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In this paper we present an alternative formulation of well known integral equation approx-
imations designed to keep a consistent approach to the determination of thermodynamic
properties in the case of density-dependent interactions. Obviously, residual inconsistencies
inherent to the approximate character of the closure relations of the Ornstein-Zernike equa-
tion will not be corrected. In this connection, we will show how this approach is particularly
successful when applied in conjunction with approximations in which the aforementioned
inconsistencies are minimal, as is the case of the optimised Reference Hypernetted Chain
equation. As a case study we will consider the Derjaguin-Landau-Verwey-Overbeek model of
charged colloids which is one of the simplest realizations of density-dependent interactions.

1. Introduction

Density-dependent potentials are ubiquitous in the field of liquid state and soft
matter physics. Such is the case of colloidal dispersions [1], in which the most
widespread interaction model is described by the theory of Derjaguin-Landau-
Verwey-Overbeek [2, 3] (DLVO). In this particular instance large charged col-
loidal particles are immersed in an electrolyte solution, experimenting an screened
Coulomb interaction that depends on the density of counterions (and consequently
on the density of colloidal particles). Also, one of the most representative cases
of density-dependent interactions is that of the effective ion-ion potential in liq-
uid metals when treated in the nearly free electron model [4]. Here the density-
dependence appears in the ion-ion interaction through Fermi’s wave number, kF .
This quantity is a simple function of the electron density, which once again is di-
rectly related to the ionic density through the electroneutrality condition. Other
effective interactions in metals can be found in the embedded atom method [5, 6],
the Finnis-Sinclair potentials [7], or the effective medium theory [8], among many
others. In all cases, effective potentials can be thought of as the result of a coarse-
graining procedure, in which a certain number of degrees of freedom are integrated
out to yield a much simpler pairwise additive potential. This coarse-graining can
be done explicitly when deriving an interaction potential in a theoretical treat-
ment (as is the case of the DLVO or the effective ion-ion interaction in metals).
Additionally, effective density-dependent potentials can be generated from inver-
sion procedures applied to scattering or ab initio simulation data [9–11]. In this
case, for each thermodynamic state a different potential will be generated, and the
coarse-graining of various degrees of freedom is implicitly performed.

Useful as they are, these type of effective interactions must be dealt with some
care. To the best of our knowledge, Ascarelli and Harrison [12] were the first to
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point out that the virial expression must be modified to incorporate explicitly the
effect of the density dependence of the potential on the evaluation of the pressure.
More recently [13], it was stressed that the usual form of the fluctuation theorem
is no longer valid when dealing with effective density-dependent potentials, being
inconsistent with the virial theorem result. Besides, simulation procedures for this
type of interactions must also be adapted when sampling inhomogeneous systems
and/or systems in the vicinity of first order phase transitions [14]. In the a re-
cent work by Louis [15], it was argued that the inconsistency between virial and
fluctuation theorem routes stems from the fact that the virial route, defined in
the canonical ensemble, samples a single density, whereas the usual derivation of
the fluctuation theorem isothermal compressibility is made in the grand canonical
ensemble. Therefore, in the latter instance all densities are sampled, and this im-
plies that different values of the interaction are also sampled. This precise feature
is disregarded when the standard expression for the isothermal compressibility is
used. Additionally, in Ref. [15], it was also stressed the approximate character of
the coarse-graining procedures. This implies that depending on the nature of the
original problem that is being reduced to a system of ’effective particles’ interacting
via pairwise additive potentials and the route followed to perform the reduction,
one will get different expressions for the same quantity. These different paths to cal-
culate thermodynamic quantities will agree more or less depending on how severe
the coarse-graining approximations have been for a given system.

Now, the behaviour of the effective systems mentioned above, can be analysed
in terms of computer simulation — if needed, using local density approaches [14]
—, perturbation theory or integral equation methods. In the latter instance, one
of the most powerful approaches is the implementation of thermodynamically self-
consistent closures [16, 17]. A well known drawback of the integral equation approx-
imations is the lack of consistency in the thermodynamic properties derived from
different routes (energy, virial, free energy or fluctuation theorem compressibility
routes). This lack of consistency stems from the approximate character of the clo-
sure relation imposed on the Ornstein-Zernike (OZ) equation. In this context, the
Hypernetted Chain (HNC) equation is known to be fully consistent except for the
virial-fluctuation theorem compressibilities [19]. This residual inconsistency can be
further minimised incorporating a reference system approximation to the bridge
function, which is neglected in the HNC approach. This constitutes the Reference
Hypernetted Chain (RHNC) approximation[18]. In the case of density-dependent
interactions, the consistency between the energy, virial and free energy routes is
well preserved if the correct virial expression [12] is used. Now, the self-consistent
approaches exploited in Refs. [16, 17] are based in the use of parameterised hybrid
closures, in which the closure parameters are tuned in order to enforce consistency
between virial and fluctuation theorem compressibilities. Taking into account the
discussion of the previous paragraph it is obvious that in principle this would not
be a feasible task in the case of density-dependent pair potentials, since the ex-
pressions for the two quantities we intend to make consistent are derived on a
different footing [15]. The aim of this paper is to present a reformulation of the
integral equations approaches that, from an operational standpoint, make possible
the definition of consistent virial pressures and fluctuation theorem compressibili-
ties for density-dependent interactions. These quantities should be fully consistent
whenever an exact closure relation to the Ornstein-Zernike equation were available.

