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Dissociating N2: A multi-reference coupled cluster study on the potential energy

surfaces of ground and excited states

Anna Engels-Putzka, Michael Hanrath∗

Institute for Theoretical Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany

(Dated: December 2, 2008)

This article reports on the calculation of 12 low lying states of the nitrogen molecule along
its dissociation using the multi-reference exponential wavefunction ansatz [J. Chem. Phys. 123

(2005) 84102], the single-reference formalism multi-reference coupled cluster [J. Chem. Phys. 94

(1991) 1229], and MRCI methods. Energies relative to full CI are given. The results show the
multi-reference coupled cluster approaches generally applicable to very demanding problems at high
accuracy. In comparison to MRCI both coupled cluster type approaches do not reproduce spatial
symmetry exactly. Nevertheless, this error in the degeneracy is much less than the overall error of
the MRCI calculations.

I. INTRODUCTION

The dissociation of N2 along its potential energy sur-
face (PES) is one of the most demanding problems in
quantum chemistry since it requires a balanced treatment
of dynamical and statical correlation effects. All 3 p-
electrons from each nitrogen are involved during the for-
mation of its triple bond, giving rise to 6 active electrons
in 2 × 3 p orbitals. Performing the calculations in the
abelian subgroup D2h of D∞h the active space contains
up to 56 determinants. While the X1Σ+

g ground state
is essentially of single-reference character at the equilib-
rium geometry it becomes a linear combination of 44 de-
terminants when assembling two atomic 4S states during
dissociation. The excited states are most often of (mod-
est) multi-determinantal structure already at equilibrium
geometry and similarly to the ground state, they spread
out into many determinants upon dissociation. Due to
this difficulty the dissociation of N2 has been used in the
literature as a test system to benchmark multi-reference
(MR) approaches.

Besides the numerical accuracy of the correlation en-
ergy with respect to full CI, N2 offers several spatial and
spin symmetry related properties that can be checked
for. A good approximation method should, of course,
conserve as many symmetry and other rigorous proper-
ties of the exact wavefunction as possible.

In the past the majority of calculations on N2 were
made with MRCI and CASPT2 methods [1–5]. However,
N2 should be a suitable test case for multi-reference cou-
pled cluster (MRCC) methods. After the invention of the
single-reference (SR) coupled cluster (CC) methods [6–9]
there has been substantial research on the development
of MRCC methods. Unfortunately, this task is by no
means trivial and still unfinished. Up to now no MRCC
approach having all the beautiful theoretical properties
(e.g. size extensivity/connectivity) of the single-reference
ansatzhas been reported. Size extensivity of a method is

∗Electronic address: Michael.Hanrath@uni-koeln.de

a necessary condition for an efficient calculation of the
correlation energy of many-body systems.

In order to put some structure to the large num-
ber of MRCC type approaches they may be divided
into several categories. The first category contains the
so-called genuine multi-reference approaches which are
the valence universal (Fock space, FSMRCC) [10–14]
and state universal (Hilbert space, SUMRCC) [15–20]
ansätze. Both approaches employ the Bloch equation
and suffer (in their original formulation) from various
limitations. The second category relies on further de-
velopments of the either the FSMRCC or SUMRCC ap-
proaches. Among the FSMRCC based approaches are the
intermediate Hamiltonian IM-FSMRCC [21, 22] and the
related EOM-CC [23–25] and ST-EOM-CC [26, 27] ap-
proaches. Among the SUMRCC based approaches there
are general model space (GMS) SUMRCC approaches
[28, 29], a state specific variant (MkMRCC) [30, 31] of
the SUMRCC, Brillouin-Wigner based ansätze (BWM-
RCC) [32–35], and the multi-reference exponential (MR-
expT) ansatz [36, 37]. Another category is not based
on the SUMRCC or FSMRCC approaches but relies on
extensions of the single-reference ansatz. Among these
are the CC linear response approach [38, 39], the single-
reference formalism based ansatz (SRMRCC) [40, 41],
later variants [42–45] and related methods [46, 47]. Ad-
ditionally, there are renormalized [48] and method of mo-
ment [49, 50] coupled cluster methods as well as dressed
configuration interaction (CI) based ansätze [51–53], re-
duced MRCC [54, 55] and partially linearized reduced
MRCC approaches [56, 57].

In the following we shall give a short (necessarily in-
complete) history of quantum chemical calculations on
N2 with a focus on coupled cluster calculations. Among
the first calculations on N2 is the CISD calculation
of Langhoff et al. [58] (1974) at the equilibrium dis-
tance. Later, there have been full CI calculations [59]
and full CI and coupled cluster studies (FCI, CCS, CC2,
CCSD, CC3, CCSDT) [60, 61]. More recently CCSDTQ5
results [62, 63], CCSDTQ6 results [64] and investiga-
tions of quadruple excitation approximations [65] have
been published. Additionally, there are locally renor-
malized CCSD(T) [66], CI tailored CC [67] and method
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of moment CC calculations [68]. Recently Lyakh et

al. [69] published CASCCSD calculations on the ground
state PES of N2. Several groups published FSMRCC
[70, 70, 71], SUMRCC [72], GMS SUMRCC [73], and
IM-FSMRCC [74] calculations. Based on the reduced
MRCC approach [54] several calculations on N2 [73, 75–
77] were published. Very recently new results for the
ground state potential surface were published [78].

However, to our best knowledge there has been
no multi-reference coupled cluster study including the
ground state and 11 low lying excited states along the
PES simultaneously.

This study reports on correlation energy errors of spin-
orbital based (i. e. not CSF based) multi-reference con-
figuration interaction (SOMRCI), SRMRCC [40, 41], and
MRexpT [36, 37] calculations for the N2 PES including
the ground state and a number of of excited states. The
paper is arranged into the following sections: In section
II. we discuss the basic ideas of the SRMRCC and MR-
expT multi-reference coupled cluster ansätze. Section
III. describes the calculation parameters and procedures
as well as the properties and difficulties arising in the
course of the computation. Section IV. reports on the
correlation energy errors and spatial degeneracy proper-
ties.

