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This article reports on the calculation of 12 low lying states of the nitrogen molecule along its dissociation using the multi-reference exponential wavefunction ansatz [J. Chem. Phys. 123 (2005) 84102], the single-reference formalism multi-reference coupled cluster [J. Chem. Phys. 94 (1991) 1229], and MRCI methods. Energies relative to full CI are given. The results show the multi-reference coupled cluster approaches generally applicable to very demanding problems at high accuracy. In comparison to MRCI both coupled cluster type approaches do not reproduce spatial symmetry exactly. Nevertheless, this error in the degeneracy is much less than the overall error of the MRCI calculations.

I. INTRODUCTION

The dissociation of N 2 along its potential energy surface (PES) is one of the most demanding problems in quantum chemistry since it requires a balanced treatment of dynamical and statical correlation effects. All 3 pelectrons from each nitrogen are involved during the formation of its triple bond, giving rise to 6 active electrons in 2 × 3 p orbitals. Performing the calculations in the abelian subgroup D 2h of D ∞h the active space contains up to 56 determinants. While the X 1 Σ + g ground state is essentially of single-reference character at the equilibrium geometry it becomes a linear combination of 44 determinants when assembling two atomic 4 S states during dissociation. The excited states are most often of (modest) multi-determinantal structure already at equilibrium geometry and similarly to the ground state, they spread out into many determinants upon dissociation. Due to this difficulty the dissociation of N 2 has been used in the literature as a test system to benchmark multi-reference (MR) approaches.

Besides the numerical accuracy of the correlation energy with respect to full CI, N 2 offers several spatial and spin symmetry related properties that can be checked for. A good approximation method should, of course, conserve as many symmetry and other rigorous properties of the exact wavefunction as possible.

In the past the majority of calculations on N 2 were made with MRCI and CASPT2 methods [1][2][3][4][5]. However, N 2 should be a suitable test case for multi-reference coupled cluster (MRCC) methods. After the invention of the single-reference (SR) coupled cluster (CC) methods [6][7][8][9] there has been substantial research on the development of MRCC methods. Unfortunately, this task is by no means trivial and still unfinished. Up to now no MRCC approach having all the beautiful theoretical properties (e.g. size extensivity/connectivity) of the single-reference ansatzhas been reported. Size extensivity of a method is * Electronic address: Michael.Hanrath@uni-koeln.de a necessary condition for an efficient calculation of the correlation energy of many-body systems.

In order to put some structure to the large number of MRCC type approaches they may be divided into several categories. The first category contains the so-called genuine multi-reference approaches which are the valence universal (Fock space, FSMRCC) [10][11][12][13][14] and state universal (Hilbert space, SUMRCC) [15][16][17][18][19][20] ansätze. Both approaches employ the Bloch equation and suffer (in their original formulation) from various limitations. The second category relies on further developments of the either the FSMRCC or SUMRCC approaches. Among the FSMRCC based approaches are the intermediate Hamiltonian IM-FSMRCC [21,22] and the related EOM-CC [23][24][25] and ST-EOM-CC [26,27] approaches. Among the SUMRCC based approaches there are general model space (GMS) SUMRCC approaches [28,29], a state specific variant (MkMRCC) [30,31] of the SUMRCC, Brillouin-Wigner based ansätze (BWM-RCC) [32][33][34][35], and the multi-reference exponential (MR-expT) ansatz [36,37]. Another category is not based on the SUMRCC or FSMRCC approaches but relies on extensions of the single-reference ansatz. Among these are the CC linear response approach [38,39], the singlereference formalism based ansatz (SRMRCC) [40,41], later variants [42][43][44][45] and related methods [46,47]. Additionally, there are renormalized [48] and method of moment [49,50] coupled cluster methods as well as dressed configuration interaction (CI) based ansätze [51][52][53], reduced MRCC [54,55] and partially linearized reduced MRCC approaches [56,57].

In the following we shall give a short (necessarily incomplete) history of quantum chemical calculations on N 2 with a focus on coupled cluster calculations. Among the first calculations on N 2 is the CISD calculation of Langhoff et al. [58] (1974) at the equilibrium distance. Later, there have been full CI calculations [59] and full CI and coupled cluster studies (FCI, CCS, CC2, CCSD, CC3, CCSDT) [60,61]. More recently CCSDTQ5 results [62,63], CCSDTQ6 results [64] and investigations of quadruple excitation approximations [65] have been published. Additionally, there are locally renormalized CCSD(T) [66], CI tailored CC [67] [68]. Recently Lyakh et al. [69] published CASCCSD calculations on the ground state PES of N 2 . Several groups published FSMRCC [70,70,71], SUMRCC [72], GMS SUMRCC [73], and IM-FSMRCC [74] calculations. Based on the reduced MRCC approach [54] several calculations on N 2 [73,[75][76][77] were published. Very recently new results for the ground state potential surface were published [78].

However, to our best knowledge there has been no multi-reference coupled cluster study including the ground state and 11 low lying excited states along the PES simultaneously.

