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Abstract

We investigate the influence of strong directional, or bonding, interactions on the phase diagram

of complex fluids, and in particular on the liquid-vapour critical point. To this end we revisit a

simple model and theory for associating fluids which consists of spherical particles having a hard-

core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots).

Two of the spots are of type A and one is of type B; the interactions between each pair of spots have

strengths ǫAA, ǫBB and ǫAB. The theory is applied over the whole range of bonding strengths and

results are interpreted in terms of the equilibrium cluster structures of the coexisting phases. In

systems where unlike sites do not interact (i.e., where ǫAB = 0), the critical point exists all the way

to ǫBB/ǫAA = 0. By contrast, when ǫBB = 0, there is no critical point below a certain finite value

of ǫAB/ǫAA. These somewhat surprising results are rationalised in terms of the different network

structures of the two systems: two long AA chains are linked by one BB bond (X-junction) in the

former case, and by one AB bond (Y-junction) in the latter. The vapour-liquid transition may

then be viewed as the condensation of these junctions and, we find that X-junctions condense for

any attractive ǫBB (i.e., for any fraction of BB bonds), whereas condensation of the Y-junctions

requires that ǫAB be above a finite threshold (i.e., there must be a finite fraction of AB bonds).

PACS numbers: 64.70.F-, 64.75.Yz, 61.20.Qg
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I. INTRODUCTION

It is a pleasure, and a great honour, to contribute to J. J. Weis’ Fest. Although the

earliest paper by JJ that most of us know of is the celebrated 1972 Verlet-Weis ‘Equilibrium

Theory of Simple Liquids’ [1], our collaboration did not start until about 20 years later. The

problem that we tackled may be related to that of the 1972 paper in the sense that it concerns

the understanding of what was thought until then to be a simple liquid. The structure of

strongly dipolar fluids was, however, revealed in a seminal paper of JJ (in collaboration with

D. Levesque) [2] to be strikingly different from that of simple fluids. We may say, without

exageration, that the structure and phase diagram of strongly dipolar fluids have resisted a

complete understanding, despite the large number of papers written on the subject over the

past 15 years. We will not attempt to give an up-to-date review of the problem here, but

shall restrict ourselves to describing it, in the light of JJ’s contributions and of the impact of

these contributions on our work, the outcome of a fruitful collaboration that will always be

remembered. We shall then proceed to discuss recent developments on a different problem

that we hope will shed light on dipolar fluid behaviour, and present our first contribution

along these lines, which we would like to dedicate to JJ.

The condensation of simple fluids is driven by the free energy balance between the high-

entropy gas and the low-energy liquid phases. This transition appears to be generic in simple

fluids interacting via isotropic intermolecular potentials that comprise a short-ranged repul-

sion and a longer-ranged attraction. The dipolar hard- or soft-sphere (DHS or DSS) fluid is a

model in which hard or soft spheres with an embedded central point dipole interact through

the dipole-dipole potential. As the isotropic effective interaction between two dipoles (ob-

tained by taking the logarithm of the angle-averaged Boltzmann factor of the dipole-dipole

potential) is attractive, one may anticipate phase behaviour analogous to that of simple

fluids. Indeed, a recent calculation of the free energy of the DHS at several temperatures,

based on Monte Carlo (MC) simulations [3], suggests the presence of an isotropic fluid-

fluid transition at low densities, lending some support to the analogy with simple fluids.

However, the structure of DHS at low densities, where the transition has been reported, is

dramatically different from that of isotropic fluids. Numerical simulations of DHS [2] and

also of Stockmayer fluids [4] for dipolar interaction strengths of the order of the thermal

energy, have shown that the anisotropy of the dipolar potential promotes the formation of
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self-assembled aggregates (chains, rings and more complex clusters), in sharp contrast with

the isotropic compact clusters observed in simple fluids. Moreover, unlike in simple fluids

the pair correlation function of DHS is strongly peaked at contact and the internal energy

is nearly independent of the density [3]. It is unclear whether strong association precludes

any kind of fluid-fluid phase separation, as failure to observe it may be an artifact of the

simulation techniques. The situation in these and related dipolar fluid simulations [5–7]

remains controversial, requiring the development of new methods [8] to review the dipolar

condensation problem in the light of recent theoretical results.

In parallel, there is an urgent need to develop analytical treatments of strongly correlated

dipolar systems. Association theories [9–13] that include the effect of cluster formation in

the thermodynamics, reproduce rather well the slow variation of the internal energy with

the density and the cluster size (or mass) distribution. The simplest of these theoretical

approaches, built on the basis of simulation results, assumes that the only effect of the

dipolar interaction is to drive cluster formation and hence describes the DHS fluid as an

ideal mixture of self-assembling clusters. However, these theories fail to predict the existence

of phase transitions unless direct or indirect interactions between the clusters are added.

In collaboration with JJ [12, 14] we identified various types of clusters in a quasi two-

dimensional (2D) DHS fluid: chains, rings and defect clusters, the last named henceforth

referred to as networks, as in Safran et al.’s work [15–17]. The dipolar chains and rings

at very low densities were fully characterised by analysing their conformational properties,

internal energy and size (or mass) distribution, revealing a strong analogy with equilibrium

polymers [18]. Still, we did not address the question of liquid-vapour coexistence due to

the difficulty in extending the analysis to networks. Somewhat later we found a way of

including the effect of network formation in the theory, which allowed us to conclude that

the simulation results support the presence of a phase transition in quasi-2D DHSs [19].