II. MREXPT AND SRMRCC ANSÄTZE

The single-reference based ansatz (SRMRCC) of
Oliphant et al. [40] and Piecuch et al. [41] is given as

|ΨSRMRCC〉 = eT̂ |µ0〉 (1)

with |µ0〉 the Fermi vacuum and T̂ chosen to span the
MRCI space according to

(1 + T̂ )|µ0〉 :∼ |ΨMRCI〉 (2)

with ”:∼” meaning spanning. Actually, SRMRCC is a
kind of extended single reference ansatz as Eq. (1) and
Eq. (2) correspond to a single-reference coupled cluster
ansatz (e.g. CCSD) with additional specific higher exci-

tations in T̂ . Alternatively one may view it as a single-
reference CCSD. . . n with certain excitations missing and
n = m + mact (for a complete active space) with m the
base excitation level (for CCSD it is m = 2) and mact

the number of active electrons in the reference space.
Obviously, ansatz Eq. (1) breaks the symmetry of the
wave function as it makes one reference µ0 (the Fermi
vacuum) particular. The later variants of the SRMRCC
ansatz [42–45] do not solve this fundamental problem of
the SRMRCC approach. Although usually of reasonable
accuracy in terms of the correlation energy when using
the dominant determinant as Fermi vacuum, SRMRCC
has been shown to have difficulties in case of avoided
crossings [79, 80], potential surfaces, and low-spin/high-
spin degeneracies [36, 79].

SRMRCC inherits its size extensivity (connectivity)
trivially from single-reference coupled cluster. In or-
der to solve Eq. (1) for the amplitudes one inserts it
into the Schrödinger equation, multiplies from the left by

e−T̂ , and projects onto 〈ρ|, with ρ element of the space

spanned by T̂ |µ0〉 (e.g. a multi-reference singles doubles
(MRSD) space without |µ0〉) yielding the residual equa-
tions

RSRMRCC(ρ) = 〈ρ|e−T̂ ĤeT̂ µ0〉. (3)

Setting RSRMRCC(ρ)
!
= 0, ∀ρ (with ”

!
=” meaning the

corresponding equality is imposed on the solution of the
non-linear equation system) yields a non-linear equation
system in t.

Recently Lyakh et al. [69] published CASCCSD calcu-
lations on the ground state PES of N2. CASCCSD can
be seen as a variant of the previously published SRM-
RCC approach [40]. Both rely on a single-reference Fermi
vacuum and are not invariant to the choice of this vac-
uum. Most recently [81] the same authors tried to ad-
dress the problem of symmetry breaking by a slight mod-
ification of CASCCSD they called XCASCCSD. By em-
ploying a symmetry adapted projection and symmetry
adapting the t-amplitudes from their corresponding CI
coefficients c they were able to improve the symmetry is-
sues with CASCCSD. However, there are a few problems
with this procedure. First of all using a truncated cluster
operator (e.g. singles and doubles) it does not cure the
symmetry breaking of the wavefunction as there is still
one specific vacuum and the CI coefficient symmetrizing
procedure has no effect on higher projection (product
substitutions) levels. Another issue is the connectivity of
the cluster amplitudes. Since SRMRCC and CASCCSD
may be interpreted as special cases of the single-reference
coupled cluster approach (SRCC) they inherit their con-
nectivity from SRCC trivially. The proof of the clus-
ter connectivity within SRCC relies on the projection

of e−T̂ ĤeT̂ |µ0〉 onto substituted determinants. Generat-
ing the cluster amplitudes by some other procedure (e.g.
back-propagation from CI coefficients) will certainly not
meet the connectivity property automatically and a spe-
cial proof is to be given.

In contrast to SRMRCC [40, 41], MRexpT [36, 37],
along with SUMRCC [15], MkMRCC [30, 31] and BWM-
RCC [33, 34], treats all references on the same footing.
The wavefunction of MRexpT is given by

|Ψ〉 =
∑

µ

eT̂µcµ|µ〉 (4)

with

T̂µ = φ(cµ)
∑

τ̂µ,i∈Tµ

tτ̂µ,i|µ〉τ̂µ,i (5)

with Tµ the set of substitutions to be applied (e.g. sin-
gles and doubles) with respect to each reference |µ〉 while
excluding excitations from one reference to another. The
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reference phase compensation factor φ(z) is given by
φ(z) = e−i arg z, z ∈ C, and guarantees the potential
completeness of the ansatz. It does not introduce a new
variable. MRexpT is size consistent, core (i. e. inactive)
connected, but not core-valence connected [82]. There-
fore, MRexpT’s accuracy may be expected to deteriorate
in cases of large active spaces with many active electrons.
From this perspective N2 should be a very difficult test
case for MRexpT.

Inserting Eq. (4) into the Schrödinger equation and
projecting from the left onto |ρ〉 ∈

⋃

µ

⋃

τ̂µ,i∈Tµ
τ̂µ,i|µ〉 ∪

⋃

µ |µ〉 (e.g. a multi-reference singles doubles (MRSD)

space including the references |µ〉) we get the residual
equations

RMRexpT(ρ) =
∑

µ

cµ〈ρ|(Ĥ − E)eT̂µµ〉 (6)

with RMRexpT(ρ)
!
= 0, ∀ρ and

∑

µ |cµ|
2 = 1 imposed

yielding an equation system non-linear in t while linear
in c.

The norm rX , X ∈ {SRMRCC, MRexpT} of the resid-
uals Eq. (3) and Eq. (6) serves as a measure for con-
vergence of the solution of the equation systems and is
given as

rX =

√

∑

ρ

|RX(ρ)|2. (7)

If nothing else is stated all results are converged to a
residual norm rX < 10−10.

