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I. INTRODUCTION

Recent years have witnessed ongoing interest for the microscopic and macroscopic properties of granular media. In such systems, a simple ingredient -energy dissipation resulting from collisions-has far reaching consequences [START_REF] Barrat | [END_REF], with rich phenomenology: non-Gaussian velocity distributions [2,3], non-equipartition of energy [4][5][6][7], or spontaneous symmetry breaking [8][9][10] to name but a few. Theoretically, one of the tools used to understand this body of phenomena is kinetic theory, which is extended naturally to these systems by introducing an "inelastic collision rule" in which the energy is not conserved. Although most of the work carried out until now has focused on the one-particle properties, and on the study of the corresponding Boltzmann equation, it has been shown that correlations are also important and, as a matter of fact, necessary to understand the behavior of the system when vortices or cluster are developed [11,12], or even in simpler situations where spatial homogeneity is enforced [13,14].

As a consequence of the dissipation in collisions, the total energy of an isolated granular system decays monotonically in time. Under certain conditions, the system reaches a homogeneous cooling state in which the time dependence of the one-particle distribution function is entirely embodied in the kinetic (so-called granular) temperature, which evolves with time as t -2 [2,15]. It is experimentally difficult to probe such a regime (see however [16,17]). Nevertheless, it is possible to maintain a granular system in the fast-flow regime by injecting energy in such a way that a stationary state is reached. In these states, the energy injected by the thermostat is compensated by the energy dissipated in collisions. Several mechanisms can be introduced in order to get a stationary state. If, for example, energy is injected by a moving boundary such as a vibrating piston, the system reaches an inhomogeneous stationary state [18]. In this work, we will focus on a granular gas which is heated uniformly, coupling the velocity of each particle to a white noise, this is the so-called "stochastic thermostat" [3,[19][20][21][22][23][24][25][26][27]. For this kind of forcing, which is relevant for some two-dimensional experimental configurations with a rough vibrating piston [28], the system reaches a homogeneous stationary state after a transient regime. The advantage of such a driving mechanism is that it lends itself to theoretical progress. In this context, the single particle distribution function has been characterised [3] and long range correlations predicted from a hydrodynamic treatment [21]. More recently, the fluctuations of the total energy have been analyzed [29] (see also [30] for a related numerical study in an inhomogeneous system). In Ref. [29], the second moment of the total energy fluctuations was evaluated by neglecting the correlations, which, by and large, could not explain the simulation results. The objective of the present work is to clarify and quantify the influence of the inelasticity induced correlations on the total energy fluctuations. The methods used bear some similarities with those reported in [31], where it was shown that for the unforced system, the contribution coming from the correlations is of the same order as that coming from the one-particle distribution function itself.

The paper is organized as follows. In section II, the equation for the two-particle distribution function is derived, taking due account of the thermostat while in section III, the results are particularized to the homogeneous stationary state, that will play the role of our reference state in subsequent analysis. There we also summarize the main results already known and pertaining to the one-particle distribution function. In section IV, we analyze the hydrodynamic equations for a homogeneous linear perturbation of the reference state, and obtain the corresponding modes and eigenvalues, which are finally used in section V to meet our objective and obtain an explicit expression for the variance of the total energy. We consider a gas of N hard disks (dimension d = 2) or spheres (d = 3) of mass m and diameter σ that collide inelastically with a coefficient of normal restitution α [START_REF] Barrat | [END_REF]. The system is heated uniformly by adding a random component to the velocity of each particle at equal times [21,22]. The driving is implemented in such a way that the time between random kicks is small compared to the mean free time. Then, between collisions, the velocities of the particles undergo a large number of kicks due to the thermostat. In addition, we will assume that the "jump moments" of the velocities of the particles verify

B ij,βγ ≡ lim ∆t→0 ∆v i,β ∆v j,γ ∆t = ξ 2 0 δ ij δ βγ + ξ 2 0 N (δ ij -1)δ βγ , (1) 
i, j = 1, . . . , N and β, γ = 1, . . . , d where we have introduced ∆v i,β ≡ v i,β (t + ∆t) -v i,β (t), v i,β (t) being the β component of the velocity of particle i at time t. We have also introduced the strength of the noise, ξ 2 0 , and . . . , which denotes average over different realizations of the noise. The non-diagonal terms (corresponding to i = j and β = γ) are necessary in order to conserve the total momentum.