Although we did not perform a quantitative comparison with the theory put forward by

Tlusty and Safran [15], we noted that the mechanism for condensation proposed by these

authors, based on not only the density difference between the coexisting phases, but also on

the topologies of the aggregates in either phase, was the same as that described in [19]. The

low-density chain-like phase is characterised by a large number of ’end’ defects – particles

at the ends of chains with only one neighbour – whereas the high-density ’network’ phase is

rich in chains with branching points – particles with three (Y-junctions) or more neighbours

3
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(X-junctions in the case of four neighbours).

Alternative treatments of the competition between phase separation and association in the

Stockmayer and DHS fluid include variants of the Flory-Huggins (FH) model of equilibrium

polymerisation [20, 21] and a thermodynamic perturbation theory for associating fluids [22].

The former rely on casting the free energy of the Stockmayer fluid in FH form, while the

latter, though apparently quite accurate [22, 23] is substantially more difficult to implement

than Wertheim’s association theory [24, 25] that will be discussed in the next section.

A related line of work concerns the novel type of soft matter known as associating col-

loids. Unlike in atomic systems, we are now able to control the interactions between colloidal

particles, thus opening up the possibility of new structural and thermodynamic behaviour

[26]. Of particular interest are the so-called patchy colloids, the surfaces of which are pat-

terned so that they attract each other via discrete ’sticky spots’ of tunable number, size and

strength. Besides their relevance to applications or in biological systems (e.g., protein solu-

tions), patchy colloids have important connections with notoriously difficult classical liquids

such as water and strongly dipolar fluids [27]. An understanding of these novel systems will

therefore shed light on more traditional forms of liquid matter. In particular, we note that

understanding the nature of the dipolar fluid phase transitions is important for applications

based on dispersions of ferromagnetic nanoparticles [28–30], where strong dipolar interac-

tions are present, as well as for fundamental reasons. In fact, the interplay between cluster

formation and condensation is a general problem, relevant in a variety of other theoretical

contexts.

Our ultimate purpose is to develop and study a model that retains the essential sym-

metry of dipolar forces that leads to association, while leaving out features believed to be

inessential, such as their long range and complex angular dependence. As a first step, fol-

lowing pioneering work by Sciortino and co-workers [31–33], we applied Wertheim’s theory,

as formulated by Jackson et al. [34], to patchy particles decorated with three interaction

sites: two of type A, whose interaction strength ǫAA sets the energy scale, and one of type

B and strength ǫBB. Unlike sites also interact, with strength ǫAB.

When ǫBB = ǫAB = 0 we recover the limit of two identical patches of strength ǫAA [31–33].

However, this limit turns out to be quite subtle: in systems where unlike sites do not interact

(i.e., where ǫAB = 0), the critical point exists all the way to ǫBB/ǫAA = 0. By contrast, when

ǫBB = 0, there is no critical point below a certain finite value of ǫAB/ǫAA. These somewhat
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surprising results can be rationalised in terms of the different network structures of the

systems: two long AA chains are linked by one BB bond (X-junction) in the former case,

and by one AB bond (Y-junction) in the latter. The vapour-liquid transition may then be

viewed as the condensation of these junctions, and we find that X-junctions condense for

any strength of the BB attraction (i.e., for any fraction of BB bonds) whereas condensation

of the Y-junctions requires that the AB interaction strength be above a finite threshold (i.e.,

there must be a finite fraction of AB bonds), in line with previous work [16].

This paper is organized as follows: in section II we provide a derivation of the theory

and apply it to the model with three different interaction patches. In section III we present

our results for the phase diagrams and critical points. These are further discussed in section

IV, where we summarise our conclusions. A number of technical details are given in an

appendix.

II. THEORY AND MODEL

We consider a system of N hard spheres (HSs) of diameter σ and volume vs = (π/6)σ3,

each decorated with three bonding sites (or sticky spots) on their surface. Two of these spots

are identical, and labelled A, while the third is different, and labelled B. In general, two

spheres may form bonds of types AA, BB or AB. Each bond corresponds to a short-ranged

attractive interaction between two bonding sites, which is treated as a perturbation of the

HS potential. We assume that these potentials are square wells, with depths ǫij (where

i, j = A, B), and their ranges are chosen so that each bonding site can only take part in one

bond. The positions of the bonding sites over the surface of the sphere are such that it is

not possible to have more than one bond between two spheres.

The above requirements are introduced to satisfy the assumptions made in Wertheim’s

theory, which then provides a general expression for the contribution of bonds to the free

energy, Fb. Wertheim’s derivation is based on a re-summed cluster expansion, where the

significance of each of the approximations is mathematically well understood [24, 25]. The

results are, however, rather formal and have been reformulated by Jackson et al. [34] in a

more convenient form that will be used here. An analysis of Wertheim’s theory in the fully

bonded limit reveals that it approximates (i) Fb by its low-density limit; and (ii) the n−

body correlation function by a superposition of pair (two-body) correlation functions of the
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reference system [35].

For the present model, a fluid of identical spheres with two A and one B bonding sites,

the bonding free energy, Fb, is given by [34],

βfb ≡
βFb

N
= 2 ln XA + ln XB − XA −

XB

2
+

3

2
, (1)

where β ≡ 1/(kBT ), T is the temperature, kB is the Boltzmann constant, and Xi is the

probability of having a sticky spot of type i not bonded. 1 − Xi is thus the fraction of

bonding sites of type i that do take part in bonds. The variables Xi are related to the

density and temperature through the law of mass action that is obtained by treating bond

formation as a chemical reaction. We recall that this is equivalent to disregarding loops in

the branched clusters, preserving only pair correlations [36]. Clusters consist of uncorrelated

bonds; longer-range correlations, including intracluster self-avoidance, are neglected. The

inter-cluster excluded volume is taken into account through the reference fluid entropic term.

