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and Rayleigh-Schrödinger-Type Multireference

Coupled Cluster Theories ∗
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Academy of Sciences of the Czech Republic,

Doleǰskova 3, 18223 Prague 8, Czech Republic

b Department of Chemistry and Department of Physics and Astronomy,

Michigan State University, East Lansing, Michigan 48824, USA

January 19, 2009

Abstract

We apply the method of moments to the multireference (MR) coupled cluster (CC) formal-

ism representing the continuous transition between the Brillouin-Wigner-type and Rayleigh-

Schrödinger-type theories based on the Jeziorski-Monkhorst wave function ansatz and de-

∗We dedicate this paper to Professor Henry F. Schaefer III on the occasion of his 65th birthday.
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rive the formula for the noniterative energy corrections to the corresponding MRCC energies

that recover the exact, full configuration interaction energies in the general model space

case, including complete and incomplete model spaces. We also extend the relationship

between the generalized moments of the state-universal (SU) MRCC equations within the

Jeziorski-Monkhorst and Kucharski-Bartlett formulations of the SUMRCC theory to the

general model space case. Finally, we argue that in the complete model space case, the

relationship between moments of the SUMRCC equations corresponding to the Jeziorski-

Monkhorst and Kucharski-Bartlett formulations of the SUMRCC theory, derived in this

work, implies an equivalence of these two formulations of the SUMRCC approach, provided

that the disconnected linked terms are included in the Kucharski-Bartlett formulation, and

verify this statement numerically.

Keywords:

multireference coupled cluster theory, method of moments of coupled cluster equations, state-

universal multireference coupled cluster approach, Brillouin-Wigner multireference coupled clus-

ter approach, generalized Bloch equation, effective Hamiltonian, size extensivity, size consistency,

C-conditions, complete and incomplete model spaces

† Corresponding author. Email: jiri.pittner@jh-inst.cas.cz

‡ Email: piecuch@chemistry.msu.edu
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1 Introduction

The single-reference version of the standard coupled-cluster (CC) method [1] (for selected re-

views, see [2–11]) is nowadays routinely exploited in computational chemistry via several success-

ful approximations and general-purpose electronic structure packages. Recently, the quantum-

chemistry inspired single-reference CC methods have also been successfully employed in accurate

calculations of nuclear structure (cf., e.g., [12–18]). In particular, the widely used and compu-

tationally affordable CCSD(T) method [19, 20] that accounts perturbatively for the connected

triply excited clusters via noniterative corrections to the CCSD (CC singles and doubles) [21–24]

energies has proved to be very reliable and accurate in applications involving nondegenerate

ground states of molecular systems. Its main drawback – the inability to describe bond breaking

and biradicals – has been, to a large extent, remedied by the noniterative corrections defining

the method of moments of CC (MMCC) equations introduced by Piecuch and Kowalski [25, 26]

(see [27, 28] for representative reviews). The single-reference MMCC formalism exploits the

projections of the similarity transformed Hamiltonian of CC theory acting on the reference de-

terminant on the Slater determinants whose excitation rank is higher than the ranks of the

excited determinants that are used to solve the corresponding CC equations. When combined

with a full configuration interaction (FCI) bra wave function, the MMCC energy correction

recovers the exact, FCI energy from the energy and cluster amplitudes corresponding to the

truncated CC (e.g., CCSD) wave function. This alone would be formally interesting but of

not much use in practice. Thus, Piecuch et al. have replaced the FCI wave function in the

MMCC energy expressions by all kinds of approximate wave functions, and in this way de-

veloped a wide variety of approximate MMCC approaches, including, among others, the com-

pletely renormalized (CR) CCSD(T) and CCSD(TQ) methods, which substantially improve the

behavior of the non-iterative approximations of the CCSD(T) or CCSD(TQ) type in the bond

breaking region with an effort similar to that of the corresponding CCSD(T) and CCSD(TQ)

calculations [25–28]. The recently developed size extensive extensions of the CR-CCSD(T) and
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CR-CCSD(TQ) methods [29–32], especially the noniterative triples corrections to the CCSD

energies based on the biorthogonal formulation of the MMCC theory [30, 31] defining the CR-

CC(2,3) approach [30–32], seem particularly promising in applications involving single bond

breaking, reaction mechanisms in organic and bioinorganic chemistry involving biradicals, and

singlet-triplet gaps in magnetic/biradical systems (see, e.g., [30–39]). The original CR-CCSD(T)

and CR-CCSD(TQ) approaches can be useful and successful as well, particularly in studies of

potential energy surfaces and reaction mechanisms [27, 28, 33, 35–37, 39–42]. As pointed out

in [30–32], the CR-CC(2,3) approach encompasses other possible ways of handling non-iterative

triples corrections to CCSD energy, including, in addition to CCSD(T), the triples corrections

of the CCSD(2) approaches [43–48] (see [49, 50] for the original ideas) and the so-called Lambda

CCSD(T) methods [51, 52], which all improve the CCSD(T) results in the bond breaking and

biradical regions, but not as effectively as CR-CC(2,3) ((CR-CC(2,3) is also more accurate in

the equilibrium and closed-shell regions [30–32]).