The rest of the paper can be sketched as follows. In the next section we review
the essentials of the HNC and RHNC integral equations and reformulate a corre-
sponding set of integral equations that should lead to consistent thermodynamics.
Note that here, when referring to consistent thermodynamics we do not take into
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account the residual inconsistency introduced by the approximate closure relations
in use, i.e. the inconsistency we intend to cure is the one derived from the use of
density-dependent potentials in the definition of quantities such as virial pressure
and fluctuation theorem isothermal compressibilities. A new integral equation for
density-dependent interactions is thus formulated, and general expressions to de-
termine pressures and isothermal compressibilities are derived. Then in Section 3,
we apply the formalism to the DLVO potential and present our most significant
results and conclusions.

2. Effective interactions and consistent integral equations

A fundamental approach of the theory of simple fluids relies on the use of integral
equations. In this type of approaches, the pair distribution function g0(r; ρ, T ), with
r the interparticle distance, ρ the average number density and T the temperature,
is calculated from a given intermolecular pair potential V0(r). In the specific case
of OZ-type methods, one starts with the exact OZ relation

h0(r; ρ, T ) = c0(r; ρ, T ) + ρ

∫
dr′ h0(r

′; ρ, T ) c0(|r − r′|; ρ, T ), (1)

relating the total correlation function h0(r; ρ, T ) = g0(r; ρ, T ) − 1 and the direct
correlation function c0(r; ρ, T ). An approximate equation (a closure relation) which
links both functions through the intermolecular pair potential is needed. In general,
this closure can be written as

ln g0(r; ρ, T ) = −βV0(r) + h0(r; ρ, T ) − c0(r; ρ, T ) + b0(r; ρ, T ), (2)

where β = 1/kBT with kB the Boltzmann constant, and b0(r; ρ, T ) is the so-called
bridge function. One of the simplest approaches implies the neglect of this term
(b0 = 0), and this renders the HNC equation. The RHNC goes a step beyond, by
approximating the unknown bridge function by the one of a well defined reference
system (b0 = bref ). The most widely used reference system in the case of simple
fluids is obviously the hard-sphere fluid, for which the bridge function can easily
be calculated [20, 21].

Once the non-linear integral equation resulting from Eqs. (1) and (2) is solved,
the thermodynamics can be derived from the Helmholtz free-energy per particle
f0(ρ, T ) which can be expressed in two exact and equivalent ways. In the pair
correlation (or g-) route the thermodynamic potential is given by

f0(ρ, T ) = kBT
[
ln

(
ρΛ3

)
− 1

]
+

1

2
ρ

∫ 1

0
dλ

∫
dr g0(r; ρ, T |λ)V0(r), (3)

where Λ is the thermal de Broglie wavelength and g0(r; ρ, T |λ) is the pair correlation
function for the fluid with pair potential λV0(r), whereas in the direct correlation
(or c-) route reads

f0(ρ, T ) = kBT
[
ln

(
ρΛ3

)
− 1

]
− kBTρ

∫ 1

0
dλ (1 − λ)

∫
dr c0(r; λρ, T ). (4)
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The main difference between these two routes is that in Eq. (3) the pair correlation
function is charged with interactions (at constant density) and V0(r) appears ex-
plicitly, whereas in Eq. (4) the direct correlation function is charged with density
(at constant interactions) and there is no explicit dependence on the pair potential
at all. Although the direct correlation route is independent of the particular form
of the interactions, which may not be pairwise additive, in order to compare both
routes, the pair potential V0(r) has to be introduced in the closure relation as in
Eq. (2).