In the dilute limit, assuming molecular chaos, i.e. that no correlations exist between colliding particles, and that the sizes of the jumps due to the thermostat are small compared to the velocity scale on which the distribution varies, the equation for the single particle distribution function in our system is the Boltzmann-Fokker-Planck equation [3,22] 

∂ ∂t f (x 1 , t) + L (0) (x 1 )f (x 1 , t) = J[f |f ] + ξ 2 0 2 ∂ ∂v 1 2 f (x 1 , t), (2) 
where x i is a short-hand for position-momenta coordinates {r i , v i } and

L (0) (x 1 ) = v 1 • ∂ ∂r 1 . (3) 
The inelastic collision operator J[f |f ] reads

J[f |f ] = σ d-1 dv 2 T0 (v 1 , v 2 )f 1 (r, v 1 , t)f 1 (r, v 2 , t), (4) 
where

T0 (v 1 , v 2 ) = dσΘ(σ • g)(σ • g) α -2 b -1 σ -1 , (5) 
with g = v 1 -v 2 the relative velocity, Θ the Heaviside step function, σ a unit vector joining the centers of the particles at contact and b -1 σ an operator replacing the velocities v 1 and v 2 appearing on its right by the precollisional values

v * 1 ≡ b -1 σ v 1 = v 1 - 1 + α 2α (g • σ)σ, (6) 
v * 2 ≡ b -1 σ v 2 = v 2 + 1 + α 2α (g • σ)σ. (7) 
The term

ξ 2 0 2 ∂ ∂v1 2 f (x 1 , t
) is a diffusive Fokker-Plank term, and is a signature of the external noise. As we shall study fluctuations, it is convenient to introduce the two-particle distribution function, f 2 (x 1 , x 2 , t). The quantity f 2 (x 1 , x 2 , t)dx 1 dx 2 is defined as the number of pairs of particles in which one lies inside the differential volume dx 1 centred in x 1 and likewise, with dx 2 , x 2 for the second particle. This definition is easily generalized to higher n-particle distribution functions, f n (x 1 , . . . , x n ). The evolution equation for f 2 is [31,32] 

∂ ∂t + L (0) (x 1 ) + L (0) (x 2 ) f 2 (x 1 , x 2 , t) = δ(r 12 )σ d-1 T0 (v 1 , v 2 )f 2 (x 1 , x 2 , t) +σ d-1 dx 3 δ(r 13 ) T0 (v 1 , v 3 ) + δ(r 23 ) T0 (v 2 , v 3 ) f 3 (x 1 , x 2 , x 3 , t) + F T H , (8) 
where we have introduced F T H that accounts for the external driving. The evolution equation (8) contains essentially three parts: the free streaming in the left-hand side, the two terms in the right hand side corresponding to collisions, 3 and the last term, F T H due to the thermostat. The collisional contribution is split in one part corresponding to collisions of particles with velocities v 1 and v 2 , and the other which involves collisions of particles with velocities v 1 or v 2 with a third particle with arbitrary velocity, v 3 . The collisional contribution is identical to the one that appears in the absence of forcing [31]. We concentrate now on the new term, F T H . Assuming that the sizes of the jumps due to the thermostat are small compared to the scale in which the distribution f 2 varies, we can expand F T H in the spirit of the Fokker-Planck description [START_REF] Van Kampen | Stochastic Proccesses in Physics and Chemistry[END_REF] 

F T H ≃ 1 2 d β,γ=1 2 i,j=1 B ij,βγ ∂ ∂v i,β ∂ ∂v j,γ f 2 (x 1 , x 2 , t) = 1 2 ξ 2 0 ∂ 2 ∂v 2 1 + ∂ 2 ∂v 2 2 - 2 N ∂ ∂v 1 • ∂ ∂v 2 f 2 (x 1 , x 2 , t), (9) 
where we have taken into account equation ( 1), and we have explicitly assumed that the jump moments B ij,βγ do not depend on the magnitude of the velocities of the particles.

