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By using methods of computer-aided geometric design (CAGD), we compute explicitly the excluded area for a pair of non-convex molecules obtained by moving a disk of radius h on a circular arc of radius R and amplitude 2α: they are referred to as boomerangs or horseshoes, depending on the value of α. As a result, the excluded area always attains its absolute minimum when the molecules are antiparallel, instead of parallel, a feature that makes them a good candidate to study shape polarity effects in steric interactions. Although the excluded area is in general a rather complicated function of the relative orientation, with α and η := h/R acting as parameters, when η 1 a remarkably simple formula is obtained. In this limit, the anisotropic part of the excluded area is independent of η.

I. INTRODUCTION

The excluded region E for a pair of molecules M and M conceived as rigid bodies is the region of space that is unaccessible to one of them (e.g. M ) because of the presence of M. To find E one has to track the trajectory of a reference point O rigidly connected to M when M glides on M and so: a) it has a fixed orientation with respect to the (fixed) molecule M and b) it possesses at least a point of its boundary ∂M in contact with a point of the boundary ∂M of M. The volume of the excluded region, shortly the excluded volume, is independent of the choice of O since the volume measure is invariant under translations. The excluded volume has an important physical meaning since it is proportional to the second virial coefficient in the expansion of the equation of state in powers of the density, under the hypothesis that the molecules interact through the hard-core potential V h.c.

V h.c. (d) = 0 if d > 0 +∞ if d = 0
where d is the distance between M and M . While tracking the excluded region and computing the excluded volume for two spherical molecules of radii R and R is easy-E is a sphere with radius R + R -and so V (E) = 4π 3 (R + R ) 2 , things become intricated when the molecular shapes are less symmetric, as in the case of liquid-crystalline compounds.

To explain the isotropic-nematic transition in colloidal suspensions forming a lyotropic liquid crystal Onsager computed explicitly the excluded volume for a pair of cylindric molecules in the now classical paper [START_REF] Onsager | The effects of shape on the interaction of colloidal particles[END_REF]. Although the predictions were later improved by Mayer-Saupe approach which completely neglects steric contributions in favour of dispersion interactions, Onsager's approach has been applied to more realistic nematogenic molecules. An early generalization was the analytic computation of E for a pair of ellipsoids of revolution by Isihara [START_REF] Isihara | Determination of molecular shape by osmotic measurement[END_REF] through a format that relies on classical mathematical work on convex geometry, also used by Kihara [START_REF] Kihara | Virial coefficients and models of molecules in gases[END_REF] who obtained the formal expression of the excluded volume for a pair of equal convex bodies. A step forward was moved by Tjipto-Margo and Evans [START_REF] Tjipto-Margo | The Onsager theory of the isotropic-nematic liquid-crystal transition: biaxial particles in uniaxial phases[END_REF] who obtained a closed form for the excluded volume of biaxial ellipsoids which, at variance with Isihara's case, are only endowed with D 2h , instead of D ∞h , symmetry. Both Kihara's and Tjipto-Margo and Evans' computations have been simplified by Singh and Kumar [START_REF] Singh | Molecular fluids and liquid crystals in convex-body coordinates systems[END_REF], to which the reader is referred for a self-consistent account of convexbody coordinates. Another avenue has been followed by Mulder who computed explicitly the excluded volume for spheroplatelets [START_REF] Mulder | Solution of the excluded volume problem for biaxial particles[END_REF] and spherocuboids [START_REF] Mulder | The excluded volume of hard sphero-zonotopes[END_REF]. In his computations the bodies in contact are viewed as the Minkowski sum of other bodies, a property that makes the powerful techniques of convex-body analysis work efficiently. In the past decade, however, the hypothesis of convex nematogenic molecules became untenable to study compounds formed, for instance, by V -shaped molecules. To tackle the technical problem of computing the excluded volume for a pair of non convex V -shaped molecules, Mulder et al. [START_REF] Teixeira | Biaxial nematic order in the hard-boomerang fluid[END_REF] resorted to interpolation. Precisely, they computed the excluded volume only on a finite set of configurations and used the results to interpolate the excluded volume when the relative orientation is arbitrary.