There are, however, situations where nondynamic correlation effects arise when the single

reference configuration becomes degenerate or quasidegenerate with some nearby lying state, in

which case the use of a single determinant as a reference leads to difficulties, such as symmetry

breaking and lack of a balanced description of a number of quasi-degenerate states. This occurs

when, for example, one of the reaction products is in a low-spin open-shell state, which requires

a genuine multi-determinantal description, or when dealing with quasi-degenerate excited states,

potential energy surface crossings, and poly-radical species, to mention a few typical situations.

One can extend the idea of single-reference MMCC corrections and CR-CC methods to excited

states by combining them with the equation-of-motion (EOM) CC theory [53, 54], as in, for

example, [27, 28, 31, 55–57], but there are cases of electronic quasi-degeneracies where this is not

sufficient (cf., e.g., [58, 59]). Such cases require – at least in principle – a multireference (MR)

version of the CC theory with a sufficiently large model space that guarantees the size-consistent

description of the studied system.

There are basically two types of genuine MRCC methods, where the word “genuine” implies

4
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the use of the truly multi-root Bloch wave operator formalism, namely, the Fock-space or valence

universal MRCC approaches (see, e.g., [60, 61], and references therein) and the Hilbert-space

or state-universal (SU) MRCC schemes [62–71], which are based on the Jeziorski-Monkhorst

ansatz [62]. In this paper, we focus on methods that utilize the Jeziorski-Monkhorst wave func-

tion ansatz, which relies on the use of multiple cluster operators that are assigned to individual

reference determinants spanning the multi-dimensional reference or model space.

There exist two formulations of the SUMRCC theory which depend on whether one premul-

tiplies the amplitude equations by e−T (µ), where T (µ) is the cluster operator associated with the

reference determinant |Φµ〉, prior to the projection on the excited determinants, as suggested

in the original Jeziorski-Monkhorst paper [62] and as exploited in the early work by Paldus,

Piecuch, and their co-workers (cf., e.g., [63–66]), or whether one projects the amplitude equa-

tions on the excited determinants without premultiplying them first by e−T (µ), as suggested by

Kucharski and Bartlett [67] (see, e.g., [68, 69] for the follow-up work and representative appli-

cations). It is worth mentioning that Kowalski and Piecuch extended the MMCC approach to

the SUMRCC case, enabling one to correct the results of the low-order SUMRCC calculations,

such as SUMRCCSD, by the effects of higher-order (e.g., triple) excitations using the noniter-

ative corrections to the SUMRCC energies expressed in terms of the generalized moments of

the SUMRCC equations (projections of the SUMRCC equations on the higher-order excited

determinants that are normally disregarded in the SUMRCC calculations) [70, 71].

Unfortunately, independent of the formulation, the SUMRCC formalisms suffer from conver-

gence difficulties caused by intruder states or intruder multiple solutions [64, 65, 72]. Unlike in

the perturbation theory, where intruders are inevitable from the theoretical point of view, in the

genuine MRCC methods, such as SUMRCC, they are a consequence of the polynomial character

of amplitude equations resulting from the use of the exponential ansatz for the wave function,

which is further complicated by the nonlinear character of the generalized Bloch equation on

which the genuine MRCC methods are based [72, 73], manifesting themselves in the existence

of multiple, often singular, unphysical solutions that lead to convergence difficulties and large
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inaccuracies when one iteratively solves the MRCC equations. Clearly, intruders are a serious

obstacle on the way toward routine applications of the SUMRCC methods. The same is generally

true for other genuine MRCC approaches exploiting the multi-root Bloch wave operator formal-

ism, although significant progress has been accomplished toward eliminating intruders within

the valence-universal MRCC approach by Meissner [74–76] who has replaced the conventional

multi-root method of solving the valence-universal MRCC equations employing the effective

Hamiltonian formulation that leads to convergence problems by the alternative, intermediate

Hamiltonian formulation that enables the one-root calculations of the valence-universal MRCC

type.

One can eliminate intruders from the SUMRCC considerations by turning to methods that

abandon the idea of multiple cluster operators characterizing the Jeziorski-Monkhorst ansatz

altogether, as in, for example, the state-specific MRCC techniques and the analogous active-

space CC/EOMCC approaches employing a single-reference formalism, which incorporate the

key ingredients of MRCC theory, such as the concept of active orbitals, into the otherwise single-

reference CC or EOMCC considerations. In these methods, pioneered by Adamowicz, Oliphant,

and Piecuch in the early 1990s [77–81] and revisited by Piecuch, Kucharski, and Bartlett in the

late 1990s [82, 83], and their subsequent extensions, including, for example, excited and open-

shell states, by the Adamowicz and Piecuch groups (cf., e.g., [84–93]), one combines the ordinary

single-reference CC or EOMCC formalism with a multi-reference concept of active orbitals, which

are used to select a relatively small subset of the dominant triply and other higher–than–doubly

excited clusters that reflect the nature of the electronic quasi-degeneracy or excited states of

interest. Although methods of this type can be very successful in applications involving single and

multiple bond breaking, excited states dominated by many-electron transitions, and ground and

excited states of radicals, one has to be able to identify the appropriate dominant determinant,

which is regarded as a formal reference state and Fermi vacuum, to design them. This may not

always be straightforward, particularly if several reference determinants contribute more or less

equally to the wave function. The important question emerges if one can address the issue of
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intruders within the Jeziorski-Monkhorst MRCC ansatz that treats all reference determinants

on equal footing.