Let us introduce the two-particle and three-particle correlation functions through the usual cluster expansion

f 2 (x 1 , x 2 , t) = f 1 (x 1 , t)f 1 (x 2 , t) + g 2 (x 1 , x 2 , t), (10) 
and

f 3 (x 1 , x 2 , x 3 , t) = f 1 (x 1 , t)f 1 (x 2 , t)f 1 (x 3 , t) + g 2 (x 1 , x 2 , t)f 1 (x 3 , t) +g 2 (x 1 , x 3 , t)f 1 (x 2 , t) + g 2 (x 2 , x 3 , t)f 1 (x 1 , t) + g 3 (x 1 , x 2 , x 3 , t). ( 11 
)
The equation for the correlation function g 2 (x 1 , x 2 , t) can be obtained following the same lines as in references [31,[START_REF] Maynar | [END_REF]. Neglecting the three-body correlations, g 3 , in Eq. ( 8), we obtain

∂ ∂t + L (0) (x 1 ) + L (0) (x 2 ) g 2 (x 1 , x 2 , t) = δ(r 12 )σ d-1 T0 (v 1 , v 2 )f 1 (x 1 , t)f 1 (x 2 , t) + [K(x 1 , t) + K(x 2 , t)] g 2 (x 1 , x 2 , t) - ξ 2 0 N ∂ ∂v 1 • ∂ ∂v 2 f 1 (x 1 , t)f 1 (x 2 , t), (12) 
where we have introduced the linear operator K(x i , t) defined as

K(x i , t) = σ d-1 dx 3 δ(r i3 ) T0 (v i , v 3 )(1 + P i3 )f 1 (x 3 , t) + ξ 2 0 2 ∂ ∂v i 2 , (13) 
and where the permutation operator P ab interchanges the labels of particles a and b in the quantities on which it acts.

As will become clear below, the 1/N term in equation ( 12) is crucial for the calculation of the energy fluctuations.

III. THE STATIONARY STATE

It has been shown numerically that, after a transient time, the system reaches a homogeneous stationary state [21] in which the energy input from the thermostat is compensated by the energy lost in collisions. In this section we will particularize the equations of the previous section to this state, summarizing the results that are already known about the one-particle distribution function and that are required for our theoretical analysis.

The Boltzmann-Fokker-Planck equation ( 2) for the distribution function, f H (v 1 ), in the stationary homogeneous state is

ξ 2 0 2 ∂ ∂v 1 2 f H (v 1 ) + J[f H |f H ] = 0. ( 14 
)
It is convenient to introduce the scaled distribution function χ where n H is the homogeneous density, v H = 2TH m 1/2 is the thermal velocity defined from the granular temperature

H f H (v) = n H v d H χ H (c) , (15) 
T H = 2 dn H dv 1 2 mv 2 f H (v), (16) 
and c = v vH is the rescaled velocity. The distribution function has been studied in reference [3], where an approximate expression for χ H (c) was derived to second order in Sonine polynomials [START_REF] Landau | Physical Kinetics[END_REF] χ

H (c) = e -c 2 π d/2 1 + a 2 (α)S 2 d/2-1 (c 2 ) , (17) 
with

S 2 d/2-1 (c 2 ) = 1 2 c 4 - 1 2 (d + 2)c 2 + 1 8 d(d + 2), (18) 
and a 2 (α) a coefficient related to the kurtosis of the function χ H (c)

d d + 2 c 4 H c 2 2 H = 1 + a 2 (α). ( 19 
)
An approximate expression for a 2 reads (see [23,[START_REF] Coppex | [END_REF] for a discussion on various possible approximations)

a 2 = 16(1 -α)(1 -2α 2 ) 73 + 56d -24αd -105α + 30(1 -α)α 2 . ( 20 
)
The expression for the temperature in the first Sonine approximation is

T H = m dξ 2 0 √ π (1 -α 2 )Ω d n H σ d-1 (1 + O(a 2 )), (21) 
where

Ω d = 2π d/2 /Γ(d/2) is the d-dimensional solid angle.
We now turn to the equation for the correlation function,

g 2,H (x 1 , x 2 ). It is convenient to introduce the rescaled correlation function g H through g 2,H (x 1 , x 2 ) = n H ℓ d v 2d H g H (l 12 , c 1 , c 2 ), (22) 
where ℓ = (n H σ d-1 ) -1 is proportional to the mean free path and l = r/ℓ. In these units, the equation for the reduced function g H reads