In [START_REF] Mulder | The excluded volume of hard sphero-zonotopes[END_REF] Mulder proved a theorem that relates the excluded region E to the Minkowski sum of M and M , where M is obtained from M by a central inversion about the reference point O . This theorem is not limited to convex bodies, and it was known in a totally different community, namely that of computer-aided geometric design (CAGD, in short): see, e.g. [START_REF] Lee | Polynomial/rational approximation of Minkowski sum boundary curves[END_REF]. In fact, excluded regions have been widely studied for the past three decades [START_REF] Lozano-Pérez | Spatial planning: a configuration space approach[END_REF], since they are important in problems of robot motion-planning. It should be noted that the main concern it the CAGD community is not the explicit computation of the excluded volume V (E), but a precise identification of the boundary ∂E of 2 the excluded region. However, since the restriction to convex shapes would be too narrow for realistic applications in CAGD, several attempts have been made to extract information on E when the interacting-or, in this context, colliding-bodies fail to be convex. In particular, it was realized that the boundary of the Minkowski sum M ⊕ M of two bodies M and M is a subset of the convolution surface ∂M * ∂M of their boundaries ∂M and ∂M which is obtained by adding points on ∂M to points on ∂M that share the same unit normal vector. When M and M are convex, the boundary of M ⊕ M coincides with ∂M * ∂M while, when convexity is not guaranteed, the former set is contained in the latter and can be recovered through a trimming procedure that, roughly speaking, amounts to remove self-intersections and/or internal contours from the convolution surface. As a matter of fact, lot of work has been done to propose numerical algorithms to handle the trimming procedure (see, e.g. [START_REF] Blackmore | Trimming swept volumes[END_REF], [START_REF] Hass | Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme[END_REF]).

In this paper we apply the CAGD techniques outlined in Sec. II to compute the excluded area for a pair of nonconvex planar molecules. The choice of a two-dimensional context is twofold. First, it is easier to determine convolution curves rather than convolution surfaces: we should keep in mind that in our context we need to compute the excluded area for any relative orientation of M and M and this in general leads to a long distinction of subcases that are more difficult to handle in three-dimensions. Moreover, in the liquid crystal literature there has been recently a surge of interest for two-dimensional systems that can be used to mimic the behaviour of liquid crystals confined between two close, parallel walls. The influence of molecular shapes upon the the orientational transition in an ensemble of two-dimensional hard rod fluids has been stressed in [START_REF] Schlacken | Orientational transitions of two-dimensional hard rod fluids[END_REF] where, using a scaled particle theory, it was proved that changing the length-to-width ratio of hard rectangles makes the isotropic-nematic transition being replaced by a transition in which the orientational order possesses a fourfold symmetry axis. The rich variety of phase transitions in two-dimensional systems has been checked recently by experiments [START_REF] Zhao | Nematic and almost-tetratic phases of colloidal rectangles[END_REF] and simulations [START_REF] Triplett | Monte Carlo simulation of two-dimensional hard rectangles: Confinement effects[END_REF]. Here, in Section III, we illustrate in detail the computations of the excluded area for a family of non-convex molecules that is a direct generalization of the discorectangles studied in [START_REF] Martinez-Ratón | Effect of particle geometry in two-dimensional liquid crystals[END_REF] where the excluded area was employed to build an interaction potential. Strictly speaking, we study two subfamilies: the former is formed by two-dimensional boomerangs obtained by moving the center of a disk of radius h along a circular arc of radius R > 2h that subtends an angle of amplitude 2α < π (see Fig. 1a).

The latter is formed by horseshoes that differ from boomerangs only because 2α > π (Fig. 1b). We examine in detail the different expressions of the excluded area that emerge on varying both α and the relative orientation. Although in general the excluded area is a complicated function of the relative orientation and of the geometric parameters α and η := h/R, it boils down to a simple expression in the limit when η 1. The molecules considered in this paper also lack of central symmetry. This makes them a natural candidate to measure the shape polarity effect recently studied in [START_REF] Bisi | Polar steric interactions for V-shaped molecules[END_REF]. Here it was shown that the excluded volume for a pair of equal molecules that fail to be centro-symmetric has its absolute minimum when the molecules are anti-parallel, instead of parallel. As remarked in [START_REF] Bisi | Polar steric interactions for V-shaped molecules[END_REF] shape polarity survives in a three-dimensional setting, but it is stronger in two-dimensions. By computing the excluded area for horseshoes we prove that, while lack of convexity can make shape polarity effects more evident, lack of symmetry suffices to promote shape polarity in steric interactions. In fact, we explore horseshoes mainly to illustrate the relative importance that lack of central symmetry and lack of convexity have on shape polarity.