One promising approach to avoid the intruder state problem within the Jeziorski-Monkhorst

SUMRCC ansatz is the state-specific MRCC theory proposed by Mukherjee et al. [94–97], which

has recently been efficiently implemented including triple excitations by the Schaefer [98–100]

and Pittner [101] groups. In particular, a new “linked” formulation of the Mukherjee’s theory,

which has simpler coupling terms in the amplitude equations, has been recently derived and its

equivalence with the original “connected” formulation within the complete model space (CMS)

has been established by mathematical techniques that are similar to those exploited in the

present paper [102].

Another interesting MRCC formalism that should be mentioned in this context is that pro-

posed by Hanrath [103–105]. Hanrath’s MRCC removes the inherent redundancy of the Jeziorski-

Monkhorst wave operator ansatz by means of determinant-based amplitude indexing [103–105].

This approach has the advantage of eliminating the need for non-unique “sufficiency conditions”

of the Hilbert space MRCC theory, which resolve the underdetermined character of the equa-

tions due to possibly multiple paths leading from different reference determinants to a given

excited determinant in the framework of the Jeziorski-Monkhorst ansatz, at the expense of a

more complicated form of amplitude equations.

Yet another MRCC approach exploiting the Jeziorski-Monkhorst ansatz and aimed at elimi-

nating intruders is the (size-extensivity corrected) MR Brillouin-Wigner CC (MRBWCC) method

[106–110], in which the BW energy denominator shift improves the convergence properties by

avoiding intruder states altogether. The basic MRBWCCSD method has been shown to yield

reasonably accurate results for systems where the nondynamic correlation plays a significant

role [111–123]. Recently, the connected triple excitations have been included in the MRBWCC

theory [124–126], resulting in a considerable increase in the accuracy of the method thanks to

the more precise description of dynamic correlation effects, similar to the single-reference case,

where one has to incorporate connected triply excited clusters, at least approximately, to obtain

7
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a quantitative description.

Generally, the occurrence of intruder states in the genuine MRCC methods can be attributed

to the small separation between the energies associated with the model space configurations and

energies of the excited configurations that do not belong to the model space. This is particularly

likely to happen when the CMS is employed. In the CMS case, one often encounters excited

configurations whose energies become very close to the energies of some reference configurations,

particularly when the dimension of CMS becomes large due to the use of the larger numbers of

active orbitals and electrons. In fact, it often happens that the emergence of intruders is tied

to relatively few reference configurations that are not essential for achieving an accurate and

size-consistent description, and may, therefore, be safely eliminated, assuming that the use of

the resulting incomplete model space does not lead to other problems, such as departure from

strict size extensivity that might cause a significant loss of accuracy when the many-electron

system of interest becomes large (normally, one has to use CMS in order for the genuine MRCC

theories to be rigorously size extensive; cf., e.g., [62]).

There have been several suggestions about how to eliminate the need for the use of CMS in

genuine MRCC calculations which abandon the intermediate normalization requirement of the

MRCC wave functions (see, e.g., [127–133]). In the resulting incomplete model space MRCC

theories, which are often cumbersome and which in some cases enforce extensivity at the ex-

pense of accuracy, the intermediate normalization requirement is given up in order to eliminate

the disconnected energy diagrams that automatically show up in genuine MRCC considerations

when the CMS assumption is abandoned and the intermediate normalization condition is main-

tained (cf., e.g., [62]). Recently, Li and Paldus have introduced a much more transparent and

very elegant solution to the problem, resulting in the general model space (GMS) SUMRCC

theory [134–136]. The GMS SUMRCC theory uses the so-called C-conditions, which enable

one to employ incomplete model spaces in the SUMRCC calculations in a straightforward and

rather routine fashion while retaining the intermediate normalization requirement and clarity

of the resulting equations [134–136]. This idea has actually been touched upon in the original

8
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Jeziorski-Monkhorst paper [62], but has not been pursued in detail until Li and Paldus published

their recent work. As shown in [134–136], when the model space and cluster amplitudes are de-

fined in a suitable manner, the GMS SUMRCC method satisfying the C-conditions is exactly

size-consistent [136] in the sense of additive separability of the resulting energies, although it

does not fulfill the strict connected-diagrams-only requirement defining the recently discussed

concept of generalized extensivity [137]. In collaboration with Li and Paldus, the aforementioned

MRBWCC method has been generalized to the incomplete model space case as well [138]. As

in the SUMRCC case discussed in [134–136], the C-conditions have been exploited. We should

point out, however, that in the case of the MRBWCC theory the intruder state problem is not the

reason for employing incomplete model spaces, since MRBWCC is a state specific, intruder-free

theory. The primary motivation behind the use of incomplete model spaces in the MRBWCC

calculations is the considerable saving in the computer effort resulting from the elimination of

unimportant reference configurations.