III. CALCULATION DETAILS AND

TECHNICALITIES

In the following we describe the main issues involved
in the dissociation of N2 and special characteristics of the
calculation procedure employed in this article.

A. Basis set, orbital generation and reference space

In the calculations we used a 6-31G[83] [10s4p]/(3s2p)
basis set. Since we wanted to employ the same orbitals
for all states we decided to use 7Σ+

u orbitals. Choosing
the high spin component of the 7Σ+

u state it is made up
of a single determinant along the whole potential sur-
face of N2. This allows for a more balanced treatment
of the remaining states. Using MOLCAS [84] with an
interface [85] we start from a 6-fold ionized N2 cation
allowing us to use a closed shell state while conserving
the D∞h symmetry among the orbitals. Those orbitals
were fed into the RASSCF program of MOLCAS with
the 1σg, 2σg and 1σu, 2σu inactive and 6 electrons in
the 6 (3σg 1πux 1πuy 3σu 1πgx 1πgy) orbitals of the
later SOMRCI and MRCC CAS space. Enforcing B1u

and septet state symmetry this actually corresponds to

R N6+

2 SCF 17Σ+
u SCF X1Σ+

g FCI

1.5 −96.298 505 −106.245 291 −108.350 870
1.75 −97.545 227 −107.150 180 −108.849 522
2 −97.734 893 −107.639 325 −109.003 625
2.25 −98.376 313 −107.970 004 −109.013 599
2.5 −98.756 136 −108.226 199 −108.970 907
3 −99.284 824 −108.530 035 −108.870 370
3.5 −99.653 723 −108.665 398 −108.811 713
4 −99.935 011 −108.723 696 −108.791 925
4.5 −100.159 563 −108.747 964 −108.787 315
5 −100.343 670 −108.757 798 −108.786 287
7.5 −100.917 665 −108.764 118 −108.785 682

10 −101.213 222 −108.764 102 −108.785 588
20 −101.661 288 −108.764 102 −108.785 588

100 −102.021 159 −108.764 102 −108.785 588

TABLE I: Orbital generation: Ionized (symmetry conserving
start guess) SCF, 17Σ+

u SCF and X1Σ+
g full CI energies in

Hartree, [10s4p]/(3s2p) basis set, R in a. u.

N(4S0)+N(4S0)

N(4S0)+N(2D0)

N(4S0)+N(2P 0)

N(2D0)+N(2D0)

R in a.u.

E
(F

C
I)

in
a
.u

.

10987654321

-108.4

-108.5

-108.6

-108.7

-108.8

-108.9

-109

-109.1

FIG. 1: N2: Potential energy surface calculated
with Full CI, 6 electrons correlated using CAS(6e−,
3σg 1πux 1πuy 3σu 1πgx 1πgy ) and a [10s4p]/(3s2p) basis
set.

a single determinant open shell SCF for the 7Σ+
u state.

After freezing the electrons in the 1σg, 2σg and 1σu, 2σu

orbitals full CI calculations were carried out. The lat-
ter served as a reference for the succeeding MRCI and
MRCC calculations. Table I shows the results of the ion-
ized N6+

2 SCF, 17Σ+
u SCF and X1Σ+

g full CI calculations
for reference.
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21Σ−
u

11∆u, 11Γu(Au)

11∆u, 11Γu(B1u)

11Πg

11Σ−
u

13Σ−
u

13∆u(Au)

13∆u(B1u)

15Πu

13Πg

17Σ+
u

15Σ+
g

13Σ+
u

X1Σ+
g

FIG. 2: N2: Legend of state symbols.

B. Low lying states and potential energy surface of

N2

Figure 1 shows the full CI results for the states (X1Σ+
g ,

13Σ+
u , 15Σ+

g , 17Σ+
u ; 13Πg, 15Πu, 13∆u; 13Σ−

u ; 11Σ−
u ,

11Πg, 11Γu, 21Σ−
u ; 11∆u) and their corresponding atomic

states for R → ∞ ( N(4S0)+N(4S0); N(4S0)+N(2D0);
N(4S0)+N(2P 0); N(2D0)+N(2D0) ) considered in this
article. Please note that the 11∆u state dissociates to
the N(2D0)+N(2P 0) channel which has not been consid-
ered explicitly in this work. For clarity and efficiency we
separated the state legend to figure 2. It holds for all
plots (except the ∆, Γ-degeneracy plots).

At the correlated level all states in this study were
calculated in their low-spin (Sz = 0) component leaving
e.g. the 17Σ+

u state with a single CSF made up from
20 determinants with 6 open shells. Table II shows the
states, their mapping onto D2h and the dominating deter-
minants the states are made of. In particular the splitting
of the ∆- and Γ-states onto the B1u and Au irrep of D2h

is given. There is a similar splitting of the Πu/g-states
onto B2u and B3u as well as B2g and B3g.

In the last column of table II the dominating determi-
nants for the considered states are given. In case of high
degeneracy the latter choice may not be unique. In this
case we started from the equilibrium and tried to stick to
this determinant as long as possible. For the considered
region of states for N2 there is a crossing of the 11∆u

and 21Σ−
u states at 4.3 Bohr. The 21Σ−

u state changes
its dominant determinant at about 3.5 Bohr. Please note
that for geometries R ≥ 4.5 Bohr the 11∆u state becomes
a 11Γu state as shown in table II. In order to analyze the
spatial degeneracy in the N(2D0)+N(2D0) dissociation
channel, while leaving the number of states considered
simultaneously limited, we switch to the 11Γu state and
do not consider the 11∆u state for R ≥ 4.5. These state
crossings have to be considered carefully while following
the states.