The main results of the technical computations shown in Section III are discussed in Section IV. As envisaged in [START_REF] Bisi | Polar steric interactions for V-shaped molecules[END_REF], the existence of polar steric interactions could promote the formation of an antiferromorphic smectic phase like CP A or SP A phases reproduced, for instance, in computer simulations [START_REF] Lansac | Phase behaviour of bent-core molecules[END_REF] where the contribution of steric interaction was recognized as crucial. The explicit formulae for the excluded area reported here, in particular those for slender molecules, could be the starting point to build a two-dimensional Onsager model in the spirit of [START_REF] Martinez-Ratón | Effect of particle geometry in two-dimensional liquid crystals[END_REF]. A conclusive section and a technical appendix containing some ancillary computations close the paper.

II. EXCLUDED VOLUME, MINKOWSKI SUMS, AND CONVOLUTIONS OF GEOMETRIC OBJECTS

In this section we collect the definitions and the results employed in the paper to obtain analytic expressions for the excluded area for a pair of congruent, non-convex molecules. We start by defining the Minkowski sum of two sets A and B.

Definition II.1 Given two sets A and B belonging to a three-dimensional vector space, their Minkowski sum is the set There is an intimate relation between the Minkowski addition of two sets and their excluded region E(A, B) that can be formalized by the following theorem [START_REF] Mulder | The excluded volume of hard sphero-zonotopes[END_REF] Theorem II.1 Let A and B two sets, and let

A ⊕ B := {a + b| a ∈ A and b ∈ B} .
B := {b| -b ∈ B} (II.1)
be the Minkowski inverse of B with respect to its reference point O . The set E(A, B) is obtained by a translation of A B := A ⊕ ( B) and, in particular,

V [E(A, B)] = V (A B)
where V (A B) is the volume bounded by the set A B, called the Minkowski difference of A and B.

The importance of this theorem in excluded-volume computations was stressed only recently by Mulder in [START_REF] Mulder | The excluded volume of hard sphero-zonotopes[END_REF], to which we refer the reader for a proof. It should be noted, however, that this result has been known for a long time in the community of CAGD. In particular, a characterization of the excluded region for sets in R 2 in terms of their Minkowski sum appeared in [START_REF] Lozano-Pérez | Spatial planning: a configuration space approach[END_REF] and [START_REF] Bajaj | Generation of configuration space obstacles: the case of moving algebraic curves[END_REF]. It is important to note that Theorem II.1 is not restricted to convex bodies.

However, when one of the bodies fails to be convex, the explicit determination of ∂(A ⊕ B) becomes rather intricate and, in fact, there is no general analytic procedure to obtain it. Despite of this, the connection between the Minkowski sum of two sets and their convolution surface can be exploited. Given two sets A and B, let ν A and ν B denote the fields of the outer unit normals of ∂A and ∂B. Then, the convolution surface ∂A * ∂B of ∂A and ∂B is defined as the set [START_REF] Peternell | Minkowski sum boundary surfaces of 3D-objects[END_REF] ∂A

* ∂B := {a + b| a ∈ ∂A, b ∈ ∂B, ν A (a) = ν B (b)} . (II.2)
In two space-dimensions we can define the convolution curve of two curves A and B in a completely analogous way [START_REF] Lee | Polynomial/rational approximation of Minkowski sum boundary curves[END_REF][START_REF] Bajaj | Generation of configuration space obstacles: the case of moving algebraic curves[END_REF]. If the sets A and B are convex, ∂(A ⊕ B) coincides with ∂A * ∂B, but in general we can only say that

∂(A ⊕ B) ⊆ ∂A * ∂B (II.3)
since the convolution set can have internal boundaries and self-intersections that do not appear in the Minkowski sum. Hence, as soon as the convolution set of A and B has been obtained, a trimming procedure is needed to remove the spurious arcs that do not enter the set ∂(A ⊕ B). It is precisely this trimming procedure which is difficult to implement analytically while, on the other hand, several numerical algorithms have been proposed (see, e.g. [START_REF] Blackmore | Trimming swept volumes[END_REF], [START_REF] Hass | Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme[END_REF]). Given a point a on a closed surface S or on a closed curve C, the map N : a → ν(a) is the Gauss map of S or C at a and so, by equation (II.2), to obtain the convolution set we need to identify pairs of points on ∂A and ∂B at which the Gauss maps attain one and the same value. Two patches P A and P B belonging to ∂A and ∂B, respectively, are said to be compatible [START_REF] Lee | Polynomial/rational approximation of Minkowski sum boundary curves[END_REF] if there is a bijective correspondence that assign to each point a ∈ P A a point b ∈ P B such that N (a) = N (b). Hence, compatible patches will contribute to the set ∂A * ∂B. In two space dimensions, let P ∈ ∂A and Q ∈ ∂B be two points on compatible arcs C i ⊂ ∂A and K j ⊂ ∂B at which N (P ) = N (Q). If ∂A and ∂B are parameterized by t and τ , respectively, and t 0 is the value of t at P , the value of τ at Q can be written as τ = τ (t 0 ). Then, the point