In the present work, we combine the MRBWCC theory with the MMCC approach and with

the treatment of general model spaces via the C-conditions. Thus, in Section 2.1, we derive the

MMCC energy correction formula for the generalized form of the MRCC formalism that describes

the continuous transition between the BWMRCC theory and the Rayleigh-Schrödinger (RS)-

type SUMRCC theory of Jeziorski and Monkhorst. Then, in Section 2.2, we extend the original

Kowalski-Piecuch formula for the relationship between moments of the Jeziorski-Monkhorst-style

and Kucharski-Bartlett-style SUMRCC equations [70, 71] to the general incomplete model space

case. Next, in Section 3, we show that in the CMS case, the two alternative formulations of the

SUMRCC theory, with and without the premultiplication by e−T (µ), which result, respectively,

in the explicitly connected Jeziorski-Monkhorst-style SUMRCC equations used in [62–66] and

the Kucharski-Bartlett-style SUMRCC equations in which the disconnected terms are retained

(so that they might be canceled out or eliminated later for computational reasons, if need be),

exploited in [67–69], i.e., the SUMRCC methods that employ two different definitions of moments

of MRCC equations, are equivalent (while in the incomplete model space case they are not) and

9
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support this formal finding by a numerical evidence. Finally, in Section 4, we summarize the

results.

2 Method of Moments of Coupled Cluster Equations for

the Brillouin-Wigner-Type and Rayleigh-Schrödinger-

Type Multireference Coupled Theories Based on the

Jeziorski-Monkhorst Ansatz

2.1 The energy correction formula for the continuous transition be-

tween the Brillouin-Wigner-type and Rayleigh-Schrödinger-type

multireference coupled cluster theories employing the Jeziorski-

Monkhorst ansatz

As usual in the MRCC literature, we define the model space M spanned by a number of reference

configurations |Φµ〉, although we do not require M to be complete. We introduce the projection

operators on the model space M and its orthogonal complement M⊥, P and Q, respectively,

which are defined as

P =
M
∑

µ=1

|Φµ〉〈Φµ| (1)

and

Q = 1 − P, (2)

where M is the dimension of M and 1 represents the identity operator in the relevant N -

electron Hilbert space. The operators P and Q, Eqs. (1) and (2), respectively, satisfy the

well-known properties of all projection operators, i.e., they are idempotent and hermitian, and

PQ = QP = 0. We confine ourselves to the MRCC theories employing the Jeziorski-Monkhorst

10
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ansatz [62] for the wave operator,

Ωα =
M
∑

µ=1

eT (µ)|Φµ〉〈Φµ|, (3)

where T (µ) are the cluster operators associated with the model space configurations |Φµ〉. In

general, the Ωα operators generate the wave functions |Ψα〉 of the target states α of interest from

their respective projections onto the model space,

|Ψα〉 = ΩαP |Ψα〉 ≡ Ωα|Ψ
P
α 〉. (4)

The wave operator Ωα, which produces a given target state |Ψα〉 from the corresponding zero-

order model state |ΨP
α 〉, is, in general, state specific, so that we label it with the additional index

α [in the original SUMRCC theory of Jeziorski and Monkhorst [62], the wave operator Ω is state

universal and cluster operators T (µ) are not geared toward one particular state |Ψα〉 but, rather,

to a family of quasi-degenerate states whose number is the same as the dimension of the model

space M, so that one can drop subscript α at Ω in that case; there are, however, various ways

of determining cluster operators T (µ), including the MRBWCC theory considered in this work,

that may be state specific, so in the general case the wave operator Ω should be labeled by the

index defining the target state it generates, as in Eq. (4)]. The intermediate normalization,

PΩα = P, (5)

is assumed throughout all of the derivations discussed in this paper.

The determination of the wave operator Ωα starts by writing the equation, which is equiva-

lent to the Schrödinger equation, HΩαP |Ψα〉 = EαΩαP |Ψα〉, and which one can regard as the

generalized form of the Bloch equation for a λ-scaled continuous transition between the BW-type

and RS-type MRCC theories [109] applied to the wave function |Ψα〉,

HΩαP |Ψα〉 = λEαΩαP |Ψα〉 + (1 − λ)ΩαPHΩαP |Ψα〉 , (6)

where λ = 0 corresponds to the RS case and λ = 1 corresponds to the BW case. As usual, we

introduce the (non-hermitian) effective Hamiltonian,

Heff = PHΩαP, (7)
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which acts only within the model space M and which yields the MRCC energy Eα of the α-th

state |Ψα〉 as its eigenvalue,

Heff |ΨP
α 〉 = Eα|Ψ

P
α 〉. (8)

The corresponding eigenvector |ΨP
α 〉 provides the coefficients defining the expansion of the MRCC

wave function |Ψα〉 projected onto the model space M (or the zero-order component of |Ψα〉),

|ΨP
α 〉 =

M
∑

µ=1

cµ
α|Φµ〉. (9)

The amplitude equations for the λ-scaled transition from the MRBWCC theory to the

Kucharski-Bartlett formulation of the RS-style SUMRCC method corresponding to the trun-

cated scheme in which

T (µ) =
mA
∑

n=1

Tn(µ), (10)

where Tn(µ) is the n-body component of T (µ) and mA ≤ N is the excitation level defining the

truncated calculation of interest (e.g., mA = 2 in the MRCCSD case), can be given the following

compact form [109]:

Gn(µ)|Φµ〉 = 0 (n = 1, . . . , mA; µ = 1, . . . , M), (11)

where the generalized G-moments, Gn(µ)|Φµ〉, are simply a linear combination of the BW-

type and RS-type moments of the MRCC equations employing the Jeziorski-Monkhorst ansatz,