Λ(c 1 ) + Λ(c 2 ) -c 12 • ∂ ∂l 12 g H (l 12 , c 1 , c 2 ) = -δ(l 12 ) T0 (c 1 , c 2 )χ H (c 1 )χ H (c 2 ) + ξ 2 0 n H ℓ d N ∂ ∂c 1 • ∂ ∂c 2 χ H (c 1 )χ H (c 2 ), (23) 
where we have introduced the linearized Boltzmann-Fokker-Planck operator Λ(c)

Λ(c i )h(c i ) = dc 3 T0 (c i , c 3 )(1 + P i3 )χ H (c 3 )h(c i ) + ξ 2 0 2 ∂ ∂c i 2 h(c i ), (24) 
with rescaled noise amplitude

ξ 2 0 = ξ 2 0 l v 3 H . ( 25 
)
As can be seen in equation ( 23), the correlation function, g H , is determined by the properties of the linearized Boltzmann-Fokker-Planck operator, Λ, and by the one particle distribution function χ H . It is consequently important to study the spectral properties of Λ, in particular the upper (hydrodynamic) part of the spectrum, in order to understand the fluctuations of global quantities. In the case of a granular gas in the homogeneous cooling state [START_REF] Brey | Granular Gas Dynamics[END_REF], and for a system under ballistic annihilation dynamics [START_REF] García De Soria | [END_REF], it has been shown that it is possible to find the hydrodynamic eigenvalues and eigenfunctions of the linearized Boltzmann-Fokker-Planck operator. Once these quantities are known, it becomes possible to evaluate the fluctuations of the relevant global quantities in the so-called "hydrodynamic approximation" [31,[START_REF] Maynar | [END_REF]. In the remainder, we will see that we can evaluate the fluctuations of the total energy in an equivalent approximation, but without the knowledge of the eigenfunction associated to the energy. The only information needed is the form of the linearized hydrodynamic equations and, in particular, the eigenvalues. In this section we focus on the linearized hydrodynamic equations around the homogeneous stationary state. The objective is to consider the linearized equations around a homogeneous perturbation in order to extract information about the linear behavior of a small perturbation of the total energy.

The complete non-linear hydrodynamic equations for the granular system heated by the stochastic thermostat are [21,25] 

∂ ∂t n = -∇ • (nu), (26) 
∂ ∂t u = -u • ∇u - 1 mn ∇ j P ij , (27) 
∂ ∂t T = -u • ∇T - 2 dn (∇ • q + P ij ∇ j u i ) -ζT + mξ 2 0 , (28) 
where P ij is the pressure tensor, q is the heat flux and ζ is the cooling rate, which is also a functional of the distribution function

ζ = (1 -α 2 )mπ d-1 2 σ d-1 4dΓ d+3 2 nk B T dv 1 dv 2 |v 1 -v 2 | 3 f (r, v 1 , t)f (r, v 2 , t). ( 29 
)
Considering a homogeneous state, the previous equations reduce to

∂ ∂t n = 0, ∂ ∂t u = 0, ∂ ∂t T = -ζT + mξ 2 0 . (30) 
In the long time limit, the system is expected to approach a steady state with a constant temperature given by the equation

ζ H (f H )T H = mξ 2 0 . (31) 
Substituting the explicit form of the one particle distribution function (15) in the equation above, we obtain the temperature given in equation ( 21).

Let us consider now a homogeneous state close to this homogeneous stationary state. We can write the hydrodynamic fields as n(t) = n H + δn, u(t) = δu and T (t) = T H + δT . We also define the dimensionless hydrodynamic fields

δρ(τ ) = δn n H , δw(τ ) = δu v H , δθ(τ ) = δT T H , (32) 
where we have introduced the dimensionless time scale τ , proportional to the number of collisions per particle, defined as

τ = t 0 dt ′ v H ℓ = v H ℓ t. (33) 
Assuming that the deviations are small, and taking into account equations ( 30)-( 31), we can write the linearized evolution equations for the dimensionless hydrodynamic fields in this new time scale

∂ ∂τ δρ = 0, ∂ ∂τ δw = 0, ∂ ∂τ δθ = -ζ 0 δρ - 3 2 ζ 0 δθ, (34) 
where ζ 0 = lζH vH is a dimensionless coefficient that is a functional of the one-particle distribution function in the stationary state. Its expression in the first Sonine approximation is [3] 