The law of mass action then yields the following two equations [24, 25, 34]:

XA + 2η∆AAX2

A + η∆ABXAXB = 1, (2)

XB + η∆BBX2
B + 2η∆ABXAXB = 1, (3)

where η ≡ (N/V )vs is the packing fraction, and,

∆ij =
1

vs

∫

vij

gref(r) [exp(βǫij) − 1] dr. (4)

This integral is calculated over vij , the volume of bond ij, and gref is the pair correlation

function (PCF) of the reference system. MiMj∆ij/(1 + δij) (with MA = 2 and MB = 1 the

numbers of A and B sites per particle and δij the Kronecker delta) plays the role of the

equilibrium constant for the reaction between sites i and j [37].

Here we shall take all bonds to have the same volume, vij = vb. The reference system

is chosen to be the HS fluid, and the low-density (ideal gas) approximation for the PCF,

gref(r) = 1, will be used. Within these two approximations, equation (4) becomes

∆ij =
vb

vs
[exp(βǫij) − 1] . (5)

The free energy per particle is, therefore,

βf = βfHS + βfb, (6)

6
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which is a function of (η, T ) only. In what follows we shall use the Carnahan-Starling

approximation for fHS [38]; XA and XB are obtained by solving equations (2) and (3) for

fixed (η, T ). Because Wertheim’s theory treats all bonds independently, it does not provide

any direct information on the geometry of the resulting aggregates. We can nevertheless

infer what the lowest-energy structures (without any loops, see above) are in the limiting

cases where two of the three ǫij go to zero (see figure 1): chains (ǫAB = ǫBB = 0, ǫAA 6= 0);

dimers (ǫAA = ǫAB = 0, ǫBB 6= 0) and hyperbranched polymers (ǫAA = ǫBB = 0, ǫAB 6= 0).

We can also infer what structures will appear when we perturb the pure AA-chain limit:

two chains can attach at an X-junction (BB bond, figure 2a) or at a Y-junction (AB bond,

figure 2b).

We shall focus on the interplay between self-assembly and condensation in the context

of the present model, a number of special cases of which have been considered previously.

The case ǫij = ǫ (i.e., each sphere has three identical bonding sites) was extensively stud-

ied in [31, 33], by comparing simulations to Wertheim’s theory: agreement for the phase

diagrams was excellent. Furthermore, it was established that the number of bonding sites

per particle, M , is the key parameter controlling the location of the liquid-vapour critical

point: on decreasing M , this moves towards ever lower densities and temperatures, such

that liquid-vapour coexistence ceases to exist if M ≤ 2 [31–33]. Simulation and theory also

provide evidence that, for mixtures of particles with two and three identical sticky spots,

the average number 〈M〉 of bonding sites per particle can be varied continuously by chang-

ing the concentration of the two species, and the critical point may be made to approach

zero density and temperature continuously, as 〈M〉 → 2 [31]. This makes it possible to

realise equilibrium liquid states with arbitrarily low density (empty liquids), which would

be unfeasible with spherically symmetric interaction potentials.

In the case ǫAA = ǫAB = 0 [34], only dimer formation is allowed and there is no conden-

sation. Finally, in the case ǫAB = ǫBB = 0 only linear self-assembly is allowed: no critical

point exists [31, 33, 37], and one expects a polymerisation transition to occur when T → 0

[39]. The detailed fashion in which the critical temperature vanishes as the bonding energies,

ǫAB and ǫBB, decrease towards zero depends on the order in which the limits ǫAB → 0 and

ǫBB → 0 are taken, which in turn determines the type of network that is formed, as we shall

discuss in the following sections.

As a final remark before presenting our results, we recall that, as the monomer density

7
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is increased or the temperature decreased, these systems will pass through a percolation

threshold, where a network spanning the entire volume is formed. This transition is purely

topological, and has no thermodynamic signature, unlike the condensation described below.

The percolation transition and the correlation between the structural and thermodynamic

properties of this class of associating fluids will be addressed in future work.

III. RESULTS

A. The phase diagram

We have found the phase diagram by equating the pressures and chemical potentials of

the coexisting liquid and vapour phases, given by equations (21) and (24), and solving these,

together with the mass-action law equations (2) and (3) for the two phases.

The resulting set of six coupled non-linear equations was solved numerically using

NETLIB routine HYBRD. For consistency with Sciortino et al.’s work, we set vb =

0.000332285σ3. Likewise we introduce the reduced density ρ∗ = (N/V )σ3 = η/vs, re-

duced temperature T ∗ = kBT/ǫAA, and reduced interaction strengths ǫ∗BB = ǫBB/ǫAA,

ǫ∗AB = ǫAB/ǫAA. This amounts to taking σ, the HS diameter, as our unit of length, and

ǫAA as our unit of energy. Note that this choice of energy scale is neutral from the point

of view of criticality, as AA bonds can only lead to chaining, and not phase coexistence, at

any finite temperature.

Figure 3 shows phase diagrams for ǫ∗BB = 1 and variable ǫ∗AB. For ǫ∗AA = ǫ∗AB = 1 this

differs slightly from Sciortino et al.’s result [31, 33] for colloids with M = 3 identical spots,

because those authors used a more sophisticated approximation for the PCF. However, like

them we also find that the liquid phase has a rather low density, especially when ǫ∗AB is small.

As expected, the liquid phase is more extensively bonded, i.e., XA and XB, the fractions of

unbonded A and B sites, respectively, are smaller in the liquid than in the vapour.

Weakening the AB bond shrinks the region of two-phase coexistence (figure 3a), as fewer

AB bonds form in the liquid phase and more in the vapour phase (figures 3b and 3c).