(P * Q)(t 0 ) := P (t 0 ) -O + Q(τ (t 0 )) -O
belongs to the convolution curve ∂A * ∂B. Building the map t → τ (t) requires a knowledge of the curvature of both ∂A and ∂B. However, in the problem we are concerned with the compatible arcs are circles and so τ (t) is simply a shift: τ (t) = t + t 0 . The convolution curve has been parameterized by the same parameter t used for ∂A but, clearly, one could work with the inverse map τ → τ (t) and parameterize the convolution curve in terms of τ . The curve that shares the same parameter with the convolution curve is called the base curve. The choice of the base curve is a matter of convenience, and it can vary when different pairs of compatible arcs are considered.

After these remarks, we outline the procedure to compute the excluded area for two-dimensional molecules M and M in four steps.

1. For a given relative orientation, we identify the arcs on ∂M and ∂M that share the same Gauss map.

2. Joining together the arcs found at step 1, we build the convolution curve ∂M * ∂M .

3. We remove from ∂M * ∂M both internal contours and self-intersections to obtain the set ∂(M ⊕ M ).

4. We compute the area enclosed by ∂(M ⊕ M ) which, by Theorem II.1, is the excluded area of M and M .

In the following sections we apply this program to a pair of two-dimensional boomerangs or horseshoes as those shown in Fig. 1. In the {e x , e y }-plane we consider a circular arc A 0 B 0 of radius R, centered at a point O and subtending an angle 2α (Fig. 1). We introduce a reference molecule M 0 bounded by: a) two concentric circular arcs C 0 1 and C 0 3 centered at O, with radius Rh and R + h, both subtending an angle 2α and b) two semicircles C 0 2 and C 0 4 of radius h, centered at A 0 and B 0 , respectively: see Fig. 2.

We first determine the maximum value α M of α compatible with the absence of self-intersections in the profile of M 0 . This is easily obtained by imposing that two circles of radius h centered at A 0 = (-R sin α, R cos α) and B 0 = (R sin α, R cos α) are mutually tangent. A straightforward computation shows that this occurs when

α = α M := π -arcsin( √ η) ,
where we have introduced the dimensionless parameter

η := h R (III.1)
that ranges the interval (0, 1 2 ). Hereafter, we rescale lengths to R. To exploit the symmetry with respect to molecules' exchange, it is expedient to consider M and M as images of M 0 under two rotations Q(e z , χ) by suitable angles χ about the e z := e x × e y axis passing through O: precisely, M is the image of M 0 under Q(e z , -ϑ/2) and M is the image of M 0 under Q(e z , ϑ/2). Hence, ϑ ∈ [0, π] is the relative angle between the molecules M and M . By orienting M counterclockwise, its arcs C i can be parameterized as

C 1 : (P -O)(t) = (1 + η)[-sin(t -α - ϑ 2 )e x + cos(t -α - ϑ 2 )e y ],
t ∈ [0, 2α] (III.2)

C 2 : (P -A)(t) = η[-sin(t + α - ϑ 2 )e x + cos(t + α - ϑ 2 )e y ], t ∈ [0, π] (III.3) C 3 : (P -O)(t) = (1 -η)[-sin(-t + α - ϑ 2 )e x + cos(-t + α - ϑ 2 )e y ],
t ∈ [0, 2α] (III.4)

C 4 : (P -B)(t) = η[-sin(π + t -α - ϑ 2 )e x + cos(π + t -α - ϑ 2 )e y ],
t ∈ [0, π] , (III.5)

where A -O, B -O, and the arcs C i are the images of A 0 -O, B 0 -O and the arcs C 0 i under Q(e z , -ϑ 2 ). We note that when M 0 is oriented counterclockwise, the outer unit normal vectors of C 0 i rotate counterclockwise along the convex arcs but clockwise along the concave arc (see Fig. 3).