ζ 0 = (16 + 3a 2 )π d-1 2 (1 -α 2 ) 8 √ 2dΓ d 2 . ( 35 
)
To obtain the equation for δθ we have assumed that the perturbed distribution function scales as , and χ H is the same scaled distribution function as for the reference stationary state. This assumption has already been used and tested numerically in [21]. Then, the cooling rate ζ for the state under scrutiny is proportional to T 1/2 (t) and we obtain the equation for the linearized energy written above. Equations [START_REF] Maynar | [END_REF] indicate that a perturbation in the total number of particles or total momentum does not decay, as a consequence of the fact that these variables are conserved, but a perturbation in the total energy will decay (exponentially in τ ) to the stationary value, as expected. Moreover, as the equation for the temperature can be rewritten in the following form

f (v, t) = n v(t) d χ H v v(t) , (36) 
∂ ∂τ 2 3 δρ + δθ = - 3 2 ζ 0 2 3 δρ + δθ , (37) 
we can identify the hydrodynamic eigenvalues λ = 0 and γ = -3 2 ζ 0 , λ being (d + 1)-fold degenerate. For the sake of clarity, it proves convenient to relabel these eigenvalues as

λ 1 = 0, λ 2 = 0, λ 3 = - 3 2 ζ 0 , (38) 
where λ 2 is d-fold degenerate. The associated hydrodynamic modes, {y β } d+2 β=1 are

y 1 = δρ, y 2 = δw, y 3 = 2 3 δρ + δθ. (39) 
The + sign in the last equation stems from the fact that an increased density leads to enhanced dissipation, and hence, a smaller temperature.

B. Enforcing consistency with the linearized Boltzmann-Fokker-Planck equation description

We now turn our attention to the problem of finding the linearized hydrodynamic equations for a homogeneous perturbation, directly from the Boltzmann-Fokker-Planck equation. Enforcing consistency with the macroscopic considerations of section IV A above, we will infer useful properties on the hydrodynamic part of the spectrum of Λ(c). We first introduce the scaled deviation of the distribution function

δχ(c, τ ) = v d H n H [f (v, t) -f H (v)]. ( 40 
)
The evolution of the scaled distribution is governed by

∂ ∂τ δχ(c, τ ) = Λ(c)δχ(c, τ ), ( 41 
)
where the operator Λ(c) is the linearized Boltzmann-Fokker-Planck operator defined in (24). Let us also introduce the scalar product

f (c)|g(c) ≡ dcχ -1 H (c)f * (c)g(c), ( 42 
)
where f * is the complex conjugate of f . Interestingly, the hydrodynamic modes introduced in (39) can then be written as

y β = ξβ |δχ , β = 1, 2, 3, (43) 
where

ξ1 (c) = χ H (c), ξ2 (c) = cχ H (c), ξ3 (c) = c 2 d - 1 6 χ H (c). ( 44 
)
Taking the scalar product of the linearized Boltzmann-Fokker-Planck equation (41) with the functions ξβ , we obtain the linear equations (34) (in the hydrodynamic time scale, that is, if we wait long enough so that fast modes have vanished) only if the spectrum of Λ admits the three eigenvalues written in [START_REF] García De Soria | [END_REF], and the associated "hydrodynamic" eigenfunctions, {ξ β } d+2 β=1 , obey the orthogonality condition ξβ1 In Appendix A, it is shown that the null eigenvalue is (d + 1)-fold degenerate, and the corresponding eigenfunctions, ξ 1 and ξ 2 , are worked out. Moreover, as a consequence of particle and total momentum conservation in a collision, ξ1 and ξ2 are the corresponding left eigenfunctions. We were not able to demonstrate that λ 3 is an eigenvalue of Λ, but we have shown explicitly that

|ξ β2 = δ β1β2 , β 1 , β 2 = 1, 2, 3. (45) 
ξ3 |ξ β = 0, for β = 1, 2. ( 46 
)
In the following, we will assume that Λ actually admits this third eigenvalue, with an unknown eigenfunction ξ 3 . With the help of this assumption, we will see in the next section that it is possible to define a projector in the hydrodynamic subspace, which opens the way for evaluating the variance of the total energy fluctuations.