Bn(µ)|Φµ〉 and Mn(µ)|Φµ〉, respectively, as in the following expression in terms of the operators

Gn(µ), Bn(µ), and Mn(µ) that define these moments,

Gn(µ) = λBn(µ) + (1 − λ)Mn(µ). (12)

The B- and M- moments entering Eq. (12) are defined as

Bn(µ)|Φµ〉 = Qn(µ)

[

(HeT (µ))C+DC,L − (Eα − Heff
µµ)eT (µ)

]

|Φµ〉 (13)

and

Mn(µ)|Φµ〉 = Qn(µ)

[

(HeT (µ))C+DC,L −
∑

ν(6=µ)

eT (ν)|Φν〉〈Φν |H
eff

]

|Φµ〉, (14)
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respectively, where, for simplicity, the truncation of each cluster operator T (µ), µ = 1, . . . , M ,

at the mA-tuple excitations, as in Eq. (10), is assumed throughout without displaying the index

mA explicitly. The M-moments, Eq. (14), correspond to the Kucharski-Bartlett formulation of

the RS-style SUMRCC theory [67] in a form where the disconnected linked terms are retained

(in their original work [67], Kucharski and Bartlett dropped the disconnected linked terms from

the final amplitude equations). On the other hand, the original Jeziorski-Monkhorst formulation

of the RS-style SUMRCC theory [62], exploited over the years by Paldus, Piecuch, and their

co-workers (cf., e.g., [63–66, 70–72, 134–136]), is defined in terms of the following moments:

Γn(µ)|Φµ〉 = Qn(µ)

[

(HeT (µ))C −
∑

ν(6=µ)

e−T (µ)eT (ν)|Φν〉〈Φν |H
eff

]

|Φµ〉. (15)

For example, the amplitude equations defining the Jeziorski-Monkhorst formulation of the SUM-

RCC theory, corresponding to the approximate scheme in which each T (µ) is truncated at the

mA-tuply excited clusters, as in Eq. (10), are obtained by zeroing the Γ-moments Γn(µ)|Φµ〉

with n = 1, . . . , mA and µ = 1, . . . , M ,

Γn(µ)|Φµ〉 = 0 (n = 1, . . . , mA; µ = 1, . . . , M). (16)

In the above formulas, the subscript C designates the connected diagrams only, while DC, L

stands for the disconnected, but linked diagrams. The Qn(µ) operator is a projector onto the

manifold spanned by the n-tuply excited determinants with respect to the µ-th Fermi vacuum

|Φµ〉.

In order to derive the MMCC energy correction for the λ-scaled transition from the MRB-

WCC approach to the Kucharski-Bartlett formulation of the RS-type SUMRCC method corre-

sponding to Eq. (11), we follow the general philosophy of all MMCC considerations

[26, 27, 29–31, 55, 70] and exploit the asymmetric energy expression

Eα[Ξ] ≡
〈Ξ|HΩα|Ψ

P
α 〉

〈Ξ|Ωα|ΨP
α 〉

, (17)

where |Ξ〉 is a “trial” state, which has a nonzero overlap with the target state α, and |ΨP
α 〉 =

P |Ψα〉 is the projection of the approximate wave function |Ψα〉, corresponding to the target state
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α and obtained in the MRCC calculations based on Eq. (11) in which each cluster operator T (µ)

is truncated at the mA-tuply excited component, onto the model space M. The usefulness of Eq.

(17) stems from the fact that Eα[Ξ] gives the exact, FCI energy of the target state α, independent

of the truncation level mA used in the MRCC calculations, if 〈Ξ| is the corresponding FCI bra

wave function. Clearly, we can also write

Eα =
〈Ξ|Ωα[(1 − λ)Heff + λEα]|ΨP

α 〉

〈Ξ|Ωα|ΨP
α 〉

, (18)

where Eα is the energy obtained by solving the system of MRCC equations represented by Eq.

(11), corresponding to the truncation of each T (µ) operator at the mA-body component, and by

diagonalizing the resulting effective Hamiltonian Heff , Eq. (7), in the model space M. Based

on Eqs. (4), (7), (17), and (18), we can introduce the energy correction functional

∆Eα[Ξ] ≡ Eα[Ξ] − Eα =
〈Ξ|HΩα − λEαΩα − (1 − λ)ΩαPHΩα|Ψ

P
α 〉

〈Ξ|Ωα|ΨP
α 〉

, (19)

which defines the difference between the exact, FCI energy of the target state α of interest

and the corresponding MRCC energy Eα, obtained by solving Eq. (11) and diagonalizing the

corresponding effective Hamiltonian in M, if 〈Ξ| is the FCI bra wave function representing state

α. The appearance of the generalized Bloch equation applied to |Ψα〉, Eq. (6), in the numerator

of Eq. (19) should be noted.

We now introduce the resolution of identity with respect to the µ-th Fermi vacuum |Φµ〉,

1 = P +
N

∑

n=1

Qn(µ), (20)

into the numerator of the right-hand-side (rhs) of Eq. (19) and expand the zero-order state |ΨP
α 〉

according to Eq. (9). We assume that the amplitude equations, Eq. (11), have been solved, i.e.,

the projections of the corresponding generalized Bloch equation applied to |Ψα〉 on the excited

determinants with the excitation rank relative to |Φµ〉 not exceeding mA vanish, so that [cf. Eqs.