This study reports on correlation energy errors of spinorbital based (i. e. not CSF based) multi-reference configuration interaction (SOMRCI), SRMRCC [40,41], and MRexpT [36,37] calculations for the N 2 PES including the ground state and a number of of excited states. The paper is arranged into the following sections: In section II. we discuss the basic ideas of the SRMRCC and MR-expT multi-reference coupled cluster ansätze. Section III. describes the calculation parameters and procedures as well as the properties and difficulties arising in the course of the computation. Section IV. reports on the correlation energy errors and spatial degeneracy properties.

II. MREXPT AND SRMRCC ANS ÄTZE

The single-reference based ansatz (SRMRCC) of Oliphant et al. [40] and Piecuch et al. [41] is given as

|Ψ SRMRCC = e T |µ 0 (1) 
with |µ 0 the Fermi vacuum and T chosen to span the MRCI space according to

(1 + T )|µ 0 :∼ |Ψ MRCI (2) 
with ":∼" meaning spanning. Actually, SRMRCC is a kind of extended single reference ansatz as Eq. ( 1) and Eq. ( 2) correspond to a single-reference coupled cluster ansatz (e.g. CCSD) with additional specific higher excitations in T . Alternatively one may view it as a singlereference CCSD. . . n with certain excitations missing and n = m + m act (for a complete active space) with m the base excitation level (for CCSD it is m = 2) and m act the number of active electrons in the reference space. Obviously, ansatz Eq. ( 1) breaks the symmetry of the wave function as it makes one reference µ 0 (the Fermi vacuum) particular. The later variants of the SRMRCC ansatz [42][43][44][45] do not solve this fundamental problem of the SRMRCC approach. Although usually of reasonable accuracy in terms of the correlation energy when using the dominant determinant as Fermi vacuum, SRMRCC has been shown to have difficulties in case of avoided crossings [79,80], potential surfaces, and low-spin/highspin degeneracies [36,79].

SRMRCC inherits its size extensivity (connectivity) trivially from single-reference coupled cluster. In order to solve Eq. ( 1) for the amplitudes one inserts it into the Schrödinger equation, multiplies from the left by e -T , and projects onto ρ|, with ρ element of the space spanned by T |µ 0 (e.g. a multi-reference singles doubles (MRSD) space without |µ 0 ) yielding the residual equations

R SRMRCC (ρ) = ρ|e -T Ĥe T µ 0 . (3) 
Setting R SRMRCC (ρ) ! = 0, ∀ ρ (with " ! =" meaning the corresponding equality is imposed on the solution of the non-linear equation system) yields a non-linear equation system in t.

Recently Lyakh et al. [69] published CASCCSD calculations on the ground state PES of N 2 . CASCCSD can be seen as a variant of the previously published SRM-RCC approach [40]. Both rely on a single-reference Fermi vacuum and are not invariant to the choice of this vacuum. Most recently [81] the same authors tried to address the problem of symmetry breaking by a slight modification of CASCCSD they called XCASCCSD. By employing a symmetry adapted projection and symmetry adapting the t-amplitudes from their corresponding CI coefficients c they were able to improve the symmetry issues with CASCCSD. However, there are a few problems with this procedure. First of all using a truncated cluster operator (e.g. singles and doubles) it does not cure the symmetry breaking of the wavefunction as there is still one specific vacuum and the CI coefficient symmetrizing procedure has no effect on higher projection (product substitutions) levels. Another issue is the connectivity of the cluster amplitudes. Since SRMRCC and CASCCSD may be interpreted as special cases of the single-reference coupled cluster approach (SRCC) they inherit their connectivity from SRCC trivially. The proof of the cluster connectivity within SRCC relies on the projection of e -T Ĥe T |µ 0 onto substituted determinants. Generating the cluster amplitudes by some other procedure (e.g. back-propagation from CI coefficients) will certainly not meet the connectivity property automatically and a special proof is to be given.

In contrast to SRMRCC [40,41], MRexpT [36,37], along with SUMRCC [15], MkMRCC [30,31] and BWM-RCC [33,34], treats all references on the same footing. The wavefunction of MRexpT is given by

|Ψ = µ e Tµ c µ |µ (4) 
with

Tµ = φ(c µ ) τµ,i∈Tµ t τµ,i|µ τµ,i (5) 
with T µ the set of substitutions to be applied (e. 

R MRexpT (ρ) = µ c µ ρ|( Ĥ -E)e Tµ µ (6) 
with R MRexpT (ρ) ! = 0, ∀ ρ and µ |c µ | 2 = 1 imposed yielding an equation system non-linear in t while linear in c.

The norm r X , X ∈ {SRMRCC, MRexpT} of the residuals Eq. (3) and Eq. ( 6) serves as a measure for convergence of the solution of the equation systems and is given as

r X = ρ |R X (ρ)| 2 . (7) 
If nothing else is stated all results are converged to a residual norm r X < 10 -10 .