V. ENERGY FLUCTUATIONS

In this section, we study the fluctuations of the global energy for a system in the stationary state. As we are interested in global quantities, it is convenient to define a global correlation function φ

H φ H (c 1 , c 2 ) ≡ dr 12 g H (r 12 , c 1 , c 2 ). ( 47 
)
The energy fluctuations can be written as a functional of this correlation function and the one-particle distribution function χ H , as [31,[START_REF] García De Soria | [END_REF] (δE

) 2 H = m 2 4 N v 4 H dcc 4 χ H (c) + dc 1 dc 2 c 2 1 c 2 2 φ H (c 1 , c 2 ) . (48) 
In order to evaluate the integral over the correlation function φ H , we start from (23), integrating over the position variable. Assuming periodic boundary conditions, the spacial gradient terms disappear and we have the following equation for φ

H [Λ(c 1 ) + Λ(c 2 )] φ H (c 1 , c 2 ) = Γ(c 1 , c 2 ), (49) 
where

Γ(c 1 , c 2 ) = -T0 (c 1 , c 2 )χ H (c 1 )χ H (c 2 ) + ξ 2 0 ∂ ∂c 1 • ∂ ∂c 2 χ H (c 1 )χ H (c 2 ). (50) 
The solubility condition for equation ( 49) is that Γ does not have components in the subspace associated to the null eigenvalue. In our case, this subspace is generated by { ξ1 , ξ2 }. Due to the conservation of the number of particles and total momentum in a collision, and to the symmetry of the second term of Γ, we have

ξ1 (c 1 ) ξ2 (c 2 )|Γ(c 1 , c 2 ) = ξ2 (c 1 ) ξ1 (c 2 )|Γ(c 1 , c 2 ) = 0, (51) ξ1 
(c 1 ) ξ1 (c 2 )|Γ(c 1 , c 2 ) = ξ2,i (c 1 ) ξ2,j (c 2 )|Γ(c 1 , c 2 ) = 0, (52) 
for i = j. The case i = j is analyzed in the Appendix B, where it is shown that ξ2,i (c 1 ) ξ2,i (c 2 )|Γ(c 1 , c 2 ) = 0. In order to prove this property, the presence of the second term of the right hand side of Eq. ( 50) is essential. Hence, the solubility condition holds and the problem of finding φ H with equation ( 49) is well defined. Let us also define a projector P 12 in the hydrodynamic subspace as

P 12 h(c 1 , c 2 ) = 3 β1=1 3 β2=1 ξβ1 (c 1 ) ξβ2 (c 2 )|h(c 1 , c 2 ) ξ β1 (c 1 )ξ β2 (c 2 ), (53) 
where {ξ β } 3 β=1 are the right hydrodynamic eigenfunctions of the linearized Boltzmann-Fokker-Planck operator, { ξβ } 3 β=1 the orthogonal set introduced in the previous section, equation (44), and we have generalized the scalar product by

f (c 1 , c 2 )|g(c 1 , c 2 ) = dc 1 dc 2 χ -1 H (c 1 )χ -1 H (c 2 )f * (c 1 , c 2 )g(c 1 , c 2 ). (54) 
Note that P 12 is a projector even if the function ξ3 is not the true left eigenfunction of Λ(c) (remember that ξ1 and ξ2 are the actual left eigenfunctions associated to the null eigenvalue). The fact that the set of functions { ξβ } 45) is enough to guarantee that P 2 12 = P 12 . Using this projector, we define the "hydrodynamic part" of φ H to be the function

φ (h) H (c 1 , c 2 ) ≡ P 12 φ H (c 1 , c 2 ) = 3 β1=1 3 β2=1 a β1β2 ξ β1 (c 1 )ξ β2 (c 2 ). (55) 
The coefficients a β1β2 are the quantities we need to evaluate. As they are essentially the first moments of the correlation function φ H , they are directly related to the integral we have to calculate in (48). It is tempting to treat ξ 3 as if it was an actual left eigenfunction of the linearized Boltzmann-Fokker-Planck operator, and we will in the following use the approximation

P 12 Λ(c i ) = P 12 Λ(c i )P 12 , (56) 
which allows to find a closed equation for φ

