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An interaction model with core-softening, that produces clustered phases in dimension two, is studied by integral equation theories, and compared with corresponding simulation results. It is shown that the Hypernetted-chain (HNC) equation is suprizingly accurate and easier to solve numerically than the Percus-Yevick (PY) equation which appears unable to get to the cluster phase region. This is compared to the behaviour of the two theories in the absence of the core-softening: in the high temperature regime the Percus-Yevick theory is more accurate while in the low temperature regime it is the HNC theory that become more accurate. It is the inclusion of an innite class of cluster 1

Introduction

The rich and intriguing cluster patterns than can be formed when simple dipolar hard spheres are constrained into a bi-dimensional monolayer or bilayer have been extensively studied by Jean-Jacques Weis [1,2,3]. The core softening interaction model, that also leads to rich clustering, was initially introduced by Hemmer and Stell [4] to describe a particular type of liquidliquid type phase ordering, and further studied in that purpose by many authors [5,6,7]. The interest for this type of interaction in dimension two was recently revived by Malescio and Pellicane [8]-for the case of hard core interactions, and Camp [9,10,11] -for the case of soft core interactions. In both cases, it was shown that such type of isotropic interactions could lead rich variety of cluster phases. In two-dimensions, these transformations can be spectacularly visualized by snapshots: as density is increased one sees an ordinary disordered liquid, but then dimerized, striped and networked liquids. Moreover, in addition to the usual high density solid, a low density solid phase is also observed at very low temperatures [9]. The remarkable fact is that all these cluster phases are disordered: there is no Landautype one-body order parameter that can describe them. Instead, the proper statistical tools to analyze these transformations are the radial distribution function (RDF) and the corresponding structure factor (SF). The appearance of specic local structures of length scale ξ leads to the emergence of specic peaks in the structure factor at wave-vector k p < k m = 2π/σ, where k m is the position of the main peak corresponding the diameter σ of the particles. In contrast, at k = 0 the structure factor is always very small, indicating that the compressibility of the liquid is small, and therefore it is not the density uctuations that can give rise these cluster phases. This is also compatible with the fact that the corresponding core-soft interactions are repulsive.

Integral equation theory studies of core-softened interaction have been principally conned in dimension 3 [13,12,14]. The principal motivation for using core-softening seems aimed at reproducing water-like behaviour [15,16], and eventually to relate the low temperature anomalous properties of this liquid to the possible existence of a second length scale in the interaction. This is very much along the original idea of Hemmer and Stell, since many theoreticians predict that water may have high density liquid -low density liquid phase separation in the low temperature high density part of its phase diagram [17,18,19]. Such studies have been also done in dimension 2 [20] and also in dimension 1 [21].

Recently, we have shown that many of the principal features of the radial distribution function and the structure factor of room temperature liquid water, could be reproduced in a striking fashion by two soft repulsive cores [22]. Moreover, we have shown that the HNC theory was able to describe this behaviour in remarkable agreement with the simulation, while the PY could not be solved for the state points of interest [22]. Despite the importance of water, the recent works [8,9,10] indicate that core softening has interest beyond this single application, since it can describe the appearance of local heterogeneity within stable phases.

In the present work, we would like to examine the fate of the two diagrammatically proper integral equation closure relations, the Percus-Yevick and the Hypernetted-chain equations, when describing two-dimensional liquids with core-softened interaction. For this, we choose the same model studied by Camp, and investigate how these equations are able to deal with the appearance of clustering. The principal motivation is the following: integral equations are well known to be less reliable in the vicinity of phase transitions, where the correlations at long range put their diagrammatic insuciency at test. Despite many investigations since almost half a century, almost nothing is known about the importance of these diagrams and the role they play. Therefore, it is of high interest to know how these approximate theories behave in the vicinity of cluster phases.