Let us now consider a fluid interacting with a density-dependent pair potential
V (r; ρ). At first sight it should be concluded that all we have to do in this case
is to replace in Eq. (3) V0(r) by V (r; ρ), while keeping Eq. (4) unchanged. We
have nevertheless to be cautious with this naive generalisation. Note that when
we replace V0(r) by V (r; ρ) all the structural functions, and consequently, all the
thermodynamic quantities, acquire an additional dependence on the density. When
this additional density dependence (indicated in what follows by a subscript ρ) is
taken into account in the pair correlation function, say gρ(r; ρ, T ), Eq. (3) can be
easily generalised yielding:

f(ρ, T ) = kBT
[
ln

(
ρΛ3

)
− 1

]
+

1

2
ρ

∫ 1

0
dλ

∫
dr gρ(r; ρ, T |λ)V (r; ρ). (5)

where gρ(r; ρ, T |λ) is the pair correlation function for the fluid with pair poten-
tial λV (r; ρ). Within this route, the standard integral equation methods given
by Eqs. (1) and (2) can be extended with the substitutions V0(r) → V (r; ρ),
g0(r; ρ, T ) → gρ(r; ρ, T ), and c0(r; ρ, T ) → cρ(r; ρ, T ), where cρ(r; ρ, T ) is the direct
correlation function for the fluid with potential V (r; ρ).

A straightforward transformation of Eq. (5) within the HNC leads to:

f(ρ, T ) = kBT
[
ln

(
ρΛ3

)
− 1

]
+

1

2
ρ

∫
dr Aρ (r; ρ, T )

+
1

16π3ρ

∫
dk Bρ (k; ρ, T ) , (6)

with

Aρ (r; ρ, T ) = cρ (r; ρ, T ) + hρ (r; ρ, T )

[
cρ (r; ρ, T ) − 1

2
hρ (r; ρ, T )

]
, (7)

and

Bρ (k; ρ, T ) = ln [1 − ρc̃ρ (k; ρ, T )] + ρh̃ρ (k; ρ, T ) , (8)

where c̃ρ (k; ρ, T ) and h̃ρ (k; ρ, T ) are the Fourier transforms of cρ (r; ρ, T ) and
hρ (r; ρ, T ) , respectively. Eqs. (6)-(8) involve only the average number density ρ
of the fluid. A similar expression can be derived in the RHNC approximation.
When the hard-sphere fluid is taken as the reference system [18] the derivation of
Eqs. (6)-(8) for the free energy in the RHNC is straightforward.
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0 0.1 0.2 0.3 0.4 0.5 0.6

ρσ3

-2

-1

0

1

2

βf

Figure 1. Free energy calculated in the HNC approximation via the g-route
—solid line—, the c-route —dotted line– and the consistent equations (11)-
(13) —filled circles– for the DLVO potential with the parameters indicated
below Eq. (21) in the text.The agreement between the g-route and the con-
sistent equation is notorious.

2.1. A consistent approach

When the integral equation methods are applied using the direct correlation route
we are faced with an unusual feature. At first sight, one could be tempted to
generalise Eq. (4) as:

f(ρ, T ) = kBT
[
ln

(
ρΛ3

)
− 1

]
− kBTρ

∫ 1

0
dλ (1 − λ)

∫
dr cλρ(r; λρ, T ). (9)

since the c-route seems not to depend on the pair potential. A cumbersome but
straightforward calculation shows however that for an analytic density-dependent
pair potential, the density expansions of Eqs. (5) and (9) differ even at the level
of the third virial coefficient ! This can be shown by first considering the
(formal) virial expansions of gρ (r; ρ, T |λ) and cλρ (r; λρ, T ) , whose virial
coefficients can be further expressed in terms of convolutions of Mayer
functions evaluated with V (r, ρ) and V (r, λρ), respectively. To obtain the
full density expansions of the excces free-energy one still has to intro-
duce the virial expansions of these density-dependent virial coefficients.
This thermodynamic inconsistency can be explained as follows.

Note that the cornerstone of the theory of simple fluids is the equivalence of
Eqs. (3) and (4). In the latter the parameter λ appearing in c0(r; λρ, T ) operates on
the density at constant interactions. So, in order to maintain the equivalence of the
two routes for density-dependent pair potentials, the density appearing in V (r; ρ)
has to be considered as a constant (i.e., constant interactions) when the direct
correlation function is charged with density. This would remove the inconsistency
that stems from sampling a single global density in the case of Eq. (3) and sampling
all densities in Eq. (4). This lack of consistency is identical to the one highlighted
in [15] between virial pressure and fluctuation theorem compressibilities. Now, in
other words, we can generalise Eq. (4) as:

f(ρ, T ) = kBT
[
ln

(
ρΛ3

)
− 1

]
− kBTρ

∫ 1

0
dλ (1 − λ)