H . This approximation has already been invoked in other systems such as the freely evolving granular gas [31], or the probabilistic ballistic annihilation model [START_REF] Maynar | [END_REF]. With the information available on the linearized Boltzmann-Fokker-Planck operator, it seems the best that can be done technically. Let us also remark that the approximation is exact in the elastic limit. Then, applying the projector P 12 to the equation ( 49) and taking into account the approximation (56), we obtain the following expressions for the coefficients a β1β2

a β1β2 = - ξβ1 (c 1 ) ξβ2 (c 2 )| T0 (c 1 , c 2 )χ H (c 1 )χ H (c 2 ) λ β1 + λ β2 , (57) 
where it has been assumed that λ β1 + λ β2 = 0. The coefficients associated to the vanishing eigenvalue cannot be calculated by equation ( 49), but are fixed by the boundary conditions. In Appendix C, the coefficients a β1β2 are evaluated. The expression for φ

(h)
H is finally given by φ (h)

H = a 11 ξ 1 (c 1 )ξ 1 (c 2 ) + a 13 [ξ 1 (c 1 )ξ 3 (c 2 ) + ξ 3 (c 1 )ξ 1 (c 2 )] + a 33 ξ 3 (c 1 )ξ 3 (c 2 ), (58) 
where a 11 = -1, a 13 = -1 3 and a 33 can be obtained as a functional of the one-particle distribution function

a 33 = ξ3 (c 1 ) ξ3 (c 2 )| T0 (c 1 , c 2 )χ H (c 1 )χ H (c 2 ) 3ζ 0 . ( 59 
)
An approximate expression is derived in appendix C, and reads 

Taking into account (48) and (58), the variance of the energy fluctuations can finally be written as

σ 2 E = N (δE) 2 H E 2 H = (a 2 + 1) d(d + 2) 4 + d 2 a 33 -d 2 5 36 . (61) 
In reference [29], the value of σ 2 E has been measured by means of the Direct Monte Carlo simulation method (DSMC). In Fig. 1, we compare our theoretical prediction (solid line given by ( 61)) with the DMSC simulations results (symbols). The agreement is satisfactory for the whole range of inelasticities, at variance with the theoretical attempt put forward in [29], which neglected velocity correlations. In particular, we note the non-trivial result in the elastic limit lim α→1 -σ 2 E (α) = d/3 (i.e. 2/3 on Fig. 1, which is well obeyed), while in the free cooling regime, this quantity vanishes [31]. We emphasize that the elastic limit is singular: the behaviour for elastic systems with α = 1 is not approached by taking the quasi-elastic limit α → 1 -(we note that the divergence of the different moments of the velocity distribution as α → 1 is nevertheless indicative of the absence of a stationary state when α = 1). Such a singularity has already been reported in 1 dimension [39], but, to our knowledge, not for two dimensional granular systems. It is also interesting to note that the singular nature of the quasi-elastic limit appears at 2 body level through the energy fluctuations, while, as far as rescaled distribution functions are considered, the 1 body level of description is regular, with a well behaved velocity distribution approaching a Gaussian form [22]. 

VI. CONCLUSIONS

The problem of the fluctuations of the total energy of a granular (inelastic) gas maintained in a non-equilibrium stationary state by a random acceleration has been addressed. A numerical study of this quantity had been performed by means of Monte Carlo simulations and an argument assuming uncorrelated non-Gaussian individual distribution function had been proposed in [29], without success. The main goal of this work was therefore to take due account of velocity correlations in order to study these fluctuations.

To this end, the standard description at the single particle level is not sufficient, and the two-particle correlation function is needed. We have derived the evolution equation for such an object, and particularized the analysis to the homogeneous stationary state that is reached by the system in the long time limit. Our work shows that this equation is not a straightforward generalization of its counterpart arising in the context of the undriven granular gas (i.e. by only changing the linearized Boltzmann-Fokker-Planck operator into its driven form). A non trivial non diagonal term appears in the Fokker-Planck equation for the two particle distribution function (contribution ∂ v1 • ∂ v2 in Eq. ( 9)), as a consequence of the coupling between velocities due to momentum conservation.