III. CALCULATION DETAILS AND TECHNICALITIES

In the following we describe the main issues involved in the dissociation of N 2 and special characteristics of the calculation procedure employed in this article.

A. Basis set, orbital generation and reference space

In the calculations we used a 6-31G [83] [10s4p]/(3s2p) basis set. Since we wanted to employ the same orbitals for all states we decided to use 7 Σ + u orbitals. Choosing the high spin component of the 7 Σ + u state it is made up of a single determinant along the whole potential surface of N 2 . This allows for a more balanced treatment of the remaining states. Using MOLCAS [84] with an interface [85] we start from a 6-fold ionized N 2 cation allowing us to use a closed shell state while conserving the D ∞h symmetry among the orbitals. Those orbitals were fed into the RASSCF program of MOLCAS with the 1σ g , 2σ g and 1σ u , 2σ u inactive and 6 electrons in the 6 (3σ g 1π ux 1π uy 3σ u 1π gx 1π gy ) orbitals of the later SOMRCI and MRCC CAS space. Enforcing B 1u and septet state symmetry this actually corresponds to a single determinant open shell SCF for the 7 Σ + u state. After freezing the electrons in the 1σ g , 2σ g and 1σ u , 2σ u orbitals full CI calculations were carried out. The latter served as a reference for the succeeding MRCI and MRCC calculations. Table I shows the results of the ionized N 6+ 2 SCF, 1 7 Σ + u SCF and X 1 Σ + g full CI calculations for reference. 

R N 6+ 2 SCF 1 7 Σ + u SCF X 1 Σ + g FCI 1.
N( 4 S 0 )+N( 4 S 0 ) N( 4 S 0 )+N( 2 D 0 ) N( 4 S 0 )+N( 2 P 0 ) N( 2 D 0 )+N( 2 D 0 ) R in a.u. E(FCI) in a.u.
4 2 1 Σ - u 1 1 ∆ u , 1 1 Γ u (A u ) 1 1 ∆ u , 1 1 Γ u (B 1u ) 1 1 Π g 1 1 Σ - u 1 3 Σ - u 1 3 ∆ u (A u ) 1 3 ∆ u (B 1u ) 1 5 Π u 1 3 Π g 1 7 Σ + u 1 5 Σ + g 1 3 Σ + u X 1 Σ + g FIG. 2: N2: Legend of state symbols.

B. Low lying states and potential energy surface of N2

Figure 1 shows the full CI results for the states (X

1 Σ + g , 1 3 Σ + u , 1 5 Σ + g , 1 7 Σ + u ; 1 3 Π g , 1 5 Π u , 1 3 ∆ u ; 1 3 Σ - u ; 1 1 Σ - u , 1 1 Π g , 1 1 Γ u , 2 1 Σ - u ; 1 1 ∆ u ) and their corresponding atomic states for R → ∞ ( N( 4 S 0 )+N( 4 S 0 ); N( 4 S 0 )+N( 2 D 0 ); N( 4 S 0 )+N( 2 P 0 ); N( 2 D 0 )+N( 2 D 0 ) ) considered in this article.
Please note that the 1 1 ∆ u state dissociates to the N( 2 D 0 )+N( 2 P 0 ) channel which has not been considered explicitly in this work. For clarity and efficiency we separated the state legend to figure 2. It holds for all plots (except the ∆, Γ-degeneracy plots).

At the correlated level all states in this study were calculated in their low-spin (S z = 0) component leaving e.g. the 1 7 Σ + u state with a single CSF made up from 20 determinants with 6 open shells. Table II shows the states, their mapping onto D 2h and the dominating determinants the states are made of. In particular the splitting of the ∆-and Γ-states onto the B 1u and A u irrep of D 2h is given. There is a similar splitting of the Π u/g -states onto B 2u and B 3u as well as B 2g and B 3g .

In the last column of table II the dominating determinants for the considered states are given. In case of high degeneracy the latter choice may not be unique. In this case we started from the equilibrium and tried to stick to this determinant as long as possible. For the considered region of states for N 2 there is a crossing of the 1 1 ∆ u and 2 1 Σ - u states at 4.3 Bohr. The 2 1 Σ - u state changes its dominant determinant at about 3.5 Bohr. Please note that for geometries R ≥ 4.5 Bohr the 1 1 ∆ u state becomes a 1 1 Γ u state as shown in table II. In order to analyze the spatial degeneracy in the N( 2 D 0 )+N( 2 D 0 ) dissociation channel, while leaving the number of states considered simultaneously limited, we switch to the 1 1 Γ u state and do not consider the 1 1 ∆ u state for R ≥ 4.5. These state crossings have to be considered carefully while following the states.