C. Amplitude start guess generation

During early test calculations it turned out that tar-
geting a certain state is a very delicate matter for the
coupled cluster type methods and their large non-linear

State D2h irrep Dominating determinanta

X1Σ+
g Ag | . . . 3σ2

g π2
ux π2

uy〉
13Σ+

u B1u | . . . 3σ2
g π2

ux π̄uy πgy〉
15Σ+

g Ag | . . . 3σ2
g π̄uxπ̄uy πgxπgy〉

17Σ+
u B1u | . . . 3σ̄g π̄ux π̄uy 3σuπgxπgy〉

13Πg B2g (B3g) | . . . 3σ̄g π2
ux π2

uy πgx〉
15Πu B2u (B3u) | . . . 3σ̄g π2

uxπ̄uy πgxπgy〉

13∆u

{

B1u

Au

| . . . 3σ2
g π2

ux π̄uy πgy〉
| . . . 3σ2

g π2
ux π̄uy πgx〉

13Σ−
u Au | . . . 3σ2

g π2
ux π̄uy πgx〉

11Σ−
u Au | . . . 3σ2

g π2
ux π̄uy πgx〉

11Πg B2g (B3g) | . . . 3σ̄g π2
ux π2

uy πgx〉

11Γu
b

{

B1u

Au

| . . . 3σg πux πuy 3σ̄u π̄gx π̄gy〉
| . . . 3σg π2

ux 3σu π̄gx π̄gy〉

21Σ−
u Au

{

| . . . π2
uxπ̄uyπgxπ2

gy〉
c

| . . . 3σ2
g π̄ux π2

gx πgy〉
d

11∆u
e

{

B1u

Au

| . . . 3σ2
g π2

ux π̄uy πgy〉
| . . . 3σ2

g π2
ux π̄uy πgx〉

acore orbitals |1σ2
g 2σ2

g 1σ2
u 2σ2

u . . .〉
bR ≥ 4.5 bohr
cR < 3.5 bohr
dR ≥ 3.5 bohr
eR < 4.5 bohr

TABLE II: Dominant determinants of the individual states
along potential surface aligned corresponding to the atomic
dissociation channels

equation systems. Especially the solution of a non-linear
equation system in the presence of degeneracy is rather
difficult. Since we solve for a single state within one iter-
ation cycle there is no simple way of selecting an ”n-th”
state. This is different for MRCI calculations. The latter
usually employ some variant of the Davidson algorithm
[86–90] which can handle several vectors simultaneously.
The approximate eigenvectors within the Davidson algo-
rithm are constructed as linear combinations from the
projected (Krylov) space insuring the orthogonality of
the vectors trivially. Additionally the calculation of the
n-th eigenvector is a simple matter. Since there was no
analogous tool at hand for simultaneously finding several
solutions of a non-linear equation system (especially with
degeneracy) we decided to set up the following compu-
tational procedure: 1. perform an MRCI calculation, 2.
select the desired state and 3. propagate this MRCI state
to the cluster amplitudes according to

〈i|ΨMRexpT〉
〈i|ΨSRMRCC〉

}

!
= 〈i|ΨMRCI〉 (8)

with 〈i| from the MRCI space. Solving Eq. (8) for SRM-

RCC is rather straightforward according to T̂1 = Ĉ1,
T̂2 = Ĉ2 − T̂ 2

1 , and so on. For MRexpT, however, the so-
lution of Eq. (8) becomes a non-linear equation system
of its own. Consequently, before starting to solve the real
coupled cluster equations a (simpler) non-linear equation
system is solved in order to propagate the MRCI coeffi-
cients to coupled cluster amplitudes. This procedure usu-
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ally proved to prepare starting amplitudes that allow the
applied iteration scheme to securely lock onto a certain
state. Although a simpler procedure is probably prefer-
able for production type calculations this scheme served
very well for the difficult N2 calculations.

D. Initial reference space and removal of vanishing

references

In order to get unbiased results all MRCI and MRCC
calculations were carried out with the same CAS(6e−,
3σg 1πux 1πuy 3σu 1πgx 1πgy) reference space for all
states. For higher multiplicities determinants with too
few open shells for the desired multiplicity were removed.

There is another reason for certain references to be re-
moved. Considering Eq. (4) we see the exponentials of

the cluster operators T̂µ to be weighted with the refer-
ence coefficient cµ. This cµ weighting originates from the

wave operator formalism, that is |Ψ〉 = Ω̂|Ψ0〉 [15] with
|Ψ0〉 inherently carrying the reference weights. An anal-
ysis of the perturbative cluster amplitude expansion for
MRexpT yields

t|α〉 =
A

∑

µ∈Pα
|cµ|(ǫ|µ〉 − ǫ|α〉)

(9)

with Pα containing those references from which a sub-
stituted determinant α may be generated, orbital energy
differences ǫ|µ〉 − ǫ|α〉, and some (for this discussion) ir-
relevant numerator A. Eq. (9) is explicitly derived and
discussed elsewhere [82]. A similar expression to Eq. (9)
holds for MkMRCC (cf. Eq. (27) of [31])

t|α〉 =
. . . +

∑

ν 6=µ . . . · cν

cµ

E0 − Hαα
(10)

while SUMRCC and BWMRCC do not contain the cµ

weight in the denominator.
It may happen that a specific reference coefficient cµ

is nearly vanishing, causing amplitudes associated with
any non vanishing determinant solely generated from this
very reference to explode. This effect is quite different
from the intruder state problem of the original SUMRCC
since it is not related to a vanishing energy difference
in the perturbative cluster amplitude expansion denom-
inator but to a vanishing reference expansion coefficient.
Therefore, it is less severe in the sense that it requires ref-
erences to be removed which are (almost) useless anyway.
”Almost” because their removal purges also all other de-
terminants which were solely generated from this special
reference. However, most of such determinants have a
vanishing coefficient anyway and the effect on the energy
is negligible.