Theoretical details

The interaction used by Camp is modeled to mimic that of dipolar spheres laying on a plane [9]. This interaction consist in a Lennard-Jones part together with a repulsive 1/r 

The parameter is chosen such that the resulting interaction presents an inexion point at r = 6 

S(k) = 1 + ρ ¡ d r exp(i k. r)(g(r) -1) as[23] S(k) = 2 1 -ρĉ(k)
together with an approximate closure relation, here the HNC or the PY closures [START_REF] Hansen | Theory of Simple Liqu1968)ids[END_REF] g(r) = exp(- to be more accurate. For the hard sphere uid, the analytical solution of the PY is more accurate than the HNC equation [START_REF] Hansen | Theory of Simple Liqu1968)ids[END_REF]. This has led to think that the PY equation is more accurate than the HNC equation for purely repulsive interactions. The present study indicates that the presence of the innite set of additional diagrams in the HNC equation allows to predict the local micro-structure more accurately than the PY equation. Therefore the occasional accuracy of the PY must be due to a compensation of higher order diagrams in the full theory.
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Results

The integral equations have been solved on a grid of N = 1024 points with r-step of r = 0.02σ. The reduced density is dened as usual as ρ * = (N/V )σ 3 and the reduced temperature as T * = k B T / . The relative weight of the core softening energy is then controlled by the parameter C = / ≈ 2.1773.

These conventions are the same as in Ref. [9], which allows a direct compari- it was necessary to interpolate the RDF obtained by simulation on a regularly spaced grid. This was done using a linear interpolation as a rst approximation. The obtained results show that this crude interpolation is sucient for a quantitative analysis. The very small k behaviour was however very noisy in many cases, which is due to numerical noise in the medium to long range part of the RDF obtained from the simulations, rather than the interpolation procedure itself.

son

The Hard and Soft Core uids

In order to better assert what happens in the cases when the full coresoftening interaction is turned on, we examine the cases for C = 0.

First, we examine the RDF from the reference hard disc uid, for a relatively high density ρ * = 0.85, which is close to the maximum density at which the HNC closure can be solved [29]. Fig. 1 shows unambiguously that the PY equation is very accurate, while the HNC equation appears to overestimate the ordering of the molecules, hence producing peaks that are shifted inward towards smaller distances -meaning tighter packing, and that are also higher than those of the MC results, indicating higher correlations. This is the reason why the HNC equation looses solutions much earlier than the PY theory, which can be solved up to higher densities. This seems equally true for hard non-spherical particles as well, where the HNC theory tends to overestimate the orientational ordering, as was veried in two [28] and three [30] dimensions.

Next, we examine the case of soft-core interactions, for three dierent the two theories is less obvious, and it is the PY theory that would seem to better t the overall features of MC data, except for the second peak again.

So, the good agreement observed in the RDF between HNC and MC for this case seem to stem essentially from the second peak feature of the S(k).

A look at the snapshots for the temperature T * = 1 indicates that the system looks glassy like, with predominance for local semi-crystalline heterogeneity, which explain the feature in the second peak of S(k), of which HNC seems to capture only some of the features. For the lowest temperature, it is also HNC that has solution for higher densities (up to ρ * = 0.6, while PY stop having solutions at ρ * = 0.51.

The main conclusion of this part is that, while PY may seem a better theory for purely repulsive cores, the secondary structure is better captured by a richer diagrammatic theory. There are intriguing compensation eects in the PY theory that one is eager to know the origin of.

3.2

The core-softened uid

The phase diagram

The phase diagram obtained by the two theories is shown in Fig. 4, and compared to that taken from the simulations of Ref. [9]. As usual, it is the limit of solution of the two theories that are obtained, and not the actual phase boundaries. The rst remark is that either theories give a single boundary, where the simulations of Ref [9] indicate the existence of four phases: two remark is that either integral equations have only a uid phase that terminates at a boundary with is very dierent for each of them. In particular, we note that HNC has a boundary very close to the S phase, while that of PY is well within the F phase. Both theories have no solutions to the right of their respective boundaries. The rst conclusion is that the PY theory cease

to have solutions at very small densities, while the HNC theory has solutions well inside the C phase region. This situation is already very dierent from that found in the hard and soft core cases where both theories could be solve quite close to the uid-solid boundary, except precisely at very low temperatures, where the PY theory starts to have diculties to handle high densities.

So, we expect that the explicit clustering observed here is the reason why PY cannot solved even deep inside the F phase where no clustering is observed.

This fact alone indicates that PY theory is diagrammatically insucient.

Fig. 5 shows how the core-softened interactions vary as the temperature is lowered. Thus, at very low temperatures, the particles see mostly the outer repulsion, except at very high packing where they need to surmount this barrier in order to reach close packing. This explains why a low diagrammatic theory might be able to describe properly such congurations that require cooperative coordination of a large ensemble of particles.