C. Amplitude start guess generation

During early test calculations it turned out that targeting a certain state is a very delicate matter for the coupled cluster type methods and their large non-linear

State D 2h irrep Dominating determinant a X 1 Σ + g A g | . . . 3σ 2 g π 2 ux π 2 uy 1 3 Σ + u B 1u | . . . 3σ 2 g π 2 ux πuy π gy 1 5 Σ + g A g | . . . 3σ 2 g πux πuy π gx π gy 1 7 Σ + u B 1u
| . . . 3σ g πux πuy 3σ u π gx π gy

1 3 Π g B 2g (B 3g ) | . . . 3σ g π 2 ux π 2 uy π gx 1 5 Π u B 2u (B 3u ) | . . . 3σ g π 2 ux πuy π gx π gy 1 3 ∆ u B 1u A u | . . . 3σ 2 g π 2 ux πuy π gy | . . . 3σ 2 g π 2 ux πuy π gx 1 3 Σ - u A u | . . . 3σ 2 g π 2 ux πuy π gx 1 1 Σ - u A u | . . . 3σ 2 g π 2 ux πuy π gx 1 1 Π g B 2g (B 3g ) | . . . 3σ g π 2 ux π 2 uy π gx 1 1 Γ u b B 1u A u | . . . 3σ g π ux π uy 3σ u πgx πgy | . . . 3σ g π 2 ux 3σ u πgx πgy 2 1 Σ - u A u | . . . π 2 ux πuy π gx π 2 gy c | . . . 3σ 2 g πux π 2 gx π gy d 1 1 ∆ u e B 1u A u | . . . 3σ 2 g π 2 ux πuy π gy | . . . 3σ 2 g π 2 ux πuy π gx a core orbitals |1σ 2 g 2σ 2 g 1σ 2 u 2σ 2 u . . . b R ≥ 4.5 bohr c R < 3.5 bohr d R ≥ 3.5 bohr e R < 4.5 bohr
TABLE II: Dominant determinants of the individual states along potential surface aligned corresponding to the atomic dissociation channels equation systems. Especially the solution of a non-linear equation system in the presence of degeneracy is rather difficult. Since we solve for a single state within one iteration cycle there is no simple way of selecting an "n-th" state. This is different for MRCI calculations. The latter usually employ some variant of the Davidson algorithm [86][87][88][89][90] which can handle several vectors simultaneously. The approximate eigenvectors within the Davidson algorithm are constructed as linear combinations from the projected (Krylov) space insuring the orthogonality of the vectors trivially. Additionally the calculation of the n-th eigenvector is a simple matter. Since there was no analogous tool at hand for simultaneously finding several solutions of a non-linear equation system (especially with degeneracy) we decided to set up the following computational procedure: 1. perform an MRCI calculation, 2. select the desired state and 3. propagate this MRCI state to the cluster amplitudes according to

i|Ψ MRexpT i|Ψ SRMRCC ! = i|Ψ MRCI ( 8 
)
with i| from the MRCI space. Solving Eq. ( 8) for SRM-RCC is rather straightforward according to T1 = Ĉ1 , T2 = Ĉ2 -T 2 1 , and so on. For MRexpT, however, the solution of Eq. ( 8) becomes a non-linear equation system of its own. Consequently, before starting to solve the real coupled cluster equations a (simpler) non-linear equation system is solved in order to propagate the MRCI coefficients to coupled cluster amplitudes. This procedure usu- ally proved to prepare starting amplitudes that allow the applied iteration scheme to securely lock onto a certain state. Although a simpler procedure is probably preferable for production type calculations this scheme served very well for the difficult N 2 calculations.

D. Initial reference space and removal of vanishing references

In order to get unbiased results all MRCI and MRCC calculations were carried out with the same CAS(6e -, 3σ g 1π ux 1π uy 3σ u 1π gx 1π gy ) reference space for all states. For higher multiplicities determinants with too few open shells for the desired multiplicity were removed.

There is another reason for certain references to be removed. Considering Eq. ( 4) we see the exponentials of the cluster operators Tµ to be weighted with the reference coefficient c µ . This c µ weighting originates from the wave operator formalism, that is |Ψ = Ω|Ψ 0 [15] with |Ψ 0 inherently carrying the reference weights. An analysis of the perturbative cluster amplitude expansion for MRexpT yields

t |α = A µ∈Pα |c µ |(ǫ |µ -ǫ |α ) (9) 
with P α containing those references from which a substituted determinant α may be generated, orbital energy differences ǫ |µǫ |α , and some (for this discussion) irrelevant numerator A. Eq. ( 9) is explicitly derived and discussed elsewhere [82]. A similar expression to Eq. ( 9) holds for MkMRCC (cf. Eq. ( 27) of [31])

t |α = . . . + ν =µ . . . • cν cµ E 0 -H αα (10) 
while SUMRCC and BWMRCC do not contain the c µ weight in the denominator.

It may happen that a specific reference coefficient c µ is nearly vanishing, causing amplitudes associated with any non vanishing determinant solely generated from this very reference to explode. This effect is quite different from the intruder state problem of the original SUMRCC since it is not related to a vanishing energy difference in the perturbative cluster amplitude expansion denominator but to a vanishing reference expansion coefficient. Therefore, it is less severe in the sense that it requires references to be removed which are (almost) useless anyway. "Almost" because their removal purges also all other determinants which were solely generated from this special reference. However, most of such determinants have a vanishing coefficient anyway and the effect on the energy is negligible.