(6) and (7)],

Qn(µ)[HΩαP − λEαΩαP − (1 − λ)ΩαHeff ]|Φµ〉 = 0 (n = 1, . . . , mA; µ = 1, . . . , M). (21)
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We obtain,

∆Eα[Ξ] =

∑

µ cµ
α{λ〈Ξ|H

eff − Eα|Φµ〉 +
∑

n>mA
〈Ξ|Qn(µ)[HΩαP − λEαΩαP − (1 − λ)ΩαHeff ]|Φµ〉}

〈Ξ|Ωα|ΨP
α 〉

,

(22)

where we used the following identity

P [HΩαP − λEαΩαP − (1 − λ)ΩαHeff ]|Φµ〉 = λ(Heff − Eα)|Φµ〉. (23)

Since Eα is the eigenvalue of Heff and since the cµ
α coefficients form the corresponding eigenvector,

we have

∑

µ

cµ
α(Heff − Eα)|Φµ〉 = 0, (24)

so that the first term in the numerator of the rhs of Eq. (22) vanishes. By reinserting the

Jeziorski-Monkhorst ansatz for the wave operator Ωα, Eq. (3), back into the resulting expression,

we obtain the desired MMCC formula for the energy correction ∆Eα[Ξ] corresponding to a

continuous transition from the BW-style to the RS-style MRCC theory exploiting the Jeziorski-

Monkhorst ansatz, namely,

∆Eα[Ξ] =

∑

µ cµ
α

∑

n>mA
〈Ξ|Gn(µ)|Φµ〉

∑

µ c
µ
α〈Ξ|eT (µ)|Φµ〉

, (25)

where the Gn(µ)|Φµ〉 moments are defined by Eqs. (12)–(14). Note that the Gn(µ)|Φµ〉 moments

that contribute to Eq. (25) have the excitation rank n > mA, since we assume that the truncated

cluster operators T (µ) that are needed to determine these moments have been obtained by solving

the amplitude equations given by Eq. (11).

When 〈Ξ| is the FCI bra wave function representing state α, the ∆Eα[Ξ] correction added to

the MRCC energy Eα, obtained by solving the MRCC system of equations represented by Eq.

(11) and diagonalizing the corresponding effective Hamiltonian in the model space M, recovers

the exact, FCI energy of state α. By employing approximate forms of 〈Ξ|, we can obtain a variety

of approximate MRMMCC models based on Eq. (11), similar to those discussed in [70, 71]. We

should emphasize the state-specific character of the noniterative corrections ∆Eα[Ξ]. The most

useful new feature of Eq. (25), when compared to the earlier MRMMCC considerations reported
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in [70, 71], is its applicability to both the SUMRCC and MRBWCC methods, which are simply

the two limiting cases in the λ-scaled continuous transition between the BW-type and RS-type

MRCC theories corresponding to λ = 0 and 1, respectively. We should also point out that we

have never had to assume the completeness of the model space in the above derivation, although

we have employed the intermediate normalization condition, Eq. (5), since the generalized Bloch

equation, Eq. (6), as well as the construction of the effective Hamiltonian, Eq. (7), rely on it.

Since it is possible to satisfy the intermediate normalization requirement in both the incomplete

model space SUMRCC and incomplete model space MRBWCC considerations with the help of

the C-conditions, as discussed in [134–136, 138], the MMCC energy corrections ∆Eα[Ξ] given by

Eq. (25), which enable us to correct energies Eα obtained in the truncated MRCC calculations

based on Eq. (11), are also suitable for the calculations involving incomplete model spaces.

2.2 Formula for the conversion between the M- and Γ-moments

Kowalski and Piecuch [70, 71] expressed their MMCC correction ∆Eα[Ξ] for the case of the RS-

style SUMRCC theory (the λ = 0 limit in our considerations) in terms of moments Γn(µ)|Φµ〉,

Eq. (15), rather than moments Mn(µ)|Φµ〉, Eq. (14), that enter the definition of the generalized

moments Gn(µ)|Φµ〉, as in Eq. (12), used in our formula for ∆Eα[Ξ], Eq. (25). They did this

by deriving a formula that directly relates the M- and Γ- moments [70]. In the following, we

generalize the relationship between the M- and Γ- moments obtained in [70] to the important

case of incomplete model spaces.