The very low temperature region below T * = 0.003 could not be reached by both theories for numerical reasons. Indeed, the interaction at the core part becomes very repulsive, and they tend to dominate the eective part of the interactions that come from the correlations between molecules, and which give rise to the clustering. It is probably possible to explore this region by using some reference trick to eliminate the numerical barrier due the huge repulsion, but we have not tried this at this stage.

Structural properties

First, we report in Fig. 6 a comparison of the structure between the simulations and the two theories at two state points in the uid phase, one at high temperature T * = 1 and ρ * = 0.8 and the other at a lower temperature T * = 0.05 and ρ * = 0.1 . For T * = 1 there is no cluster phase yet, even at density as high as ρ * = 0.8, and the theories behave similarly to the previous case, with PY being clearly more accurate. At high temperature, the softening barrier is very low, so all particles can pack up to the smallest core. At lower temperature, and at uid phase density, the softening barrier is relatively high, and all particle pack up to this distance. Both these features are well reproduced by both theories. However, at T * = 0.05, the small peak at r ≈ σ is more apparent for HNC, indicating that this theory sees that some particles can still come close to main core. The PY theory fails when the density is high enough so that some particles need to get close to r = σ. Moreover, the oscillations of the RDF are wider, indicating that this theory mostly sees the outer energy barrier. This could explain why it ceases to have solutions at lower densities: it is because these correspond to an eective larger packing fraction corresponding to a larger particle size.

This example proves directly the diagrammatic insuciency of PY. On the contrary, HNC is very accurate. indicating that HNC has some important diagrammatic insuciency which may be able to both describe entropical aggregation and loose particles. In the cluster phase, however, the agreement become excellent, both in r and k spaces. First, the structural signature of the stripe phase at ρ * = 0.3 is well captured. This is particularly seen in the SF representation, where the main peak at kσ ≈ 2π due to the contact at r = σ is of equal height than the pre-peak at kσ ≈ 2π/2 that is due soft repulsion at r ≈ 2σ .This equality of peaks and pre-peak height illustrates very well the perfect symmetry breaking that occurs in the eective interactions in the stripe phase. Indeed, each particle is exactly in the two congurations imposed by the two length scales that appear in the interaction energy, one at r = σ and the other at r ≈ 2σ.

The fact that an isotropic interaction leads to an eective anisotropic one is very remarkable. Finally, the structure of the networked uid is equally It is puzzling that HNC performs so well for well morphed cluster phases, but not so for the dimer-trimer region which at a lower density. This is certainly an indication about its diagrammatic structure and would deserve further investigations.

Finally, we note that the HNC equation is numerically solved very easily, even very near the no-solution regions, as the iteration cycles converge very rapidly. In contrast the PY theory appears very dicult to converge and larger number of iterations are often required. This is in contrast also to what happens when the second soft repulsion is absent, where both theories are sluggish near the uid-solid phase boundary. The feature noted above is important if put in relation with the cluster nature of these theories.