In our implementation we remove references with coefficients below 10 -12 and substituted determinants if their summed reference weight µ∈Pα |c µ | is below 10 -4 while their coefficient in the MRCI expansion is larger than 10 -4 . We monitor the effect of this truncation at MRCI level. It turns out that the truncation error associated with the removal of vanishing references (and dependent substituted determinants) is usually a fraction of a µE H with very few values of about 2µE H for R = 10 Bohr. Slight variations of the truncation scheme show the MR-expT energies to vary at about the same size as the MRCI energies and we can rule out any effect of the truncation scheme to degeneracy properties.

Probably the issue with vanishing reference coefficients has been detected for the first time seriously with N 2 because of its high symmetry and large reference space. We would like to point out that we assume this kind of problem to appear also for the MkMRCC ansatz [30,31]. Currently we are not aware of calculations in the literature regarding this method involving a reference space of comparable size and a symmetry of comparable degree simultaneously. However, in contrast to the intruder state problem of SUMRCC these problems can be removed easily in the above described manner without any substantial effect on the accuracy.

E. Reference CSF expansion for MRexpT

Approaching the dissociation limit (R → ∞) we end up with two separated atomic systems carrying very many degeneracies. Actually, there are many more dissociation channels ending in atomic states than shown in figure 1. One source of degeneracy is the spin coupling. Consider for example the pair of 4 S 0 states of the nitrogen atom. Since the two atoms do not interact we may couple the total spin of the whole system to singlet, triplet, quintet and septet multiplicity without changing the total energy or the individual quartet multiplet (apart from S z ) on a single nitrogen atom. Due to this high degeneracy we were at first not able to converge these states to a residual norm of less than 10 -10 for the MRexpT ansatz. An analysis of the iteration history in these cases shows the reference coefficients and amplitudes ("eigenvectors") to freely rotate between the degenerate states. After introducing a CSF based expansion of the reference determinants with respect to Ŝ2 these problems disappeared.

Due to the symmetry breaking within SRMRCC the free rotation of the "eigenvectors" is impeded leaving SRMRCC less vulnerable to convergence problems in degenerate situations. In fact SRMRCC converged without imposing further restrictions on the wave function. Actually, there is no simple way to apply a reference CSF expansion to SRMRCC since the amplitudes spanning the reference space are 1. not unique for an individual reference and 2. reappear in product terms. It should be noted, that the very recently proposed scheme by Lyakh et al. [81] tries to address the symmetry adaption problem at CI level. It applies a symmetry adapted projection and requires an iterative procedure propagating the t amplitudes to c coefficients, symmetry adapting the latter, and back-propagation to t amplitudes. Nevertheless, the above mentioned issues regarding symmetry and connec- Interestingly, the Fermi vacuum invariance of MRexpT treating all references on the same footing makes the approach more sensitive to "eigenvector" rotations in case of degeneracies. Actually, this is not an issue with MR-expT but with the solution of the non-linear equation system. Solving this problem in a general fashion requires the developement of multi-root non-linear equation solvers similar to the multi-root Davidson procedure for MRCI [86][87][88][89][90]. This is however beyond the scope of this article and is to be addressed in the future.

We would like to emphasize that the reference space spin projection for MRexpT has been solely introduced because of convergence issues in case of spin degeneracy. It has not been applied to improve the spin projections of MRexpT. Actually, in case of no spin degeneracy it makes no difference if the reference space is expanded into determinants or CSFs.

IV. RESULTS AND DISCUSSION

Besides the usually probed correlation energy errors with respect to full CI N 2 offers a few rigorous properties related to its high symmetry that can be checked for. Of course the properties should be met exactly. However, it turns out that a few of them assemble a very challenging test for the considered multi-reference coupled cluster methods.

This section reports on the correlation energy errors of SOMRCI, MRexpT, and SRMRCC and spatial degeneracy errors. Tables III, IV, and V show the deviation from full CI at the various geometries and states for SOMRCI, MR-expT, and SRMRCC respectively while figures 3, 4, and 5 show the corresponding plots. All methods SOMRCI, MRexpT, and SRMRCC show the largest errors in vicinity of the equilibrium.

In table III and figure 3 SOMRCI shows errors ranging from 1973 to 165 µE H . All states converge smoothly and the non-parallelism error (NPE) ranges from 81 to 1665 µE H . The 7 Σ + u state shows the smallest errors for two reasons: 1. The orbitals have been made for this state and 2. for the septet state much of the correlation effect is covered by the Pauli correlation already. Since the reference space description of the 7 Σ + u and 2 1 Σ - u states becomes very poor or the corresponding root very high at short distances we omitted them from the table.