The arguments of the trigonometric functions in equations (III.2-III.5) might look awkward. We chose the keep one and the same formatsin(•)e x + cos(•)e y to make comparisons between the Gauss maps of different arcs easier. Similarly, we parameterize the arcs forming the molecule M as

K 1 : (P -O)(t) = (1 + η)[-sin(t -α + ϑ 2 )e x + cos(t -α + ϑ 2 )e y ],
t ∈ [0, 2α] (III.6)

K 2 : (P -A )(t) = η[-sin(t + α + ϑ 2 )e x + cos(t + α + ϑ 2 )e y ],
t ∈ [0, π] (III.7)

K 3 : (P -O)(t) = (1 -η)[-sin(-t + α + ϑ 2 )e x + cos(-t + α + ϑ 2 )e y ],
t ∈ [0, 2α] (III.8)

K 4 : (P -B )(t) = η[-sin(π + t -α + ϑ 2 )e x + cos(π + t -α + ϑ 2 )e y ],
t ∈ [0, π] , (III.9)

where A -O, B -O, and the arcs K i are the images of A 0 -O, B 0 -O and the arcs

C 0 i under Q(e z , ϑ 2 
). Clearly, We now determine the convolution curve ∂M * ∂M of ∂M = ∪ 4 i=1 C i and ∂M = ∪ 4 i=1 K i from which we will extract information on the boundary of the Minkowski sum ∂(M ⊕ M ) and, then, on the excluded area between M and M . To understand our procedure, we focus on the case α ∈ [0, π 4 ] and ϑ ∈ [0, 2α]. The crosses in Fig. 4 illustrate the Gauss maps on the arcs of two molecules rotated by an angle ϑ.

A -O = [-sin(α -ϑ 2 )e x + cos(α -ϑ 2 )e y ] B -O = [sin(α + ϑ 2 )e x + cos(α + ϑ 2 )e y ] A -O = [-sin(α + ϑ 2 )e x + cos(α + ϑ 2 )e y ] B -O = [sin(α -ϑ 2 )e x + cos(α -ϑ 2 )e y ] .
The sets N (C 1 ), ..., N (C 4 ) are the angles ∠V 1 OV 2 , ∠V 2 OV 4 , ∠V 4 OV 3 , and ∠V 1 OV 3 , respectively. On the other hand, the sets N (K 1 ), ..., N (K 4 ) are the angles ∠V 1 OV 2 , ∠V 2 OV 4 , ∠V 4 OV 3 , and ∠V 1 OV 3 , respectively. When ϑ ∈ [0, 2α] the compatible set of C 1 and K 1 is the arc ∠V 1 OV 2 of amplitude 2αϑ. Using K 1 as a base curve, t ∈ [0, 2αϑ] along the compatible set. Similarly, the compatible set of C 2 and K 1 is the arc ∠V 2 OV 2 of amplitude ϑ along which t ∈ [0, ϑ], if C 2 is taken as the base curve. By repeating such comparisons for all possible pairs of arcs, the convolution curve can be retraced directly.

As a fact, the sets that enter the convolution curve depend on the values of α ∈ [0, α M ] and ϑ ∈ [0, π]. We distinguish four cases, according to whether α

∈ [0, π 4 ], α ∈ [ π 4 , π 2 ], α ∈ [ π 2 , 3π 4 ] and α ∈ [ 3π 4 , α M ]. A. Boomerangs I: α ∈ [0, π 4 ]
In this case, the following regimes exist, according to the value of ϑ: ϑ

∈ [0, 2α], ϑ ∈ [2α, π -2α], ϑ ∈ [π -2α
, π]: the last interval will be split into three subintervals, as explained later.

