill certain exact conditions and are rather flexible, requiring
as their only input the contact value of the one-component system.
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Figure 8. (Colour online) Plot of g22(σ2) as a function of x2 for η = 0.4 and R = 5 (as given by different approximations) and

simulation results from Ref. [20]. Dash-dot-dot line: ge2
22(σ2); dash-dot line: ge3

22(σ2); dotted line: ge2+
22 (σ2); solid line: ge3+

22 (σ2); dashed

line: gAH
22 (σ2); solid circles: simulation data of g22(σ2) from Ref. [20].
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Figure 9. (Colour online) Plot of g22(σ2) as a function of η for x2 = 0.002 and R = 5 (as given by different approximations) and

simulation results from Ref. [20]. Dash-dot-dot line: ge2
22(σ2); dash-dot line: ge3

22(σ2); dotted line: ge2+
22 (σ2); solid line: ge3+

22 (σ2); dashed

line: gAH
22 (σ2); solid circles: simulation data of g22(σ2) from Ref. [20].
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Figure 10. (Colour online) Same as in Fig. 9, but for x2 = 0.002 and R = 10.

The comparison with recent computer simulation data [20,27] indicates that the universality assumption
may have some limitations but, since there are many technical difficulties in simulating mixtures with large
R and very small x2, one cannot reach definite conclusions on this issue on the basis of these limited data.
On the other hand, the new proposals following the universality assumptions for the large-large contact
values seem nevertheless to yield reasonably good agreement both with the simulation results and with
the recent proposal by Alawneh and Henderson [20].

It is clear that the AH formulae do not obey the ansatz (10). First, the non-universal character of Eq.
(7) is due to the appearance of the combination 〈σ〉〈σ3〉/〈σ2〉2. In addition, the values given by Eqs. (8)
and (9) depend on 1−R−n. As mentioned above, our analysis of the universality issue in the light of the
simulation results suggests that the ansatz (10) may break down at some point and hence whether the
AH proposal is universal or not would not be particularly relevant. However, a more serious problem with
the AH formulae is that Eq. (9) fails to reduce to the exact result to first order in η given in Eq. (2).
In contrast, all the universal approximations quoted in this paper as well as the VS approximation yield
such result in the appropriate limit. Whether or not the universality feature is confirmed or discarded
depends on the availability of further simulation results. Our hope is that this paper may encourage the
performance of such simulations.
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