However, in the limit of no AB bonds (ǫ∗AB = 0) we still get condensation, driven exclusively

by the presence of BB bonds: chains formed by AA bonds are linked through BB bonds

in a way reminiscent of the fourfold or X-junctions defined in [15–17] (see figure 2a). The

8
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two phases differ in the number and sizes of these chain aggregates, with XB
<
∼
XA in either

phase.

If, on the other hand, the AB bond is strengthened, the critical temperature T ∗

c first

goes up and then saturates, while the critical density ρ∗

c first goes through a maximum and

then approaches zero. This corresponds to AB bonds being formed in preference to BB

bonds. An AB bond is a linkage between an interior particle of one chain and the end

of another chain: two AA chains are linked through an AB bond, reminiscent of the Y-

junctions defined in [15–17] (see Figure 2b). Clearly, increasing ǫ∗AB favours the assembly of

Y-junctions, leading to less compact aggregates than do X-junctions, hence a lower density.

In the limit of large ǫ∗AB there is complete association of the B sites at the critical point,

leading to XB → 0 and XA → 0.5 because there are only half as many B sites as there are

A, sites, as can be seen from figures 3b and 3c. This is consistent with the formation of

highly ramified clusters akin to hyperbranched polymers [40], the size of which grows as the

bond gets stronger.

This behaviour of the critical density is similar to that observed experimentally for long

n-alkanes [41–43], where novel techniques revealed that the critical mass density reaches a

maximum and then starts to decrease as the chain length increases [41]. Simulation results

[44–46] give support to this finding

Note that although Wertheim’s theory was originally developed to treat fluids of asso-

ciating HSs, it yields, in the limit of infinite association strength, a polydisperse polymer

mixture [47]. By invoking the polymer-solvent analogy, it is expected from Flory-Huggins

theory that the pure polymer fluid should reach an asymptotic critical temperature, whereas

the critical mass density should become vanishingly small, as the chain length goes to in-

finity. This is corroborated by renormalisation group calculations [48, 49], which also show

that the corrections to scaling are large for chain lengths that occur in experiments [50].

When self-assembly is involved, the way in which the infinite chain limit is attained could

be even more complicated. However, polydispersity is irrelevant at the critical point and

the results of figure 3 confirm that the same type of critical behaviour occurs in associating

systems.

Figure 4 shows phase diagrams for ǫ∗AB = 0.75 and variable ǫ∗BB (effects are qualitativeley

the same for ǫ∗AB = 1, only less pronounced). Again the liquid phase has quite low densities,

especially when ǫ∗BB ≪ 1. The critical point saturates at both large and small BB bond

9
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strengths (i.e., it changes very little with ǫ∗BB in the limits of both small and large ǫ∗BB , as

can be seen from figures 5a and 5b), but ρ∗

c goes to zero in neither limit. Increasing ǫ∗BB

broadens the region of two-phase coexistence as it permits more and more compact clusters

through X-junction formation (figure 4a). In the limit of large ǫ∗BB there is thus a high

degree of association of B sites (XB is small) in either phase (figure 4c), whereas A sites are

fairly strongly associated (XA is fairly small) in the liquid phase, but rather more weakly

associated (XA is large) in the vapour phase (figure 4b). This suggests that the vapour

phase should consist mostly of BB dimers, and the liquid phase of BB dimers connected by

AA bonds.

On the other hand, as ǫ∗BB → 0, A-site association is almost complete (XA ≈ 0) in the

liquid phase, and fairly strong (XA ≤ 0.45) in the vapour phase (figure 4b). At the same

time, there are few bonded B sites (XB is large) in the vapour phase, and not so many in the

vapour phase (figure 4c). This implies that most A sites are bonded to other A sites, forming

chains in both phases, but that more A sites are bonded to B sites, forming Y-junctions,

in the liquid phase than in the vapour phase. These AB bonds are enough to sustain the

critical point.

B. The critical point

It should be obvious by now that we have a rich parameter space to explore, as both ǫ∗BB

and ǫ∗AB can be varied independently. In this paper we therefore chose to concentrate on the

approach to the already known limit ǫAB = ǫBB = 0, where no liquid-vapour critical point

exists. We ask ourselves: how exactly does the critical point vanish?

The critical point is found by equating to zero the first and second derivatives of the

pressure with respect to the density. This calculation is described in detail in the Appendix.

Figures 5 and 6 show the critical density ρ∗

c , critical temperature T ∗

c , fraction of unbonded

A sites at the critical point XAc and fraction of unbonded B sites at the critical point XBc,

as ǫ∗BB and ǫ∗AB go to zero along two different routes: ǫ∗BB → 0 and fixed ǫ∗AB (figure 5);

ǫ∗AB → 0 and fixed ǫ∗BB (figure 6).

Let us consider the first of these routes (figure 5). Taking a section at constant ǫ∗BB, T ∗

c

decreases with ǫ∗AB (see figure 5b). By contrast, ρ∗

c exhibits a rather complex non-monotonic

dependence on ǫ∗AB when ǫ∗BB
<
∼
2 (see figure 5a): it increases with decreasing ǫ∗AB up to
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ǫ∗AB ≈ 1, below which it decreases, reaching extremely small values even for ǫ∗AB = 0.5. This

behaviour can be rationalised as follows:

• If ǫ∗AB ≫ 1, most bonds are AB with a few AAs (XB ≪ 1 and XA ≈ 0.5, see figures

5c and 5b): we are in the hyperbranched cluster limit and the critical density is low.

• If ǫ∗AB ≈ 1, all bonds have approximately the same strength, similarly to [31, 33].

• Finally if ǫ∗AB < 1 we have mostly AA bonds (XA ≪ 1 and XB ≈ 1, see figures 5c and

5d), hence chains, connected by a few AB bonds (Y-junctions): the number of BB

bonds drops as ǫ∗BB → 0, the critical clusters are expected to be large and the critical

density low.