Phases and boundaries

Integral equations are notoriously known for their deciencies near phase boundaries [31]. These deciencies are usually related to the appearance of long range correlations due to enhanced density uctuations and the subsequent growth of the correlation length. However, such behaviour is usually related to presence of attractive part of the interaction. In the present case, and in the absence of attractive interactions, the k → 0 behaviour of the structure factor is never anomalous, both in the simulations and the integral equation results, which is to say that the compressibilty of these liquids is always smal. Rather, it is the presence of the pre-peak that witness the appearence of clusters instead of large scale density uctuations that could contribute at k = 0. The fact that HNC is able to predict the appearance of the clusters phases, when it is not capable of describing properly long range correlations, is both noteworthy and intriguing. Indeed, it is often thought that integral equations can be solved only until the stability limit of the phase they are solved for. The results shown here would then tend to suggest that the various cluster phases observed here are not true thermodynamical phases. This conclusion, drawn from an approximate integral equation result, is in variance with the second order stripe phase transition reported in Ref. [8], albeit for a dierent model. Similar consideration holds equally for the low density solide phase reported in Ref. [9] which is not found here for the same temperature and density range. Such conclusion might be, at rst, enforced by the fact that integral equation theories are solved in the true thermodynamical limit, while computer simulations suer from inevitable nite size eects that might aect the true periodicity of a phase. However, one should be cautious, because the thermodynamical inconsistency of the HNC theory might hinder its ability to describe proper phase transition as such. In particular, the boundaries of the phase related to the HNC approximations might be shifted towards lower temperatures, which are not currently reachable. Nevertheless, the present ndings are intriguing in the sense that the structural and thermodynamical agreement between the theory and the simulations leave open the question about the thermodynamical nature of cluster phases. The previously analyzed core-softened interaction of Ref [9] is re-explored within the well known diagrammatically proper integral equation theories such as the PY and the HNC closures. The analysis reveals that the cluster based diagrammatic origin of these approximations shows their respective eciency. These are masked when describing continuous phases. Hence it is often dicult to conclude that a lower diagrammatic theory is better if it compares well with simulation results. This is very much similar to the situation with mean eld theories that can often better describe physical situations that those that incorporate higher order uctuations. This is the reason why integral equation theories are so dicult to solve near phase boundaries where uctuations are important. The same reason also indicates that a good structural agreement is not necessarily a sign that a better description is obtained. This comment particularly concerns the various diagrammatically improper closures, that have become so popular since they allow a better t of the properties and structure of various systems, and that are more often used in place of diagrammatically proper closures [13]. The fact that the HNC equation is so adapted to describe cluster phases clearly indicates its diagrammatic superiority. In the present analysis, the absence of the so-called bridge cluster diagrams do not seem to play an important role as they do in continuous phases. The absence of attractive interaction induced uctuations is also important here, and may also inuence the fate of these methods. Further investigations into the success and failure of these model interactions is certainly needed to achieve a better understanding and 15 

  with the reported results. The details of the methodology to solve integral equations in dimension two, and particularly the Fourier-Bessel transformation techniques needed to solve the OZ equation have been reported in several earlier works[25,26,27,28], and will not be repeated here. In addition, we have performed constant NVT ensemble Monte Carlo (MC) simulations, with a number of particles of N = 1089, in order to produce the radial distribution function (RDF) g(r) needed for comparison with those from theory. The corresponding structure factor was obtained by direct Fourier transform of g(r). Since the two-dimensional Fourier transform require log scale grid[25],

7 Page

 7 , T * = 5, 1, 0.1, and close to the highest density that was obtainable in each case. This is shown in Fig.2(a,b,c). At high temperature (top panel), the two integral equations are comparable in accuracy, as is expected, since the interaction is depressed. At the intermediate temperature (middle panel), it is seen that the PY equation is again very accurate. This time, and very surprizingly, the HNC results appear to underestimate the correlations, as can be seen from the rapid decay of the correlations. This result indicates that the diagrams missing in the HNC theory play an important role in describing the long range behaviour of the theory. Suprizingly, the lack of diagrams in the PY theory seems to compensate each other at large distances. Finally, at the smallest temperature, it is HNC that becomes more accurate, particularly at large distances, where the PY theory shows more pronounced packing eects.A look at the corresponding structure factors in Fig.3(a,b,c) gives interesting insights into the nature of each closure. The structure factor reveals essentially the long range behaviour of the RDF, so it gives a better insight at the large scale correlations and packing eects. For T * = 5 we learn nothing more than for the RDF in Fig.2a. For T * = 1 we see that the simulations give a second split peak that is reproduced by neither of the theories. Interestingly though, PY gives an averaged peak, while HNC ts nicely only the second part of the split peak. As to the rst peak, both MC and PY reach about 8 while HNC reached only half that value. From the third peak on, the agreement between PY and MC is perfect. The second split peak indicates the existence local crystalline order within the second neighbour shell. At the smallest temperature (lower panel) we see that the dierences between 8

  solid phases, one at high density (S) and one a low density and low temperature (LS), one cluster phase (C) and the usual uid phase (F). The second 9
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 7 Fig.7shows a sequence of RDF as ρ * is varied at xed temperature T * = 0.01. Fig.8shows the corresponding structure factors. Fig.9shows the snapshots corresponding to the four densities. The rst ρ * = 0.05 is in the very

  ρ * = 0.45, but the corresponding features are harder to read from the RDF and the SF.
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