In table IV and figure 4 MRexpT shows errors ranging from 457 to -102 µE H and the NPE varies between 56 and 399 µE H . The correlation energy errors are about a factor of 3 to 4 smaller with respect to SOMRCI. We note that it got very difficult to converge the MRexpT equations for cases with strong degeneracy. This happened at R = 10 Bohr for the states of the highly degenerate N(

2 D 0 )+N( 2 D 0 ) dissociation channel. From table II we see three singlet states (1 1 Σ - u , 2 1 Σ - u , 1 1 Γ u ) to map onto A u . In D ∞h only 1 1 Σ -
u and 2 1 Σ - u are allowed to mix while all three of them may intermix in D 2h without application of a Λ z projection. This happened for the 2 1 Σ - u state at its crossing through the 1 ∆ u state (around R = 4.5 Bohr) and for the 2 1 Σ - u and 1 1 Π g states at R = 10.0 Bohr. Without the employed spin related CSF expansion in the reference space there are more states which fail to converge to the desired residual norm of 10 -10 . This is a strong indication that it becomes very difficult to converge the non-linear equations of MRexpT at the presence of high degeneracy. However, it suggests that this problem can be fixed by the use of CSFs not only with respect to the total spin operator Ŝ2 but also with respect to the angular momentum operator Λz . Since the latter operator was not implemented in the calculation procedure, the convergence problems caused by the Λ z degeneracy did not get resolved.

7 4 S + 4 S 4 S + 2 D 4 S + 2 P 2 D + 2 D X 1 Σ + g 3 Σ + u 5 Σ + g 7 Σ + u 3 Πg 5 Πu 3 ∆u 3 Σ - u 1 1 Σ - u 1 Πg 1 ∆u, 1 Γu 2 1 Σ - u R B1u Au
D + 2 D X 1 Σ + g 3 Σ + u 5 Σ + g 7 Σ + u 3 Πg 5 Πu 3 ∆u 3 Σ - u 1 1 Σ - u 1 Πg 1 ∆u, 1 Γu 2 1 Σ - u R B1u Au B1u Au 1.5 - 14 
In table V and figure 5 SRMRCC shows errors ranging from 576 to -282 µE H and the NPE varies between 63 and 621 µE H taking only the calculations based on the dominating determinants into account. Likewise the plots in figure 5 show results from calculations with dominating determinants taken as Fermi vacuum. Both ranges are slightly poorer than those for MRexpT but with respect to SOMRCI they are still about a factor of 3 smaller. There are no convergence issues with SRM-RCC but the 2 1 Σ - u state requires a change of the Fermi vacuum at R = 3.5 Bohr. Refusing to change the vacuum along the potential surfaces results either in poorer R in a.u.

E(SRMRCC)

-E(FCI) in a.u. performance or lack of convergence.

8 4 S + 4 S 4 S + 2 D 4 S + 2 P 2 D + 2 D X 1 Σ + g 3 Σ + u 5 Σ + g 7 Σ + u 3 Πg 5 Πu 3 ∆u 3 Σ - u 1 1 Σ - u 1 Πg 1 ∆u, 1 Γu 2 1 Σ - u a R B1u Au B1u Au 1.
Switching from one vacuum to another for 2 1 Σ - u state leaves a significant gap between the two calculations. At certain geometries this gap may become of the same size as the overall error in the correlation energy. As we usually do not have full CI values at hand there is no way to select the "optimal" switching point.

We would like to point out that larger particle numbers are expected to show the coupled cluster methods much more superior to MRCI. Anyway, the small test system N 2 with 6 electrons correlated puts the considered coupled cluster approaches to a strong test as MRCI is already quite accurate.

B. Spatial symmetry properties

An interesting point of the N 2 potential energy surface is the analysis of the validity of spatial degeneracies. Symmetry issues for MRCC type calculation have been considered previously by Piecuch and Paldus [91,92] and Berkovic and Kaldor [72]. There are two different types of spatial degeneracies within N 2 that may be tested for:

(i) Degeneracies originating from the two dimensional irreducible representations of D ∞h appearing for angular momentum projections in z-direction larger than 0 (e. g. Λ z = {±1, ±2, . . .} according to Π, ∆, etc. states).

(ii) Degeneracies at R → ∞ originating from (a) the full rotation group for the individual atoms (e. g. 3-fold P , 5-fold D, etc. degeneracies)

1 3 ∆u 1 1 ∆u(R < 4.5), 1 1 Γu(R ≥ 4.5)
R in a.u.

MRexpT

∆ state degeneracy error in a.u. 

(X 1 Σ + g , 1 3 Σ + u , 1 5 Σ + g , 1 7 Σ + u ) → ( 4 S + 4 S)).
In the following we analyze the ∆-and Γ-state degeneracy and the R → ∞ degeneracy separately. FIG. 7: 1 ∆u, 1 Γu, and 3 ∆u degeneracy error for SRMRCC turns out to be very difficult for the coupled cluster approaches. This has been reported before by Berkovic et al. [72] who performed SUMRCC calculations on N 2 and found degeneracy errors of about 0.3 eV (11 mE h ).