In our implementation we remove references with coef-
ficients below 10−12 and substituted determinants if their
summed reference weight

∑

µ∈Pα
|cµ| is below 10−4 while

their coefficient in the MRCI expansion is larger than
10−4. We monitor the effect of this truncation at MRCI

level. It turns out that the truncation error associated
with the removal of vanishing references (and dependent
substituted determinants) is usually a fraction of a µEH

with very few values of about 2µEH for R = 10 Bohr.
Slight variations of the truncation scheme show the MR-
expT energies to vary at about the same size as the MRCI
energies and we can rule out any effect of the truncation
scheme to degeneracy properties.

Probably the issue with vanishing reference coefficients
has been detected for the first time seriously with N2 be-
cause of its high symmetry and large reference space.
We would like to point out that we assume this kind of
problem to appear also for the MkMRCC ansatz [30, 31].
Currently we are not aware of calculations in the litera-
ture regarding this method involving a reference space of
comparable size and a symmetry of comparable degree si-
multaneously. However, in contrast to the intruder state
problem of SUMRCC these problems can be removed eas-
ily in the above described manner without any substan-
tial effect on the accuracy.

E. Reference CSF expansion for MRexpT

Approaching the dissociation limit (R → ∞) we end up
with two separated atomic systems carrying very many
degeneracies. Actually, there are many more dissociation
channels ending in atomic states than shown in figure 1.
One source of degeneracy is the spin coupling. Consider
for example the pair of 4S0 states of the nitrogen atom.
Since the two atoms do not interact we may couple the
total spin of the whole system to singlet, triplet, quintet
and septet multiplicity without changing the total energy
or the individual quartet multiplet (apart from Sz) on a
single nitrogen atom. Due to this high degeneracy we
were at first not able to converge these states to a resid-
ual norm of less than 10−10 for the MRexpT ansatz. An
analysis of the iteration history in these cases shows the
reference coefficients and amplitudes (”eigenvectors”) to
freely rotate between the degenerate states. After intro-
ducing a CSF based expansion of the reference determi-
nants with respect to Ŝ2 these problems disappeared.

Due to the symmetry breaking within SRMRCC the
free rotation of the ”eigenvectors” is impeded leaving
SRMRCC less vulnerable to convergence problems in de-
generate situations. In fact SRMRCC converged without
imposing further restrictions on the wave function. Ac-
tually, there is no simple way to apply a reference CSF
expansion to SRMRCC since the amplitudes spanning
the reference space are 1. not unique for an individual
reference and 2. reappear in product terms. It should be
noted, that the very recently proposed scheme by Lyakh
et al. [81] tries to address the symmetry adaption prob-
lem at CI level. It applies a symmetry adapted projection
and requires an iterative procedure propagating the t am-
plitudes to c coefficients, symmetry adapting the latter,
and back-propagation to t amplitudes. Nevertheless, the
above mentioned issues regarding symmetry and connec-
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FIG. 3: Energy differences of MRCI with respect to FCI

tivity remain.

Interestingly, the Fermi vacuum invariance of MRexpT
treating all references on the same footing makes the ap-
proach more sensitive to ”eigenvector” rotations in case
of degeneracies. Actually, this is not an issue with MR-
expT but with the solution of the non-linear equation
system. Solving this problem in a general fashion re-
quires the developement of multi-root non-linear equa-
tion solvers similar to the multi-root Davidson procedure
for MRCI [86–90]. This is however beyond the scope of
this article and is to be addressed in the future.

We would like to emphasize that the reference space
spin projection for MRexpT has been solely introduced
because of convergence issues in case of spin degeneracy.
It has not been applied to improve the spin projections
of MRexpT. Actually, in case of no spin degeneracy it
makes no difference if the reference space is expanded
into determinants or CSFs.

IV. RESULTS AND DISCUSSION

Besides the usually probed correlation energy errors
with respect to full CI N2 offers a few rigorous properties
related to its high symmetry that can be checked for. Of
course the properties should be met exactly. However, it
turns out that a few of them assemble a very challeng-
ing test for the considered multi-reference coupled cluster
methods.

This section reports on the correlation energy errors of
SOMRCI, MRexpT, and SRMRCC and spatial degener-
acy errors.
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FIG. 4: Energy differences of MRexpT with respect to FCI

A. Correlation energy errors with respect to Full

CI

Tables III, IV, and V show the deviation from full CI
at the various geometries and states for SOMRCI, MR-
expT, and SRMRCC respectively while figures 3, 4, and
5 show the corresponding plots. All methods SOMRCI,
MRexpT, and SRMRCC show the largest errors in vicin-
ity of the equilibrium.

In table III and figure 3 SOMRCI shows errors ranging
from 1973 to 165 µEH . All states converge smoothly and
the non-parallelism error (NPE) ranges from 81 to 1665
µEH . The 7Σ+

u state shows the smallest errors for two
reasons: 1. The orbitals have been made for this state
and 2. for the septet state much of the correlation effect
is covered by the Pauli correlation already. Since the
reference space description of the 7Σ+

u and 21Σ−
u states

becomes very poor or the corresponding root very high
at short distances we omitted them from the table.