∫
dr cρ(r; λρ, T ), (10)
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which with the change of variable ρ′ = λρ, reads

f(ρ, T ) = kBT
[
ln

(
ρΛ3

)
− 1

]
− kBT

ρ

∫ ρ

0
dρ′

(
ρ − ρ′

)
c̃ρ

(
0; ρ′, T

)
. (11)

In this case, we have to solve the Ornstein-Zernike equation

hρ(r; ρ
′, T ) = cρ(r; ρ

′, T ) + ρ′
∫

dr′ hρ(r
′; ρ′, T ) cρ(|r − r′|; ρ′, T ), (12)

together with the HNC/RHNC closure

ln gρ(r; ρ
′, T ) = −βV (r; ρ) + hρ(r; ρ

′, T ) − cρ(r; ρ
′, T ) + bρ(r; ρ

′, T ). (13)

Notice the ρ-dependence (and not ρ′) of βV (r; ρ). In summary, for a prescribed
average number density ρ, we thus obtain an non-linear integral equation involving
two different densities ρ and ρ′ with 0 ≤ ρ′ ≤ ρ. The variable ρ′ has to be discretised
and the set of integral equations has to be solved for a series ρ′i values, yielding a set
of cρ(r; ρ

′
i, T ) functions that can be numerically integrated to yield the Helmholtz

free-energy through the direct correlation route.
Observe that in the original (inconsistent) formulation, the c-route to the

Helmholtz free energy reads

f(ρ, T ) = kBT
[
ln

(
ρΛ3

)
− 1

]
− kBT

ρ

∫ ρ

0
dρ′

(
ρ − ρ′

)
c̃ρ′

(
0; ρ′, T

)
. (14)

where now cρ′(r; ρ′, T ) will be evaluated for βV (r; ρ′) as well.

0 0.1 0.2 0.3 0.4 0.5 0.6

ρσ3

-2

-1

0

1

2

βf

Figure 2. Free energy calculated in the RHNC approximation via the g-
route —solid line—, the c-route —dotted line– and the consistent equations
(11)-(13) –filled circles–for the DLVO potential with the parameters indicated
below Eq. (21) in the text. The agreement between the g-route and the con-
sistent equation has improved with respect to Fig. 1.
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2.2. Effects on the virial pressure and the isothermal compressibility

Now, if we take into account that

βP = ρ2

(
∂βf

∂ρ

)
(15)

where P is the pressure, taking the density derivative of Eq. (11), one gets

βP =

∫ ρ

0
dρ′

(
1 − ρ′c̃ρ(0, ρ′)

)
− ρ

∫ ρ

0
dρ′(ρ − ρ′)

(
∂c̃ρ(0, ρ′)

∂ρ

)
. (16)

The first term of the r.h.s. of Eq. (16) is precisely the integral of the inverse isother-
mal compressibility as calculated from the fluctuation theorem in the case of den-
sity independent potentials. Now by comparing Eq. (16) with the virial equation
as derived by Ascarelli and Harrison [12]

βP = ρ − 1

2
βρ2

∫
dr gρ(r; ρ, T )

r

3

(
∂V (r; ρ)

∂r

)
+

1

2
βρ3

∫
dr gρ(r; ρ, T )

(
∂V (r; ρ)

∂ρ

)

(17)
where the first two terms of the r.h.s. of Eq. (17) are retained in the case of density
independent potentials, the consistency of Eq. (16) and Eq. (17) –subject to the
unavoidable inaccuracies of the closure relation– implies that

βPρ = ρ

∫ ρ

0
dρ′(ρ − ρ′)

(
∂c̃ρ(0, ρ′)

∂ρ

)
= −1

2
βρ3

∫
dr gρ(r; ρ, T )

(
∂V (r; ρ)

∂ρ

)
(18)

i.e. the terms βPρ that explicitly incorporate the effect of the density dependence
of the interaction on the pressure should be identical when calculated from the c-
and g-routes. Now the question would be how to determine the density derivative
of the direct correlation function. The simplest way to do this is to follow Belloni’s
receipt [22] and differentiate both the OZ and the corresponding closure relation
with respect to the density ρ (not ρ′). This leads to a rapidly convergent linear
integral equation that can be solved immediately after the HNC solution has been
numerically determined.