As can be seen from figures 6 and 7 both MRexpT and SRMRCC show very significant errors in the ∆-state degeneracy. The errors are largest (114 µE H and 65 µE H for MRexpT and SRMRCC respectively) at the vicinity of the equilibrium distance and fall off for R → ∞. Although the reason for this behavior is not yet entirely clear to us we will try to give some explanation.

An analysis of the subduction of Π u/g states of D ∞h shows them to appear at the B 3u /B 2u and B 3g /B 2g irreducible representations (irreps) of D 2h for the ungerade and gerade symmetry respectively. Since these two pairs of irreps are populated with (x, y)-degenerate states (e.g. Φ u/g and higher Λ z ) only, the irreps of each pair B 3u /B 2u and B 3g /B 2g are completely equivalent. Consequently a calculation in D 2h reproduces this degeneracy trivially and in the previous section we reported a single component only.

In contrast to this the subduction of ∆ u/g and Γ u/g , states of D ∞h shows them to appear at the B 1u /A u and A g /B 1g irreducible representations of D 2h for the ungerade and gerade symmetry respectively. However, the A g , B 1g , B 1u , A u irreps are also populated with Σ + g , Σ - g , Σ + u , Σ - u states respectively with the latter all having possibly different energies. In D 2h a symmetry broken wavefunction could couple to those Σ states removing the degeneracy. Unfortunately, we could not calculate the Λ z projection with the current implementation to check for this directly. Therefore, we calculated all M ∆| M Σ overlaps of same multiplicity M close to the equilibrium geometry (that are:

1 3 ∆ u |1 3 Σ + u , 1 1 ∆ u |1 1 Σ - u , 2 1 Σ - u |1 1 ∆ u , and 1 3 Σ - u |1 3 ∆ u ).
All of them show an overlap of the order 10 -16 which corresponds to a calculated zero. This does of course not rule out a coupling to any other (higher) Σ-state but it seems to be very unlikely that the considered ∆-states show an overlap with higher Σstates while they do not with the lowest ones. Therefore, practically we can rule out ∆/Σ mixing to cause the lack of degeneracy. Additionally, after careful inspection we can rule out the truncation procedure due to vanishing reference coefficients to be the origin of the symmetry breaking.

There is some evidence that there is another reason for the poor ∆-degeneracy. We note that the B 1u and A u components of both ∆states show a significant difference in their open shell structure. Similarly, the corresponding exponential (the real coupled cluster) wavefunctions show a very different open shell structure for the two components. Using a linear wavefunction CSF based ansatz the open shell structure does not matter and both states are reproduced degenerately, of course. However, a wavefunction ansatz containing product terms of substitution operators contains determinants which do not carry their own coefficient but are made from disconnected clusters. Now, for an increasing number of open shells the spin degeneracy is growing accordingly and in order to span the spin space we needed a larger number of freely optimized coefficients. However, this cannot be achieved with the product type wavefunction. In other words: The fundamental problem is that the spin degeneracy may increase during the substitution process but the product excitations do not allow for a proportionally growing number of free parameters. Therefore, we get a wavefunction which differs in its level of correlation for the two ∆-state components destroying the exact symmetry.

In order to get a deeper understanding we simplified the system to a single nitrogen atom. Due to the full rotation group symmetry we expect e.g. the 2 D state to be five-fold degenerate (for a fixed S z ). The five components of 2 D state map onto the B 3u , B 2u , B 1u and two times A u irreps of D 2h . What we find is a perfect degeneracy within the three B-type irreps and slightly different energy for the two states in A u . The reference spaces of the B-type irreps consist of two determinants with one closed and one open shell while the two A u components consist of three determinants with three open shells. Due to the tiny number of references we could carry out an explicit wavefunction analysis supporting our suggestion. However, a final answer to this issue can be only given using a spin averaged based implementation of MRCC approaches. It remains puzzling why MRexpT shows slightly larger ∆-state degeneracy errors than SRMRCC.

Finally we would like to mention that already at linear level (SOMRCI) there is an issue related to the ∆ state degeneracy. At very close inspection of table III we also find a small (1 µE H ) degeneracy error for the ∆-states (e.g. the 3 ∆ u state at R = 2.25 Bohr) due to the lack of completeness of the singles doubles substitution space within a spin orbital picture.