1. ϑ ∈ [0, 2α]
We list here the arcs that contribute to the convolution curve ∂M * ∂M , obtained through the procedure sketched in Fig. 4. We denote the compatible set

C i * K j of C i and K j as C ij : in general C ij = C ji , if i = j.
Since the molecules are formed only by circular arcs, C ij are circular arcs too. The second and the third column in the subsequent tables contain the radii of C ij , scaled to R, and their centers. The fourth and the fifth columns show the values of t along C ij and the base curve chosen to parameterize it. The choice of the base curve was made according to the following criteria: when a concave arc is involved, the base curve always coincides with the convex segment; if no concave segment is involved in C ij , the base curve is the arc that allows parameterizing C ij with t starting from 0: this criterion has already been followed in the example of Fig. 4. The explicit representation of the arcs C ij is given in Appendix A. arc radius center t base curve

C 11 2(1 + η) O [0, 2α -ϑ] K 1 (t) C 14 1 + 2η B [0, ϑ] C 1 (t) C 21 1 + 2η A [0, ϑ] C 2 (t) C 22 2η A + A [0, π -ϑ] K 2 (t) C 23 2η -1 A [π -2α + ϑ, π] C 2 (t) C 24 2η A + B [0, 2α -ϑ] K 4 (t) C 32 2η -1 A [0, 2α] K 2 (t) C 34 2η -1 B [0, 2α -ϑ] K 4 (t) C 42 2η B + A [0, 2α + ϑ] C 4 (t) C 43 2η -1 B [ϑ, 2α + ϑ] C 4 (t) C 44 2η B + B [0, π -ϑ] K 4 (t)
Arcs like C 13 , C 31 and C 33 are excluded because either the concave segment has larger curvature than the convex one (C 13 , C 31 ) or both the segments are concave (C 33 ). Hence, as proved in [START_REF] Lee | Polynomial/rational approximation of Minkowski sum boundary curves[END_REF], they cannot contribute to the boundary of the Minkowski sum ∂(M ⊕ M ). We note that this property is peculiar of the two-dimensional setting and cannot be extended to three-dimensional problems. In the present case, the segments C 23 , C 24 and C 34 should be trimmed since they are inner contours of the convolution curve and so cannot contribute to ∂(M ⊕ M ). Finally, to account correctly for the convexity of the arcs C 3j and C i3 we have formally considered the radii of C 3 and K 3 as negative. The coordinate system we chose makes it possible to show that the pairs (C 11 , C 42 ), (C 14 , C 21 ), (C 44 , C 22 ), and (C 43 , C 32 ) are symmetric with respect to the y-axis. This is indeed a general property that does not depend on the specific values of α or ϑ and that permits focussing attention on the reduced boundary R ⊕ defined as the subset of ∂(M ⊕ M ) where x ≥ 0. Clearly, to obtain ∂(M ⊕ M ) we paste R ⊕ and its symmetric image with respect to the y-axis. The area A enclosed by the set ∂(M ⊕ M ) is a function A = A(α, ϑ, R, h) and we compute its dimensionless counterpart A(α, ϑ, η) := A(α, ϑ, R, h)/R 2 . By Theorem II.1, A(α, ϑ, η) is the excluded area for M and M when their relative orientation is πϑ. To compute A(α, ϑ, η), we decompose the reduced boundary R ⊕ as shown in Figure 5.

Since the area bounded by a circular segment of radius r subtending an angle β is

Sett(r, β) = r 2 2 [β -sin β] (III.11)
and the area of a trapezium of height h i and bases b i , b i+1 is

T (h i , b i , b i+1 ) = h i 2 (b i + b i+1 ) (III.12)
we conclude that

A(α, ϑ, η) = 2[ 1 2 Sett(2(η + 1), 2α -ϑ) + Sett(1 + 2η, ϑ) + Sett(2η, π -ϑ) -Sett(2η -1, 2α) + 1 2 Sett(2η, 2α + ϑ) +T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 ) + T (h 3 , b 3 , b 4 )] ,
(III.13) where the minus sign in front of Sett(2η -1, 2α) accounts for the concavity of the segment C 43 . Finally, by setting

x ij := (C ij -O) • e x and y ij := (C ij -O) • e y we also have b 1 = x 14 (ϑ) b 2 = x 14 (0) b 3 = x 44 (0) b 4 = x 43 (ϑ + 2α) (III.14)
and

h 1 = y 14 (ϑ) -y 14 (0) h 2 = y 44 (π -ϑ) -y 44 (0) h 3 = y 43 (ϑ) -y 43 (ϑ + 2α) (III.15)
that can be computed by using the results of Appendix A. Then, it is not difficult to prove that

A(α, ϑ, η) = 2α -ϑ + 2 sin ϑ -sin(2α + ϑ) + 16αη + 4πη 2 . (III.16) 2. ϑ ∈ [2α, π -2α] Figure 5b) shows the set R ⊕ when ϑ ranges in [2α, π -2α].
In the following table, we list the basic properties of the arcs that enter R ⊕ (see also Appendix A for details) arc radius center t base curve