If one proceeds further to differentiate Eq. (16) with respect to the density, one
gets [23, 24]

∂βP

∂ρ
=

[
1 − ρ′c̃ρ(0, ρ′)

]
−

∫ ρ

0
dρ′(2ρ−ρ′)

(
∂c̃ρ(0, ρ′)

∂ρ

)
−ρ

∫ ρ

0
dρ′(ρ−ρ′)

(
∂2c̃ρ(0, ρ′)

∂ρ2

)

(19)
in which, again, the first term of the r.h.s. is the isothermal compressibility of a
system interacting via density independent potentials. The remaining terms should
make this expression consistent with the isothermal compressibility obtained by
differentiation of the virial equation Eq. (17).
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0 0.1 0.2 0.3 0.4 0.5

ρσ3

0

0.01
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βPρ[g]
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Figure 3. Evolution of the terms that account for the density dependence of
interaction in the evaluation of the pressure (see Eqs. (16)-(17)), as calculated
from the g-route (Eq. 23), and c-route (Eq. (22)). These calculation have
been carried out in the HNC approximation for the DLVO potential with the
parameters indicated below Eq. (21) in the text.

3. A case study: the DLVO potential

As a test case, we will apply the above integral equations to the DLVO potential.
This reads

V (r; ρ, T ) = VHS

( r

σ

)
+

Z2e2

ǫ

(
eκR

1 + κR

)2
e−κr

r
(20)

where VHS(r/σ) is a hard-sphere potential of diameter σ, −Ze the charge, ǫ the
dielectric constant and, κ2 = 4πλBρ (λB = e2/ǫkBT ) . With the definition of
x = r

σ
, and R being the radius of the colloidal particles, the interaction can be

expressed as

βV (x; ρ, T ) = βVHS(xR∗) + ε

(
eb

√
ρx

1 + b
√

ρx

)2
e−b

√
ρx

x
. (21)

Here we have defined ε = Z2λB/R, b =
√

4πλBR, R∗ = R/σ, and x = r/R.
The calculations presented below have been carried out for b = 1, R∗ = 1, and
T ∗ = kBT/ε = 4. The integral equations have been solved on a discretised grid
with ∆r = 0.01σ and 4096 points. In the RHNC calculations the hard-sphere
reference diameter has been optimised following the prescription of Lado, Foiles
and Ashcroft [18], requiring the minimisation of the free energy.

In Figure 1 we depict the density dependence of the free energy, calculated in
the HNC using the g-route —Eq. (6)—, and the c-route –Eq. (14)–. The lack of
consistency of both results is evident, even for densities as low as ρσ3 = 0.1. Now,
when the consistent c-route —Eqs. (11)-(13)— is used, the situation is substantially
different. The agreement when comparing the results using both routes is similar
with the one found when dealing with density independent potentials. The residual
lack of consistency can be attributed to the approximate character of the closure.
This fact can be further confirmed by a careful analysis of Figure 2, in which the
same quantities, calculated in the RHNC approximation, are plotted. It is known
that when considering the lack of consistency between the virial and fluctuation
theorem compressibilities, the RHNC somewhat improves upon the HNC [18]. This
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improvement translates in our case to a better agreement between the g− and the
consistent c-route –Eq. (11)– to thermodynamics, and this is reflected in Figure
2. One readily appreciates that the consistent c-route results (filled circles) fall on
top of the g-route curve (solid line).

We can now analyse to what extent the previous results affect the calculation of
the pressure. This is best illustrated comparing the quantities

βPρ[c] = −ρ

∫ ρ

0
dρ′(ρ − ρ′)

(
∂c̃ρ(0, ρ′)

∂ρ

)
(22)

βPρ[g] =
1

2
βρ3

∫
dr gρ(r; ρ, T )

(
∂V (r; ρ)

∂ρ

)
(23)

which are plotted in Figure 3 for the HNC approximation. Calculations in the
RHNC for Eq. (22) are somewhat more involved since they require the density
derivative of the reference system bridge function in order to calculate the deriva-
tive of the pair correlation function. This is numerically cumbersome and therefore
for our purposes we have limited ourselves to the HNC level of approximation.
We see in Figure 3 that the agreement between the new c-route density-dependent
term with the term derived by Ascarelli and Harrison [12] is fairly good up to
moderate densities. Deviations at higher densities, once more, are due to the ap-
proximations implicit in the HNC closure. As it was seen in the case of the free
energy calculation, the use of the RHNC in this instance is expected to reduce the
residual inconsistency.

In summary, we have shown how two well known integral equations can be re-
formulated so as to render the c- and g-routes to thermodynamics consistent for
density-dependent potentials. This consistency, which is limited by the approxima-
tions implicit in the closure relation, can be improved thanks to the implementation
of more elaborate closures. Thus, in principle, it should be possible to build hybrid
closures along the lines of Refs. [16, 17] and enforce the virial-fluctuation theorem
compressibility consistency. Given the form of Eqs. (11)-(13), a global consistency
approach [25] –i.e. using the pressures and not the compressibilities– should be
easier to implement.
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