In table IV and figure 4 MRexpT shows errors ranging
from 457 to −102 µEH and the NPE varies between 56
and 399 µEH . The correlation energy errors are about a
factor of 3 to 4 smaller with respect to SOMRCI. We note
that it got very difficult to converge the MRexpT equa-
tions for cases with strong degeneracy. This happened
at R = 10 Bohr for the states of the highly degener-
ate N(2D0)+N(2D0) dissociation channel. From table II
we see three singlet states (11Σ−

u , 21Σ−
u , 11Γu) to map

onto Au. In D∞h only 11Σ−
u and 21Σ−

u are allowed to
mix while all three of them may intermix in D2h without
application of a Λz projection. This happened for the
21Σ−

u state at its crossing through the 1∆u state (around
R = 4.5 Bohr) and for the 21Σ−

u and 11Πg states at
R = 10.0 Bohr. Without the employed spin related CSF
expansion in the reference space there are more states
which fail to converge to the desired residual norm of
10−10. This is a strong indication that it becomes very
difficult to converge the non-linear equations of MRexpT
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4S + 4S 4S + 2D 4S + 2P 2D + 2D

X1Σ+
g

3Σ+
u

5Σ+
g

7Σ+
u

3Πg
5Πu

3∆u
3Σ−

u 11Σ−

u

1Πg
1∆u,1 Γu 21Σ−

u

R B1u Au B1u Au

1.5 1527 1226 788 — 1660 1226 1409 1411 1613 1601 1967 1793 1795 —
1.75 1571 1256 730 — 1579 1162 1453 1453 1678 1659 1825 1896 1897 —
2 1537 1241 628 179 1367 1049 1462 1462 1715 1695 1518 1972 1973 1520
2.25 1112 898 425 246 957 777 1085 1085 1310 1294 989 1541 1541 754
2.5 743 646 424 240 753 693 778 779 953 934 744 1123 1124 579
3 544 524 490 192 666 661 632 632 787 758 701 926 926 635
3.5 449 436 425 173 548 541 564 564 733 708 704 899 899 553
4 313 304 284 167 371 390 428 428 586 604 608 831 831 448
4.5 226 220 205 166 274 296 307 307 426 477 483 310 310 379
5 189 186 179 166 239 253 250 250 349 385 397 311 311 344

10 165 165 165 165 216 217 216 216 306 308 308 308 308 308

NPE 1406 1091 623 81 1444 1009 1246 1246 1409 1387 1659 1664 1665 1212

TABLE III: Energy differences of SOMRCI with respect to FCI in micro Hartree, [10s4p]/(3s2p) basis set, R in a. u.

4S + 4S 4S + 2D 4S + 2P 2D + 2D

X1Σ+
g

3Σ+
u

5Σ+
g

7Σ+
u

3Πg
5Πu

3∆u
3Σ−

u 11Σ−

u

1Πg
1∆u,1 Γu 21Σ−

u

R B1u Au B1u Au

1.5 −14 113 −32 — −102 −63 72 109 137 132 −63 119 165 —
1.75 113 168 1 — −66 −41 147 192 232 219 −56 205 264 —
2 269 257 80 74 46 85 270 337 399 388 30 343 457 255
2.25 292 255 132 100 169 221 277 333 389 386 131 338 443 155
2.5 219 225 174 119 220 281 234 262 301 297 178 265 331 216
3 182 230 217 94 232 267 213 216 244 236 207 229 262 275
3.5 180 205 196 80 204 211 199 194 226 218 223 233 254 227
4 144 142 131 74 139 147 148 142 174 184 203 219 237 175
4.5 102 96 90 71 96 106 102 96 115 141 162 76 78 140
5 84 78 76 69 80 86 82 76 88 111 129 69 70 121

10 72 66 67 63 66 66 72 66 76 102 68a 56 58 68a

NPE 306 191 249 56 334 344 205 271 324 308 286 287 399 180

anot converged to residual norm of 10−10 due to degeneracy

TABLE IV: Energy differences of MRexpT with respect to FCI in micro Hartree, [10s4p]/(3s2p) basis set, R in a. u.

at the presence of high degeneracy. However, it suggests
that this problem can be fixed by the use of CSFs not only
with respect to the total spin operator Ŝ2 but also with
respect to the angular momentum operator Λ̂z. Since
the latter operator was not implemented in the calcula-
tion procedure, the convergence problems caused by the
Λz degeneracy did not get resolved.

In table V and figure 5 SRMRCC shows errors rang-
ing from 576 to −282 µEH and the NPE varies be-
tween 63 and 621 µEH taking only the calculations based
on the dominating determinants into account. Likewise
the plots in figure 5 show results from calculations with
dominating determinants taken as Fermi vacuum. Both
ranges are slightly poorer than those for MRexpT but
with respect to SOMRCI they are still about a factor of
3 smaller. There are no convergence issues with SRM-
RCC but the 21Σ−

u state requires a change of the Fermi
vacuum at R = 3.5 Bohr. Refusing to change the vac-
uum along the potential surfaces results either in poorer
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FIG. 5: Energy differences of SRMRCC with respect to FCI
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4S + 4S 4S + 2D 4S + 2P 2D + 2D

X1Σ+
g

3Σ+
u

5Σ+
g

7Σ+
u

3Πg
5Πu

3∆u
3Σ−

u 11Σ−

u

1Πg
1∆u,1 Γu 21Σ−

u

a

R B1u Au B1u Au

1.5 −157 39 −154 — −176 −282 36 25 20 48 −156 63 58 —/ —
1.75 −18 164 −72 — −131 −187 176 151 160 181 −136 225 200 —/ —
2 183 344 48 95 27 24 387 342 380 397 2 497 440 85b/ 232
2.25 277 380 150 134 222 256 439 395 449 458 182 576 511 253b/ 234
2.5 244 309 195 154 305 339 356 331 382 381 268 469 426 382b/ 332
3 243 247 223 122 326 321 284 278 328 316 321 383 364 439b/ 369
3.5 228 192 190 105 274 249 241 240 301 289 329 375 364 371/302b

4 149 122 135 99 187 181 174 175 232 235 279 352 344 292/244b

4.5 104 84 109 96 142 146 129 131 172 180 218 165 165 240/208b

5 92 73 103 96 128 133 116 118 152 152 182 162 162 214/192b

10 106 66 109 91 125 127 124 125 154 183 129 96 107 —c/183b

NPE 434 341 377 63 502 621 403 370 429 410 485 513 453 359d

aFermi vacuum: | . . . π2
uxπ̄uyπgxπ2

gy〉 / | . . . 3σ2
g π̄uxπ2

gxπgy〉
bDominant determinant
cNo convergence
dNPE based on dominant determinant

TABLE V: Energy differences of SRMRCC with respect to FCI in micro Hartree, [10s4p]/(3s2p) basis set, R in a. u.

performance or lack of convergence.
Switching from one vacuum to another for 21Σ−

u state
leaves a significant gap between the two calculations. At
certain geometries this gap may become of the same
size as the overall error in the correlation energy. As we
usually do not have full CI values at hand there is no way
to select the ”optimal” switching point.