Now the second route (figure 6). Taking a section at constant ǫ∗AB, Tc decresases as

ǫ∗BB decreases (see figure 6b). Three regimes can be identified, in terms of the dominant

structures:

• If ǫ∗AB ≫ 1, we are again in the hyperbranched cluster limit and ρ∗

c is low (see figure

6a): most bonds are AB with a few AAs (XB ≪ 1 and XA ≈ 0.5, see figures 6d and

6c).

• If ǫ∗AB ≈ ǫ∗BB ≈ 1, we are close to three identical bonding sites behaviour and ρ∗

c has

a maximum (see figure 6a); the extent of both A- and B-site bonding is moderate

(though not small, see figures 6c and 6d), which suggests that the critical clusters are

not too large.

• If ǫ∗AB ≪ 1 and ǫ∗BB is not too small, ρ∗

c first decreases with decreasing ǫ∗BB , up to

about ǫ∗BB ≈ 1, below which it decreases (see figure 6a). For ǫ∗BB ≥ 0.75, ρ∗

c stays

close to its maximum, so the critical clusters are probably relatively small. However

for ǫ∗BB
<
∼

0.5 there is a dramatic change: ρ∗

c drops to very small values, most A sites

are bonded (XA gets very small, see figure 6c) but hardly any B sites (XB ≈ 1, see

figure 6d). Both phases consist mostly of AA-bonded chains with some residual AB

and BB attractions.

We ran into numerical problems (failure to converge to a solution of the set of non-linear

equations) whenever both ǫ∗BB and ǫ∗AB are small: these can be traced to the extremely low
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value of the critical density discussed above. We therefore investigated this limit analytically.

Start by noting that, in the limit of purely linear self-assembly, ǫ∗BB = ǫ∗AB = 0 and equation

(3) gives XB = 1 (no bonding of B sites). Moreover, equation (2) reduces to

XA + 2η∆AAX2
A = 1. (7)

In the limit T ∗ ≪ 1, we have ∆AA ≫ 1 and XA ≪ 1 (complete association of A sites), so

equation (3) becomes

XA =
1

(2∆AAη)1/2
. (8)

The two cases of interest were treated as perturbations to this limit.

1. X-junction driven criticality: ǫ∗AB = 0, ǫ∗BB → 0

When ǫ∗AB = 0, equation (3) becomes,

XB + η∆BBX2
B = 1. (9)

In the limit ǫ∗BB ≪ 1, we must have XB ≈ 1 (i.e., no B sites are bonded), and consequently

η∆BB ≈ 0. Therefore, in this limit, equation (9) can be approximated by

XB = 1 − η∆BB. (10)

Substituting equations (8) and (10) into equation (1), and making the approximation

ln XB ≈ −η∆BB , we obtain the bonding contribution to the free energy per particle at

low temperature, and in the limit ǫ∗BB ≪ 1:

βfb = 1 − ln(2∆AAη) − (2∆AAη)−
1

2 −
∆BBη

2
. (11)

If the HS pressure is expanded in powers of the packing fraction, the total pressure becomes

βpvs =
1

2

(

η

2∆AA

)
1

2

+ (B2 − ∆BB)
η2

2
+

B3

6
η3, (12)

where B2/2 = 4 and B3/6 = 10 are, respectively, the second and third (dimensionless) virial

coefficients of the reference HS fluid (see, e.g., [51]). The critical point is calculated using

equations (31) and (32). Using definition (5) and the approximation ∆AA,c ≈ vb

vs
exp( 1

T ∗

c
)

12

Page 12 of 28

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

(justified because we are working the limit ∆AA → ∞), we obtain, in the limit ǫ∗BB ≪ 1,

explicit expressions for the critical temperature and the critical density:

T ∗

c =
ǫ∗BB

ln
(

1 + B2vs

vb

) , (13)

ηc =
1

2

(

3

B3

)

2

5

exp



−
ln(1 + B2vs

vb
)

5ǫ∗BB



 . (14)

Therefore, when the limit of linear self-assembly is reached via the route (ǫ∗AB = 0, ǫ∗BB →

0), a critical point is always present, with lower and lower critical density and temperature.

This result appears similar to that obtained in [31], where the phase behaviour of a mixture

of hard spheres with two and three identical bonding sites was investigated. Lowering

the fraction of spheres with 3 bonding sites was seen to depress the critical density and

temperature to vanishingly small values, nevertheless indicating that a critical point exists

all the way to the linear self-assembly limit.

When ǫ∗AB = 0, ǫ∗BB → 0, two chains, formed by AA bonds, are linked through a BB bond

in a way reminiscent of fourfold X-junctions (see Figure 1a). This process is akin to the

thermoreversible vulcanisation through molecular linkers discussed in [16] with the linkers

replaced by BB bonds. As was pointed out in [16] the contribution of the X-junctions

to the free energy is indistinguishable from the two-body attractions between monomers.

Both contribute a term proportional to the density of monomers squared and the critical

point driven by X-junctions described here is similar to the Θ point of polymer solutions.

The bonding energy ǫBB that stabilises the X-junctions is a site-site interaction between

monomers and a finite critical point follows as long as this interaction is attractive, ǫBB > 0.

By contrast, in the model considered in [16] the X-junction is repulsive (i.e., it has an

energy higher than that of two separated chains) and there is no critical point at any finite

temperature.