C 24 2η A + B [0, ϑ/2 -α] C 2 (t) C 14 1 + 2η B [0, 2α] C 1 (t) C 44 2η B + B [0, π -ϑ] K 4 (t) C 43 2η -1 B [ϑ, ϑ + 2α] C 4 (t) C 42 2η B + A [α + ϑ/2, 2α + ϑ] C 4 (t)
The area bounded by the set

∂(M ⊕ M ) is A(α, ϑ, η) = 2[ 1 2 Sett(2η, ϑ -2α) + Sett(1 + 2η, 2α) + Sett(2η, π -ϑ) -Sett(2η -1, 2α) + 1 2 Sett(2η, 2α + ϑ) +T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 ) + T (h 3 , b 3 , b 4 )]
(III.17) where now (III. [START_REF] Bajaj | Generation of configuration space obstacles: the case of moving algebraic curves[END_REF] In the limit where R → ∞ and α → 0 in such a way that αR → L/2, the molecules considered here approach a pair of equal discorectangles studied in Ref. [START_REF] Martinez-Ratón | Effect of particle geometry in two-dimensional liquid crystals[END_REF]. In this limit, (III. [START_REF] Bajaj | Generation of configuration space obstacles: the case of moving algebraic curves[END_REF]) is the only expression of the excluded area and, in dimensional units, it tends to 4 sin ϑ(R sin α) 2 + 16αhR + 4πh 2 = 8hL + 4πh 2 + L 2 sin ϑ which is precisely equation ( 4) of [START_REF] Martinez-Ratón | Effect of particle geometry in two-dimensional liquid crystals[END_REF] when we set 2h = σ = σ s and L = L s . When ϑ > π -2α, computations are more intricate since the end-points of some admissible arcs C ij of R ⊕ lie in the interior of ∂(M ⊕ M ), and so the intersections between different arcs C ij are to be computed. It turns out that the set ϑ ∈ [π -2α, π] has to be split into three subsets according to whether ϑ ∈

b 1 = x 14 (2α) h 1 = y 14 (2α) -y 14 (0) (III.
[π -2α, ϑ 1243 ], ϑ ∈ [ϑ 1243 , ϑ 1244 ] or ϑ ∈ [ϑ 1244 , π],
where the values ϑ 1243 and ϑ 1244 are defined as follows. By using the procedure sketched in Fig. 4 the arc C 12 could contribute to R ⊕ when t ∈ [0, ϑπ + 2α]. However, (see Fig. 6) C 12 intersects C 43 at a value t 1243 of t ∈ (0, ϑπ + 2α) until the critical value ϑ 1243 (α, η) of ϑ is attained, at which the arc C 43 lies completely in the interior of R ⊕ . From this value, C 12 intersects the arc C 44 until ϑ attains the value ϑ 1244 (α, η) > ϑ 1243 (α, η). When ϑ ∈ [ϑ 1244 , π], also C 44 lies in the interior of R ⊕ and C 12 intersects the arc C 14 . In the following three tables we summarize the structure of R ⊕ when ϑ ∈ [π -2α, ϑ 1243 ], ϑ ∈ [ϑ 1243 , ϑ 1244 ], and ϑ ∈ [ϑ 1244 , π], respectively. The explicit computations of these critical values of ϑ as well as of the limits t 1243 , t 4312 , t 1244 , t 4412 , t 1214 , t 1412 are shown in Appendix A: see equations (A.5), (A.6), (A.11), (A.12), (A.15), and (A. [START_REF] Martinez-Ratón | Effect of particle geometry in two-dimensional liquid crystals[END_REF]). arc radius center t base curve

C 24 2η A + B [0, ϑ/2 -α] C 2 (t) C 14 1 + 2η B [0, 2α] C 1 (t) C 44 2η B + B [0, π -ϑ] K 4 (t) C 43 2η -1 B [ϑ, t 4312 ] C 4 (t) C 12 1 + 2η A [0, t 1243 ] C 1 (t) C 42 2η A + B [π -1 2 (ϑ + 2α), 2π -(ϑ + 2α)] K 2 (t)
The area enclosed by the set ∂(M ⊕ M ) is given by