We would like to point out that larger particle num-
bers are expected to show the coupled cluster methods
much more superior to MRCI. Anyway, the small test sys-
tem N2 with 6 electrons correlated puts the considered
coupled cluster approaches to a strong test as MRCI is
already quite accurate.

B. Spatial symmetry properties

An interesting point of the N2 potential energy sur-
face is the analysis of the validity of spatial degeneracies.
Symmetry issues for MRCC type calculation have been
considered previously by Piecuch and Paldus [91, 92] and
Berkovic and Kaldor [72]. There are two different types
of spatial degeneracies within N2 that may be tested for:

(i) Degeneracies originating from the two dimen-
sional irreducible representations of D∞h appearing
for angular momentum projections in z-direction
larger than 0 (e. g. Λz = {±1,±2, . . .} according
to Π, ∆, etc. states).

(ii) Degeneracies at R → ∞ originating from

(a) the full rotation group for the individual
atoms (e. g. 3-fold P , 5-fold D, etc. degen-
eracies)

13∆u
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FIG. 6: 1∆u, 1Γu, and 3∆u degeneracy error for MRexpT

(b) different couplings of the total spin lo-
cated at the individual atoms to the
resulting molecular total spin (e.g.
(X1Σ+

g , 13Σ+
u , 15Σ+

g , 17Σ+
u ) → (4S + 4S)).

In the following we analyze the ∆- and Γ-state degen-
eracy and the R → ∞ degeneracy separately.

1. ∆ and Γ state degeneracy

A linear molecule like N2 should show perfect degen-
eracy between the two components of the Π-, ∆-, and
Γ states. While the Π-state degeneracy is reproduced
smoothly the symmetry conservation of the ∆-states
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FIG. 7: 1∆u, 1Γu, and 3∆u degeneracy error for SRMRCC

turns out to be very difficult for the coupled cluster ap-
proaches. This has been reported before by Berkovic et

al. [72] who performed SUMRCC calculations on N2 and
found degeneracy errors of about 0.3 eV (11 mEh).

As can be seen from figures 6 and 7 both MRexpT and
SRMRCC show very significant errors in the ∆-state de-
generacy. The errors are largest (114 µEH and 65 µEH

for MRexpT and SRMRCC respectively) at the vicinity
of the equilibrium distance and fall off for R → ∞. Al-
though the reason for this behavior is not yet entirely
clear to us we will try to give some explanation.

An analysis of the subduction of Πu/g states of D∞h

shows them to appear at the B3u/B2u and B3g/B2g irre-
ducible representations (irreps) of D2h for the ungerade
and gerade symmetry respectively. Since these two pairs
of irreps are populated with (x, y)-degenerate states (e.g.
Φu/g and higher Λz) only, the irreps of each pair B3u/B2u

and B3g/B2g are completely equivalent. Consequently a
calculation in D2h reproduces this degeneracy trivially
and in the previous section we reported a single compo-
nent only.

In contrast to this the subduction of ∆u/g and Γu/g,
states of D∞h shows them to appear at the B1u/Au and
Ag/B1g irreducible representations of D2h for the unger-
ade and gerade symmetry respectively. However, the Ag,
B1g, B1u, Au irreps are also populated with Σ+

g , Σ−
g , Σ+

u ,

Σ−
u states respectively with the latter all having possibly

different energies. In D2h a symmetry broken wavefunc-
tion could couple to those Σ states removing the degen-
eracy. Unfortunately, we could not calculate the Λz pro-
jection with the current implementation to check for this
directly. Therefore, we calculated all 〈M∆|MΣ〉 overlaps
of same multiplicity M close to the equilibrium geome-
try (that are: 〈13∆u|1

3Σ+
u 〉, 〈1

1∆u|1
1Σ−

u 〉, 〈2
1Σ−

u |1
1∆u〉,

and 〈13Σ−
u |1

3∆u〉). All of them show an overlap of the
order 10−16 which corresponds to a calculated zero.
This does of course not rule out a coupling to any other
(higher) Σ-state but it seems to be very unlikely that

No. of ref. conf.
No. of 3∆u

1∆u

open shells B1u Au B1u Au

0 0 0 0 0
2 18 12 18 12
4 0 4 0 4
6 1 0 1 0

dets. 56 48 56 48

CSFs 26 24 23 20

TABLE VI: Number of reference configurations having a cer-
tain number of open shells as well as number of determinants
and CSFs for the 3∆u and the 1∆u states close to the equi-
librium geometry

the considered ∆-states show an overlap with higher Σ-
states while they do not with the lowest ones. Therefore,
practically we can rule out ∆/Σ mixing to cause the lack
of degeneracy. Additionally, after careful inspection we
can rule out the truncation procedure due to vanishing
reference coefficients to be the origin of the symmetry
breaking.