2. Y-junction driven criticality: ǫ∗BB = 0, ǫ∗AB → 0

In the low-temperature limit, equation (8) holds, and when ǫBB = 0, equation (3) gives

XB =
1

1 + γη
1

2

, (15)
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with γ = 2∆AB(2∆AA)−
1

2 . In the limit ǫAB ≪ 1 we must have XB ≈ 1 (i.e., no B sites

are bonded), and consequently γη
1

2 ≪ 1. Therefore, in this limit equation (15) can be

approximated by

XB = 1 − γη
1

2 . (16)

Substituting equations (8) and (16) in equation (1) and making the approximation

ln XB ≈ −γη
1

2 , we obtain the bonding contribution to the free energy per particle at low

temperature and in the limit ǫAB → 0:

βf b = 1 − ln(2∆AAη) −
1

2
γη

1

2 − (2∆AAη)−
1

2 . (17)

If the HS pressure is expanded in powers of the packing fraction, the total pressure becomes

βpvs =
1

2

(

η

2∆AA

)
1

2

−
γ

4
η

3

2 +
B2

2
η2, (18)

where B2/2 = 4 is, as before, the second coefficient of the (non-dimensionalised) virial

expansion of the reference HS fluid. Equations (31) and (32) are used to find the critical

point, yielding that it can only exist if ǫ∗AB ≥ 1

3
. In the limit ǫ∗AB → 1

3

+
, the critical

temperature and the critical density are:

T ∗

c =
ǫ∗AB − 1

3

b
, (19)

ηc = exp

(

−
ǫ∗ABb

ǫ∗AB − 1

3

)

, (20)

with b = ln
[

2
(

B2vs

vb

)
2

3

]

(notice that b > 0).

Consequently, on decreasing ǫ∗AB a critical point of vanishingly small density and temper-

ature is obtained up to ǫ∗AB = 1

3
. For ǫ∗AB ≤ 1

3
, however, no vapour-liquid condensation is

possible. In other words, unlike in the limit (ǫ∗AB = 0, ǫ∗BB → 0), and contrary to the results

of [31], the perturbation of linear self-assembly must have a minimum strength in order to

generate a qualitatively different phase behaviour.

This result can be shown to be related to (in fact, it is almost the same as) that obtained

in [16] for Y-junction-driven criticality. In that work, formation of a Y-junction was assumed

to raise the energy of a linear ring (i.e., a ring of bonded particles without branching points)

by ǫj (> 0); and formation of a chain (creation of two ends) from a linear ring was assumed

to raise the energy by 2ǫe (> 0). It was also shown that Y-junctions, apart from increasing
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the energy, also increase the entropy of the system, in such a way that, if ǫj < ǫe/3, there

is coexistence between an end-rich gas and a junction-rich liquid. The energy parameters of

[16] are related to those of the present model by 2ǫe = ǫAA (since on creating two ends a AA

bond is broken) and ǫj = −ǫAB + ǫAA/2 (since on forming a Y-junction, one end and one

AB bond are created). Given these relations, the condition ǫj < ǫe/3 of [16] is equivalent to

ǫ∗AB > 1

3
and the condition for ‘repulsive’ junctions (ǫj > 0) becomes ǫ∗AB < 1

2
.

We may therefore interpret our result very precisely in terms of Y-junction formation.

If ǫ∗AB > 1

2
, the formation of Y-junctions lowers the energy (relative to a chain-rich liquid

phase), so we obtain the usual liquid phase (this range of parameters was not considered

in [16]). If, on the other hand, 1

3
< ǫ∗AB < 1

2
, the increase in energy is compensated

by the increase in the entropy of junction formation, and a junction-rich liquid phase is

still possible. Finally, if ǫ∗AB < 1

3
the energy cost of creating a junction is too large and

condensation becomes impossible.

The results of both limits lend themselves to an interpretation in terms of the types of

binding that can sustain a liquid phase: whereas any amount of BB binding energy (hence

an arbitrarily low concentration of X-junctions) can stabilise liquid-vapour equilibrium, a

minimal amount of AB energy (hence a finite concentration of Y-junctions) is needed for

that purpose. In other words, Y-junctions are less effective than X-junctions at stabilising

two-phase coexistence. This is in agreement with Tlusty and Safran’s coexistence between

a chain-end-rich vapour and a Y-junction-rich liquid and contrasts with their results for

entropically stabilized X-junction-rich liquids [15–17].

IV. CONCLUSION

We have investigated the influence of strong directional, or bonding, interactions on the

liquid-vapour critical point using a simple model and theory of self-assembly. Our ultimate

goal is to develop a model that retains the symmetry of dipolar forces leading to association,

and to relate the network structure of the dipolar fluid to its phase behaviour at low densities.

We have applied Wertheim’s theory to patchy colloids with three sites: two of type A,

with interaction strength ǫAA, and one of type B and strength ǫBB . Unlike sites also interact,

with strength ǫAB. We have found generic first-order condensation with well-defined limits,

as the BB or AB interaction strengths are varied. Some of these limits are relevant in the
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context of polymer criticality, which in turn is relevant to the criticality of strongly dipolar

fluids, since this is driven by network formation [15].

In our model we find self-assembled, polydisperse structures. However, polydispersity is

thought to be irrelevant in the critical region of polymeric systems, so we expect our results

to apply to monodisperse systems also. In the following we summarise them with emphasis

on those for vanishing BB and AB interaction strengths.

1. In the limit of large ǫAB there is complete association of the B sites at the critical

point, consistent with the formation of highly ramified clusters akin to hyperbranched

polymers [40], the size of which grows as the bond gets stronger.

2. In the limit of large ǫBB there is a high degree of association of B sites in either phase;

the vapour phase consists mostly of BB dimers, and the liquid phase of BB dimers

connected by AA bonds.

3. In the limit of vanishing BB or AB interactions, fully-associated AA chains form with

either AB or BB branches, depending on whether ǫBB or ǫAB vanishes, respectively.