Let us begin with the derivation of an auxiliary formula

P

[

(HeT (µ))C −
∑

ν∈M

e−T (µ)eT (ν)|Φν〉〈Φν |H
eff

]

|Φµ〉 = −P
[

(HeT (µ))DC,L + (e−T (µ) − 1)Heff
]

|Φµ〉,

(26)

valid for the general model space case, including complete and incomplete model spaces. Notice

that in the former case, the rhs of Eq. (26) vanishes.
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First, we write the following identity:

P
[

(HeT (µ))C −
∑

ν∈M

e−T (µ)eT (ν)|Φν〉〈Φν |H
eff

]

|Φµ〉

= P (HeT (µ))C −
∑

τ,ρ,ν∈M

|Φρ〉〈Φρ|e
−T (µ)|Φτ 〉〈Φτ |e

T (ν)|Φν〉〈Φν |H
eff |Φµ〉, (27)

where we have inserted the resolution of identity, P + Q = 1, between e−T (µ) and eT (ν), while

exploiting the property

Qe−T †(µ)|Φρ〉 = 0. (28)

We can simplify the rhs of Eq. (27) by exploiting the condition

〈Φτ |e
T (ν)|Φν〉 = δτν , (29)

resulting from the assumption of intermediate normalization, since the intermediate normaliza-

tion is preserved in the general model space case examined in this work thanks to the use of the

C-conditions [134, 138]. In consequence, we obtain the following formula for the rhs of Eq. (27):

P (HeT (µ))C −
∑

ρ,ν∈M

|Φρ〉〈Φρ|e
−T (µ)|Φν〉〈Φν |H

eff |Φµ〉 (30)

or, using the definition of the P projector, Eq. (1), and the trivial identity PHeff = Heff ,

P [(HeT (µ))C − e−T (µ)Heff ]|Φµ〉. (31)

Next, we split the term containing e−T (µ) in Eq. (31), obtaining the following form of the rhs of

Eq. (27):

[P (HeT (µ))C − Heff ]|Φµ〉 − P (e−T (µ) − 1)Heff |Φµ〉. (32)

The definition of the effective Hamiltonian, Eq. (7), and the Jeziorski-Monkhorst ansatz, Eq.

(3), imply that

P
[

(HeT (µ))C+DC,L − Heff
]

|Φµ〉 = 0. (33)

By combining Eqs. (32) and (33), we arrive at the desired auxiliary formula, Eq. (26).

The derivation of the relationship between the M- and Γ-moments starts from the following

well-known property of the exponential wave function ansatz:

HeT (µ)|Φµ〉 = eT (µ)(HeT (µ))C |Φµ〉. (34)
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Inserting Eq. (34) into the definition of the M-moments, Eq. (14), and using the identity

eT (µ)e−T (µ) = 1, we obtain

Mn(µ)|Φµ〉 = Qn(µ)eT (µ)

[

(HeT (µ))C −
∑

ν∈M

e−T (µ)eT (ν)|Φν〉〈Φν |H
eff

]

|Φµ〉. (35)

We now insert the resolution of identity, Eq. (20), between eT (µ) and the expression between

square brackets in Eq. (35), and use the previously derived auxiliary formula, Eq. (26),

Mn(µ)|Φµ〉 = −Qn(µ)eT (µ)P
[

(HeT (µ))DC,L + (e−T (µ) − 1)Heff
]

|Φµ〉

+Qn(µ)eT (µ)

{

N
∑

m=1

Qm(µ)
[

(HeT (µ))C

−
∑

ν∈M

e−T (µ)eT (ν)|Φν〉〈Φν |H
eff

]}

|Φµ〉 (36)

= −Qn(µ)eT (µ)P
[

(HeT (µ))DC,L + (e−T (µ) − 1)Heff
]

|Φµ〉

+Qn(µ)
N

∑

m=1

{

(eT (µ))(n−m)Qm(µ)
[

(HeT (µ))C

−
∑

ν∈M

e−T (µ)eT (ν)|Φν〉〈Φν |H
eff

]}

|Φµ〉, (37)

where (eT (µ))(n−m) designates the (n − m)-body part of eT (µ). Using the definition of the Γ-

moments, Eq. (15), and dropping the Qn(µ) projector from the second rhs term in Eq. (37) [one

can do it since the product of (eT (µ))(n−m) and Γm(µ) is the n-body excitation operator relative

to |Φµ〉], and realizing that the ν = µ term in the summation over ν in Eq. (37) vanishes since

Qm(µ)|Φµ〉 = 0, we obtain the following final formula relating the two types of moments:

Mn(µ)|Φµ〉 = −Qn(µ)eT (µ)P
[

(HeT (µ))DC,L + (e−T (µ) − 1)Heff
]

|Φµ〉 +
n

∑

m=1

(eT (µ))n−mΓm(µ)|Φµ〉.

(38)

As already pointed out, the above relationship between the M- and Γ-moments is valid

for both the complete and incomplete model space cases. If the model space is complete, the

first part of the rhs of Eq. (38) vanishes and the relationship between the M- and Γ-moments

simplifies to

Mn(µ)|Φµ〉 =
n

∑

m=1

(eT (µ))n−mΓm(µ)|Φµ〉, (39)
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which is precisely the expression derived by Kowalski and Piecuch in [70]. In other words, Eq.

(38) provides us with the natural extension of the earlier work [70], where the authors assumed

that the model space is complete, to the general case of incomplete model spaces.