There is some evidence that there is another reason for
the poor ∆-degeneracy. Table VI shows the open shell
structure of the two calculated ∆ states for their two D2h

components. Table VI is to be read as follows: For the
B1u component of the 3∆u state (second column) there
are 18 configurations having 2 open shells while there is
only one configuration having six open shells. The ref-
erence space consists of 56 determinants corresponding
to 26 CSFs (the numbers of CSFs in the last line dif-
fers for the triplet and singlet state due to the different
spin eigenfunction degeneracy at a given multiplicity).
We note that the B1u and Au components of both ∆-
states show a significant difference in their open shell
structure. Similarly, the corresponding exponential (the
real coupled cluster) wavefunctions show a very differ-
ent open shell structure for the two components. Using
a linear wavefunction CSF based ansatz the open shell
structure does not matter and both states are reproduced
degenerately, of course. However, a wavefunction ansatz
containing product terms of substitution operators con-
tains determinants which do not carry their own coef-
ficient but are made from disconnected clusters. Now,
for an increasing number of open shells the spin degen-
eracy is growing accordingly and in order to span the
spin space we needed a larger number of freely optimized
coefficients. However, this cannot be achieved with the
product type wavefunction. In other words: The funda-
mental problem is that the spin degeneracy may increase
during the substitution process but the product excita-
tions do not allow for a proportionally growing number of
free parameters. Therefore, we get a wavefunction which
differs in its level of correlation for the two ∆-state com-
ponents destroying the exact symmetry.

In order to get a deeper understanding we simplified
the system to a single nitrogen atom. Due to the full
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FIG. 8: R = 10 degeneracy errors for MRexpT

rotation group symmetry we expect e.g. the 2D state to
be five-fold degenerate (for a fixed Sz). The five compo-
nents of 2D state map onto the B3u, B2u, B1u and two
times Au irreps of D2h. What we find is a perfect degen-
eracy within the three B-type irreps and slightly different
energy for the two states in Au. The reference spaces of
the B-type irreps consist of two determinants with one
closed and one open shell while the two Au components
consist of three determinants with three open shells. Due
to the tiny number of references we could carry out an
explicit wavefunction analysis supporting our suggestion.
However, a final answer to this issue can be only given
using a spin averaged based implementation of MRCC
approaches. It remains puzzling why MRexpT shows
slightly larger ∆-state degeneracy errors than SRMRCC.

Finally we would like to mention that already at linear
level (SOMRCI) there is an issue related to the ∆ state
degeneracy. At very close inspection of table III we also
find a small (1 µEH) degeneracy error for the ∆-states
(e.g. the 3∆u state at R = 2.25 Bohr) due to the lack
of completeness of the singles doubles substitution space
within a spin orbital picture.

2. R → ∞ degeneracy

An analysis of the full CI calculations shows the
the atomic channels N(4S0)+N(4S0), N(4S0)+N(2D0),
N(4S0)+N(2P 0), N(2D0)+N(2D0) to be degenerate up
to at least six digits for R ≥ 10. However, from tables
III, IV, and V we see only MRCI to reproduce these de-
generacies. For convenience figures 8 and 9 assemble the
errors for MRexpT and SRMRCC with respect to full CI
at R = 10 Bohr grouped by the corresponding dissocia-
tion channel respectively in a single plot with the spread
showing the degeneracy errors. Although certainly not
being exact MRexpT shows a moderate degeneracy er-
ror. On exclusion of the 11Σ−

u state the degeneracies of
MRexpT are below about 12 µEH (max-min) with the
11Σ−

u being off about 46 µEH . Due to its symmetry
broken reference SRMRCC shows larger errors of about
87 µEH (max-min). There is some evidence that these
R → ∞ degeneracy errors have a similar origin as the ∆
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FIG. 9: R = 10 degeneracy errors for SRMRCC

degeneracy errors before. Further investigations are to
be made.

Previous studies on the R → ∞ degeneracy using
EOMCCSDt have been carried out by Kowalski et al.

[93] for the CH+ molecule. In this case the 2 1Σ+ and 1
1∆ states should become degenerate for R → ∞. How-
ever, the reported degeneracy error at R = 5 a.u. was 10
mEh which is about two orders of magnitude larger than
the errors found in this work. Although the two stud-
ies did not consider the same molecule the number of
correlated electrons was exactly the same. We therefore
expect the two orders of magnitude between the errors
of the previous [93] and this study to be significant.

V. CONCLUSION

To our best knowledge we presented the first full po-
tential surface (including dissociation) calculations of 12
low lying states of N2 with multi-reference coupled cluster
approaches so far. Although we used a small basis and
correlated only 6 electrons the calculations contain the
whole complexity of the dissociation of the N2 molecule
at ground and excited state level. We reported energy
differences with respect to full CI and analyzed spatial
degeneracy errors.

Besides the poor degeneracy of the ∆-states the re-
sults for MRexpT are very satisfactory. SRMRCC shows
slightly larger correlation energy errors with respect to
full CI and suffers from its lack of Fermi vacuum in-
variance. SRMRCC shows a poorer degeneracy for the
atomic fragments when approaching R → ∞ while it per-
forms slightly better for the 1∆u state than MRexpT.

Nevertheless, in view of the complexity of the N2 sys-
tem with all its difficulties and traps this study can be re-
garded as a successful application of multi-reference cou-
pled cluster methods to problems which were accessible
mainly with MRCI and CASPT2 based methods so far.
We also point out that the reported degeneracy errors of
order 0.1 mEH are much smaller than the typical errors
in the MRCI correlation energy with respect to full CI.
Additionally, by correlating a larger number of electrons
this relation will improve substantially in favor of the
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coupled cluster type methods.
Further investigations of the origin of the degeneracy

errors are to be made. As we expect many of the observed
issues with MRexpT and SRMRCC to appear with other
MRCC approaches as well an analogous investigation of
N2, e.g. for MkMRCC and BWMRCC, would be very
interesting.

Acknowledgments

We would like to thank J. Wiebke for carefully reading
and commenting on the manuscript.

Support by the Deutsche Forschungsgemeinschaft
(grant HA 5116/1-1 and SPP 1145) is gratefully acknowl-
edged.

[1] B. O. Roos, P. Linse, P. Siegbahn, and M. Blomberg,
Chem. Phys. 66, 197 (1982).
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