These are the relevant limits to strong-dipolar-fluid criticality. While a full investi-

gation of the network properties will be left to future work, a number of conclusions

may be drawn concerning the structure of the fluid in these limits, as will be discussed

below.

When ǫBB = ǫAB = 0 we recover the limit of two identical patches of strength ǫAA [31–

33]. This limit, however, turned out to be non-trivial: in systems where unlike sites do not

interact (i.e., where ǫAB = 0), the critical point exists all the way to ǫBB/ǫAA = 0. By

contrast, when ǫBB = 0, there is no critical point below a certain finite value of ǫAB/ǫAA.

These findings were interpreted in terms of the formation of different network structures

[16], and shown to be closely related to the network-based description of the criticality of

strongly dipolar fluids [15].

Two AA chains are linked by one BB bond (X-junction) in systems with ǫAB = 0 (X-

junction), and by one AB bond (Y-junction) in systems with ǫBB = 0. The vapour-liquid

transition may then be viewed as the condensation of these junctions, and X-junctions are

found to condense for any strength of the BB attraction (i.e., for any fraction of BB bonds),

whereas condensation of the Y-junctions requires that the AB attraction be above a finite
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threshold (i.e., there must be a finite fraction of AB bonds). We find that the critical point

disappears above a certain threshold strength of the repulsive junction interaction ǫj , in

agreement with the results of [16] for entropic junctions. Below that threshold the (entrop-

ically) junction-induced attraction is strong enough to drive a first-order phase separation,

where the system separates into a low-density and a high-density phase. This entropic

transition is driven by the large entropy of the high-junction-density phase that more than

compensates the loss of translational entropy of the network [15]. The transition line termi-

nates at a critical point. The critical temperature increases as the junction energy decreases

and for attractive Y-junctions the high-density phase is stabilised by energetic and entropic

junction contributions, the former becoming increasingly important as the junction energy

decreases.

For fourfold junctions, we find that a junction-induced transition occurs as long as the

junction is attractive, i.e., −ǫBB < 0, vanishing when the strength of the BB bond vanishes.

On the other hand, repulsive fourfold junctions induce an (entropic) attraction that is too

weak to drive a phase separation, as found in [16].

The relation between network formation and the phase diagram of strongly dipolar fluids

was proposed in [15] and shown to be consistent with the results of computer simulations in

[19]. The interaction energy of two dipoles is lowest when the dipole moments are aligned

head-to-tail. This implies that dipolar particles have a tendency to aggregate into linear

chains. Yet it is important to realize that these chains can also branch, as shown in computer

simulations of quasi-2D dipolar fluids [19]. The energy of the particle at the branching point

is obviously higher than that of an interior chain particle, and can be calculated from

electrostatics. Disregarding the long-range part of the dipole-dipole interactions, the system

of branched dipolar chains can be mapped onto the model presented here, as was done

originally by [15], and our predictions for the phase separation should apply. However, in

view of the subtleties of the linear chain limit reported in this paper, and which had been

overlooked in [15], a closer inspection of the strongly dipolar fluid model seems to be called

for.

In future work we also plan to investigate (i) the effect of a continuously varying (effective)

number of sites (‘valence’) and (ii) the interplay between percolation and phase coexistence,

as gelation is also strongly affected by patchiness [37, 52].

Happy birthday JJ and all the best from the Lisbon team. We hope to see you back soon.
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Appendix

In order to find the critical point, we require the first and second derivatives of the

pressure with respect to the packing fraction. From equation (6), the pressure comprises

two contributions:

p = pHS + pb. (21)

Here, phs is the pressure of the reference HS fluid, which we take to be given by the Carnahan-

Starling formula [38],

βpHSvs =
η (1 + η + η2 − η3)

(1 − η)3
. (22)

and pb is the excess pressure due to bonding:

βpbvs = η2

[

(

2

XA
− 1

)

∂XA

∂η
+
(

1

XA
−

1

2

)

∂XB

∂η

]

. (23)

For completeness, and because it is used when computing the phase diagram, we also give

the expression for the chemical potential:

βµ = βµHS + βµb, (24)

βµHS = ln η +
8η − 9η2 + 3η3

(1 − η)3
, (25)

βµb = 2 lnXA − XA + ln XB −
XB

2
+

3

2

+ η

[

(

2

XA
− 1

)

∂XA

∂η
+
(

1

XA
−

1

2

)

∂XB

∂η

]

. (26)

Straightforward differentiation of equations (22) and (23) yields:

∂

∂η
(βpHSvs) =

1 + 4η + 4η2 − 4η3 + η4

(1 − η)4
, (27)

∂2

∂η2
(βpHSvs) =

8 + 20η + 20η2

(1 − η)5
, (28)

∂

∂η
(βpbvs) =

2

η
(βpbvs)
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+ η2



−
2

X2
A

(

∂XA

∂η

)2

+
(

2

XA

− 1
)

∂2XA

∂η2
−

1

X2
B

(

∂XB

∂η

)2

+
(

1

XB

−
1

2

)

∂2XB

∂η2



 , (29)

∂2

∂η2
(βpbvs) = −

2

η2
(βpbvs) +

2

η

∂

∂η
(βpbvs)

+ 2η



−
2

X2
A

(

∂XA

∂η

)2

+
(

2

XA
− 1

)

∂2XA

∂η2
−

1

X2
B

(

∂XB

∂η

)2

+
(

1

XB
−

1

2

)

∂2XB

∂η3





+ η2

[

4

X3
A

(

∂XA

∂η

)3

−
6

X2
A

∂XA

∂η

∂2XA

∂η2
+
(

2

XA

− 1
)