3 Relationship Between the Jeziorski-Monkhorst and

Kucharski-Bartlett Formulations of the State-Universal

Multireference Coupled Cluster Theory

According to Eq. (38) or, better, Eq. (39), we can write the following relationships between

the Mn(µ) and Γm(µ) operators that generate the M- and Γ-moments when the model space is

complete:

M1(µ) = Γ1(µ), (40)

M2(µ) = Γ2(µ) + Γ1(µ)(eT (µ))1, (41)

M3(µ) = Γ3(µ) + Γ2(µ)(eT (µ))1 + Γ1(µ)(eT (µ))2 , etc. (42)

Assuming that cluster amplitudes have been converged within the Jeziorski-Monkhorst formula-

tion of the SUMRCC scheme [62], so that the T (µ) operators satisfy the system of equations rep-

resented by Eq. (16), which is obtained by zeroing the Γn(µ)|Φµ〉 moments with n = 1, . . . , mA,

one automatically obtains the amplitude equations used in the Kucharski-Bartlett formulation

of the SUMRCC theory [67],

Mn(µ)|Φµ〉 = 0 (n = 1, . . . , mA; µ = 1, . . . , M). (43)

Conversely, assuming that the T (µ) operators satisfy the system of equations represented by

Eq. (43), we immediately obtain (by a trivial back substitution) the system of equations rep-

resented by Eq. (16). Thus, the Jeziorski-Monkhorst and Kucharski-Bartlett formulations of

the SUMRCC theory are equivalent in the CMS case and, as shown below, give identical nu-

merical results, as long as one does not remove any terms from the definition of the Mn(µ)|Φµ〉
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moments, Eq. (14) [as mentioned in Section 2.1, in the development of practical SUMRCC

schemes, Kucharski and Bartlett dropped the disconnected linked terms from the definition of

the Mn(µ)|Φµ〉 moments given by Eq. (14)]. They are no longer equivalent, however, when

incomplete model spaces are employed (and mA < N), even when C-conditions are exploited,

due to the presence of the −QneT (µ)P [· · ·]|Φµ〉 term on the rhs of Eq. (38) that does not cancel

out.

The equivalence of the Jeziorski-Monkhorst and Kucharski-Bartlett SUMRCCSD approaches

in the CMS case was tested by us numerically using, as an example, the lowest 1A1 state of

the CH2 biradical. The standard cc-pVDZ basis set [139] (with the Cartesian components

of the d orbitals) was employed and the core orbital that correlates with the 1s orbital of

the C atom was frozen in the SUMRCCSD calculations. The model space consisted of two

closed-shell reference determinants, namely, the ground-state restricted Hartree-Fock (RHF)

determinant and the determinant corresponding to the HOMO → LUMO double excitation.

The RHF orbitals were employed throughout. This model space, which corresponds to two

active electrons and two active orbitals, is complete due to the fact that HOMO and LUMO

belong to different symmetry species of the C2v group used in the calculations. The SUMRCCSD

calculations using the Kucharski-Bartlett formulation of SUMRCC, resulting from solving the

system of amplitude equations represented by Eq. (43) in which mA = 2, were performed using

Pittner’s implementation of the λ-scaled transition between the BW-type and RS-type MRCCSD

theories employing the Jeziorski-Monkhorst ansatz, defined by Eq. (11) with mA = 2 and λ set at

0, interfaced with ACES II [140]. The SUMRCCSD calculations using the Jeziorski-Monkhorst

formulation of SUMRCC, resulting from solving the system of amplitude equations represented

by Eq. (16) in which mA = 2, were performed using the Piecuch-Paldus implementation of the

orthogonally spin-adapted two-reference SUMRCCSD approach [66] interfaced with the RHF

and integral transformation routines available in GAMESS [141].

The results of our comparative calculations for the three representative geometries of CH2 are

summarized in Table 1. They clearly demonstrate the equivalence of the Jeziorski-Monkhorst
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Table 1: The energies of the lowest 1A1 state of methylene, as described by the cc-pVDZ basis

set and the two-dimensional model space consisting of the ground-state RHF determinant and

the closed-shell determinant obtained via HOMO → LUMO double excitation, obtained with

the Jeziorski-Monkhorst (JM) and Kucharski-Bartlett (KB) formulations of the SUMRCCSD

approach (see the text for the remaining computational details).

rCH αHCH E(KB-MRCCSD) E(JM-MRCCSD)

Å degs hartree hartree

1.1 130 -39.0045923428 -39.0045923428

1.6 130 -38.8919360582 -38.8919360582

1.1 170 -38.9741688837 -38.9741688837

and Kucharski-Bartlett SUMRCCSD approaches.

4 Summary

In this paper, we applied idea of the method of moments to the continuous transition between

the BW-type and RS-type formulations of the MRCC theory employing the Jeziorski-Monkhorst

ansatz. This allowed us to derive the formula for the state-specific, noniterative MMCC correc-

tions which, when added to the energies obtained in the BW-type and RS-type MRCC calcula-

tions, or the MRCC calculations corresponding to a continuous transition between the BW-type

and RS-type limits of the MRCC theory, recover the exact, FCI energies of the electronic states

of interest. We considered the complete and incomplete model space cases. In the latter case, to

maintain intermediate normalization, we exploited the C-conditions technique of Li and Paldus.

In particular, we extended the previously reported formula relating moments of the SUMRCC

equations in the Jeziorski-Monkhorst and Kucharski-Bartlett formulations of the SUMRCC the-

ory in the case of the complete model space to incomplete model spaces. We demonstrated that
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in the complete model space case, the two formulations of the SUMRCC theory are equivalent,

provided that the disconnected linked terms are retained in the Kucharski-Bartlett amplitude

equations, and verified this formal finding numerically using the two-reference SUMRCCSD

calculations for CH2.
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