We have seen that, for our purposes, the exact knowledge of the hydrodynamic eigenfunctions is not needed. The important point is that we can construct a set of functions { ξβ } 3 β=1 , which are linear combinations of 1, c and c 2 , that are orthogonal to the right eigenfunctions {ξ β } 3 β=1 of the linearized Boltzmann-Fokker-Planck operator Λ. This orthogonality property holds for the "real" left eigenfunctions, that in our case correspond to the null eigenvalue (i.e. density and velocity fields associated to conserved quantities). The function ξ3 is not a left eigenfunction of Λ but it can be proved to be orthogonal to ξ 1 and ξ 2 . In a subsequent step, the linear hydrodynamic equations around the reference state are derived and from that knowledge, the hydrodynamic eigenvalues are identified and the variance of energy fluctuations subsequently derived.

Finally, our prediction has been successfully tested against the numerical results obtained by the Direct Monte Carlo simulation method for all the range of values of the coefficient of normal restitution α. This provides strong support for the theory developed here and assesses in retrospect the validity of our assumptions. 
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Figure 1 :

 1 Figure 1: Scaled second moment of the energy fluctuations σ 2E as a function of the restitution coefficient α. The solid line is the theoretical prediction and symbols are the two dimensional Monte Carlo simulation results of Ref.[29].
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 13 dc 2 χ H (c 1 )χ H (c 2 )ϑ(c 1 , c 2 ), 3α)c 12 (C • c 12 ) 2 , (C12)and C = (c 1 + c 2 )/2. The coefficient b(α) can be evaluated using the expression of χ H (c) in the first Sonine approximation, Eq. (17), which yieldsb(α) = (1 + d)(3 + d)(2d(a 2 + 16(-1 + α) + 15a 2 α) + 16(-1 + α)(-1 + 2α 2 ) + a 2 (7 + 3α(-13 + 10(-1 + α)α)))Γ[(1 + d)/2] 2 1/2 π d+1/2 128d 2 (-2 + (5 + d)/2)(-1 + (5 + d)/2)Γ[d/2]Γ[-2 + (5 + d)/2](C13) If we take into account the explicit form of ζ 0 and a 2 , given in Eqs. (20) and (35) respectively, we obtain after some algebraa 33 = -15 + 7d + 14d2 -3(-9 + d(9 + 2d))α + 30(1 + d)α 2 -6(9 + d)α 3 ) 9d(-19 + 2d(-7 + 3α) + 3α(9 + 2(-1 + α)α)) .
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Appendix A: Eigenvalue problem for Λ

We consider here the eigenvalue problem for the homogeneous linear Boltzmann-Fokker-Planck operator Λ, defined in (24) Λ(c)ξ β (c) = λ β ξ β (c).

(A1)

We are interested in the eigenfunctions and eigenvalues associated with linear hydrodynamics and, to perform the analysis, similar techniques as in [31,[START_REF] Brey | Granular Gas Dynamics[END_REF][START_REF] García De Soria | [END_REF] will be required. Consider first the function

When the linearized operator Λ acts on χ H , we have

Taking into account the equation for χ H , Ec. ( 14), we obtain the following relation

Now, let us considerer the function

Taking derivate in the equation obeyed by χ H (c -w) with respect to w, and subsequently evaluating the result for w = 0, we obtain

Finally, we will consider the function

From the equation obeyed by ψ 3 (λc 1 ), we can take derivate with respect to λ, and evaluate the result for λ = 1. We arrive at an equation for ψ 3 (c 1 ),

From equations (A4), (A6) and (A8), we can identify two eigenfunctions of Λ. Making use of (A4) and (A8), it appears that

Hence, from Eqs. (A6) and (A9) we can conclude that the null eigenvalue is (d + 1)-fold degenerate with the eigenfunctions

Appendix B: Evaluation of the coefficient a2,i2,i

In this appendix, we show ξ2,i (c 1 ) ξ2,i (c 2 )|Γ(c 1 , c 2 ) = 0. The integral corresponding to the second term of Γ is simply

The other term can be written as

which is the desired result.

Appendix C: Evaluation of the coefficients a ββ ′

In this appendix we evaluate the coefficients a ββ ′ . As the number of particles and the total momentum are conserved quantities in our system, we have

Enforcing the above constraints, we obtain

As a consequence, the values of some coefficients follow

Of course, the coefficients associated to λ β1 + λ β1 = 0 could also have been calculated directly by equation (57), obtaining the same results. The coefficient a 33 is evaluated using (57) and it can be written in terms of the oneparticle distribution function as