∂3XA

∂η3

+
2

X3
B

(

∂XB

∂η

)3

−
3

X2
B

∂XB

∂η

∂2XB

∂η2
+
(

1

XB

−
1

2

)

∂3XB

∂η3

]

. (30)

The critical point equations are then

∂

∂η
(βpvs) =

∂

∂η
(βpHSvs + βpbvs) = 0, (31)

∂2

∂η2
(βpvs) =

∂2

∂η2
(βpHSvs + βpbvs) = 0. (32)

It remains to calculate the first, second and third derivatives of XA and XB with respect to

η. Differentiating the mass-action law equations (2) and (3), we obtain the following set of

linear equations in the unknowns ∂XA/∂η, ∂XB/∂η:

aAA
∂XA

∂η
+ aAB

∂XB

∂η
= bA, (33)

aBA
∂XA

∂η
+ aBB

∂XB

∂η
= bB, (34)

with the solutions

∂XA

∂η
=

aBBbA − aABbB

aAAaBB − aABaBA
, (35)

∂XB

∂η
=

aAAbB − aBAbA

aAAaBB − aABaBA

. (36)

where

aAA = 4η∆AAXA + η∆ABXB + 1, (37)

aAB = η∆ABXA, (38)

aBA = 2η∆ABXB, (39)

aBB = 2η∆BBXB + 2η∆ABXA + 1, (40)

bA = −2∆AAX2
A − ∆ABXAXB, (41)

bB = −∆BBX2

B − 2∆ABXAXB. (42)
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Analogous sets of linear equations for ∂2XA/∂η2, ∂2XB/∂η2 and ∂3XA/∂η3, ∂3XB/∂η3 can

be derived by successive differentiation of equations (33) and (34), yielding:

aAA
∂2XA

∂η2
+ aAB

∂2XB

∂η2
= cA, (43)

aBA
∂2XA

∂η2
+ aBB

∂2XB

∂η2
= cB, (44)

aAA
∂3XA

∂η3
+ aAB

∂3XB

∂η3
= dA, (45)

aBA
∂3XA

∂η3
+ aBB

∂3XB

∂η3
= dB, (46)

with the solutions

∂2XA

∂η2
=

aBBcA − aABcB

aAAaBB − aABaBA

, (47)

∂2XB

∂η2
=

aAAcB − aBAcA

aAAaBB − aABaBA
, (48)

∂3XA

∂η3
=

aBBdA − aABdB

aAAaBB − aABaBA
, (49)

∂3XB

∂η3
=

aAAdB − aBAdA

aAAaBB − aABaBA

, (50)

where

cA =
∂bA

∂η
−

∂aAA

∂η

∂XA

∂η
−

∂aAB

∂η

∂XB

∂η
, (51)

cB =
∂bB

∂η
−

∂aBA

∂η

∂XA

∂η
−

∂aBB

∂η

∂XB

∂η
, (52)

dA =
∂cA

∂η
−

∂aAA

∂η

∂2XA

∂η2
−

∂aAB

∂η

∂2XB

∂η2
, (53)

dB =
∂cB

∂η
−

∂aBA

∂η

∂2XA

∂η2
−

∂aBB

∂η

∂2XB

∂η2
. (54)

The required derivatives of aij, bi and ci (i, j = A, B) can be obtained from equations

(37)–(42), (51) and (52); calculations are straightforward, but the resulting expressions are

somewhat long, for which reason we do not present them here.

The critical point for given ǫij , vb
ij is then found by solving equations (2), (3), (31) and

(32) simultaneously, for ρ, T , XA and XB, using NETLIB routine HYBRD.
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FIG. 1: Lowest-energy structures (without loops): (a) linear chains (ǫAB = ǫBB = 0, ǫAA 6= 0), for

which XA = 0 and XB = 1; (b) dimers (ǫAA = ǫAB = 0, ǫBB 6= 0), for which XA = 1 and XB = 0;

and (c) hyperbranched polymers (ǫAA = ǫBB = 0, ǫAB 6= 0), for which XA = 0.5 and XB = 0. The

small circles are the interaction sites: A (filled) and B (open).
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FIG. 2: (a) An X-junction; (b) a Y-junction.
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FIG. 3: (a) Temperature-density phase diagram, (b) fraction of unbonded A-sites, XA, and (c)

fraction of unbonded B-sites, XB , for ǫ∗BB = 1 and variable ǫ∗AB. In parts (b) and (c), the upper

branches of the curves correspond to the vapour phase, the lower branches to the liquid phase.
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FIG. 4: (a) Temperature-density phase diagram, (b) fraction of unbonded A-sites, XA, and (c)

fraction of unbonded B-sites, XB , for ǫ∗AB = 0.75 and variable ǫ∗BB . In parts (b) and (c), the upper

branches of the curves correspond to the vapour phase, the lower branches to the liquid phase.
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FIG. 5: Critical point vs ǫBB at different ǫAB : (a) critical density ρ∗c ; (b) critical temperature T ∗

c ;

(c) XA, the fraction of unbonded A sites; (d) XB , the fraction of unbonded B sites. Symbols are

the same for all panels. The insets in (a) and (b) compare the numerical and analytical results

when ǫAB = 0, ǫBB → 0.
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FIG. 6: Critical point vs ǫAB at different ǫBB : (a) critical density ρ∗c ; (b) critical temperature T ∗

c ;

(c) XA, the fraction of unbonded A sites; (d) XB , the fraction of unbonded B sites. Symbols are

the same for all panels. Note the non-monotonic behaviour of ρ∗c , which is typical of self-assembling

systems [35]. The insets in (a) and (b) compare the numerical and analytical results when ǫBB = 0,

ǫAB → 0.
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