R → ∞ degeneracy

An analysis of the full CI calculations shows the the atomic channels N( 4 S 0 )+N( 4 S 0 ), N( 4 S 0 )+N( 2 D 0 ), N( 4 S 0 )+N( 2 P 0 ), N( 2 D 0 )+N( 2 D 0 ) to be degenerate up to at least six digits for R ≥ 10. However, from tables III, IV, and V we see only MRCI to reproduce these degeneracies. For convenience figures 8 and 9 assemble the errors for MRexpT and SRMRCC with respect to full CI at R = 10 Bohr grouped by the corresponding dissociation channel respectively in a single plot with the spread showing the degeneracy errors. Although certainly not being exact MRexpT shows a moderate degeneracy error. On exclusion of the 1 1 Σ - u state the degeneracies of MRexpT are below about 12 µE H (max-min) with the 1 1 Σ - u being off about 46 µE H . Due to its symmetry broken reference SRMRCC shows larger errors of about 87 µE H (max-min). There is some evidence that these R → ∞ degeneracy errors have a similar origin as the ∆ Previous studies on the R → ∞ degeneracy using EOMCCSDt have been carried out by Kowalski et al. [93] for the CH + molecule. In this case the 2 1 Σ + and 1 1 ∆ states should become degenerate for R → ∞. However, the reported degeneracy error at R = 5 a.u. was 10 mE h which is about two orders of magnitude larger than the errors found in this work. Although the two studies did not consider the same molecule the number of correlated electrons was exactly the same. We therefore expect the two orders of magnitude between the errors of the previous [93] and this study to be significant.

V. CONCLUSION

To our best knowledge we presented the first full potential surface (including dissociation) calculations of 12 low lying states of N 2 with multi-reference coupled cluster approaches so far. Although we used a small basis and correlated only 6 electrons the calculations contain the whole complexity of the dissociation of the N 2 molecule at ground and excited state level. We reported energy differences with respect to full CI and analyzed spatial degeneracy errors.

Besides the poor degeneracy of the ∆-states the results for MRexpT are very satisfactory. SRMRCC shows slightly larger correlation energy errors with respect to full CI and suffers from its lack of Fermi vacuum invariance. SRMRCC shows a poorer degeneracy for the atomic fragments when approaching R → ∞ while it performs slightly better for the 1 ∆ u state than MRexpT.

Nevertheless, in view of the complexity of the N 2 system with all its difficulties and traps this study can be regarded as a successful application of multi-reference coupled cluster methods to problems which were accessible mainly with MRCI and CASPT2 based methods so far. We also point out that the reported degeneracy errors of order 0.1 mE H are much smaller than the typical errors in the MRCI correlation energy with respect to full CI. Additionally, by correlating a larger number of electrons this relation will improve substantially in favor of the Further investigations of the origin of the degeneracy errors are to be made. As we expect many of the observed issues with MRexpT and SRMRCC to appear with other MRCC approaches as well an analogous investigation of N 2 , e.g. for MkMRCC and BWMRCC, would be very interesting. 
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TABLE I :

 I Orbital generation: Ionized (symmetry conserving start guess) SCF, 1 7 Σ + u SCF and X 1 Σ + g full CI energies in Hartree, [10s4p]/(3s2p) basis set, R in a. u.

	5	-96.298 505 -106.245 291 -108.350 870
	1.75	-97.545 227 -107.150 180 -108.849 522
	2	-97.734 893 -107.639 325 -109.003 625
	2.25	-98.376 313 -107.970 004 -109.013 599
	2.5	-98.756 136 -108.226 199 -108.970 907
	3	-99.284 824 -108.530 035 -108.870 370
	3.5	-99.653 723 -108.665 398 -108.811 713
	4	-99.935 011 -108.723 696 -108.791 925
	4.5	-100.159 563 -108.747 964 -108.787 315
	5	-100.343 670 -108.757 798 -108.786 287
	7.5	-100.917 665 -108.764 118 -108.785 682
	10	-101.213 222 -108.764 102 -108.785 588
	20	-101.661 288 -108.764 102 -108.785 588
	100	-102.021 159 -108.764 102 -108.785 588

TABLE III :

 III Energy differences of SOMRCI with respect to FCI in micro Hartree, [10s4p]/(3s2p) basis set, R in a. u.

	4 S + 4 S	4 S + 2 D	4 S + 2 P	2

TABLE IV :

 IV 

Energy differences of MRexpT with respect to FCI in micro Hartree, [10s4p]/(3s2p) basis set, R in a. u.

TABLE V :

 V Energy differences of SRMRCC with respect to FCI in micro Hartree, [10s4p]/(3s2p) basis set, R in a. u.

TABLE VI :

 VI Number of reference configurations having a certain number of open shells as well as number of determinants and CSFs for the 3 ∆u and the 1 ∆u states close to the equilibrium geometry

		No. of ref. conf.
	No. of	3 ∆u	1 ∆u
	open shells B1u Au B1u Au
	0	0 0	0 0
	2	18 12	18 12
	4	0 4	0 4
	6	1 0	1 0
	dets.	56 48	56 48
	CSFs	26 24	23 20

  Table VI shows the open shell structure of the two calculated ∆ states for their two D 2h components. Table VI is to be read as follows: For the B 1u component of the 3 ∆ u state (second column) there are 18 configurations having 2 open shells while there is only one configuration having six open shells. The reference space consists of 56 determinants corresponding to 26 CSFs (the numbers of CSFs in the last line differs for the triplet and singlet state due to the different spin eigenfunction degeneracy at a given multiplicity).
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