A(α, ϑ, η) = 2[ 1 2 Sett(2η, ϑ -2α) + Sett(1 + 2η, 2α) + Sett(2η, π -ϑ) -Sett(2η -1, t 4312 -ϑ) + Sett(1 + 2η, t 1243 ) + 1 2 Sett(2η, 2π -(2α + ϑ)) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 ) + T (h 3 , b 3 , b 4 ) + T (h 4 , b 4 , b 5 )] (III.20) where now b 4 = x 43 (t 4312 ) b 5 = x 12 (0) h 3 = y 43 (ϑ) -y 43 (t 4312 ) h 4 = y 12 (t 1243 ) -y 12 (0) . (III.21)
The explicit expression of the excluded area could be written but it would not be very telling. When attention is restricted to the case η 1, the approximate excluded area takes the form

A(α, ϑ, η) = 2(ϑ + 2α -π) + 2 sin ϑ + 2 cos ϑ sin 2α + 16αη + O(η 2 ) . (III.22) 4. ϑ ∈ [ϑ4312, ϑ4412]
When ϑ exceeds the value ϑ 4312 , the arc C 43 lies completely in the interior of R ⊕ and the arc C 12 intersects the arc C 44 as shown in Fig. 7a).

The admissible values of t along C 44 range the interval [0, πϑt 4412 ] while along C 12 t ranges the interval [0, t 1244 ], where the values of t 1244 and t 4412 are given in equations (A.11) and (A.12) of Appendix A. The excluded area is now given by

A(α, ϑ, η) = 2[ 1 2 Sett(2η, ϑ -2α) + Sett(1 + 2η, 2α) + Sett(2η, π -ϑ -t 4412 ) + Sett(1 + 2η, t 1244 ) + 1 2 Sett(2η, 2π -(2α + ϑ)) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 ) + T (h 3 , b 3 , b 5 )] (III.23)
where

b 3 = x 44 (t 4412 ) h 2 = y 44 (π -ϑ) -y 44 (t 4412 ) h 3 = y 12 (t 1244 ) -y 12 (0) . (III.24)
As discussed in the Appendix, when η → 0 and α < π 2 , then

ϑ 4312 π -2η tan α + O(η 2 ) ϑ 4412 π -2η tan α + O(η 2 )
so that, if we keep only the linear terms in η, ϑ 4312 and ϑ 4412 coincide and this interval can be skipped. For future use, we define the angle

ϑ a (α, η) := π -2η tan α . (III.25)
Clearly this analysis is valid only if α is not close to π 2 . In fact, when α > π 2 and η → 0 the angles ϑ 4312 and ϑ 4412 approach the limit value 2(πα) and so at α = π 2 ϑ 4312 and ϑ 4412 have a knee where they depart from π like √ η. Finally, when ϑ ≥ ϑ 4412 as given by equation (A.14), also the arc C 44 lies completely in the interior of R ⊕ and we need the intersection between C 12 and C 14 (Fig. 7b). On C 12 , t ∈ [0, t 1214 ] and on C 14 , t ∈ [t 1412 , 2α] (see equations (A.15) and (A.16)).

In this case the excluded area is given by ) and neglecting powers in η higher than one, we obtain a simple approximation A 0 for the excluded area:

A(α, ϑ, η) = 2[ 1 2 Sett(2η, ϑ -2α) + Sett(1 + 2η, 2α -t 1412 ) + Sett(1 + 2η, t 1214 ) + 1 2 Sett(2η, 2π -2α -ϑ) +T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 5 )] (III.
A 0 (η, α, θ) :=          2α -ϑ + 2 sin ϑ -sin(2α + ϑ) + 16αη ϑ ∈ [0, 2α] 4 sin ϑ sin 2 α + 16αη ϑ ∈ [2α, π -2α] 2(ϑ + 2α -π) + 2 sin ϑ + 2 cos ϑ sin 2α + 16αη ϑ ∈ [π -2α, ϑ a (α, η)] 4α + 2 sin 2α cos ϑ + 16αη ϑ ∈ [ϑ a (α, η), π] .
(III.29)

B. Boomerangs II: α ∈ [ π 4 , π 2 ] When α ∈ [ π 4 , π 2 
] and so π -2α < 2α, it can be checked that, when ϑ ∈ [0, π -2α], the reduced boundary R ⊕ coincides with that obtained in Subsection III A 1. Moreover, ϑ 4312 > 2α and the results for ϑ ∈ [2α, π] are the same as in Subsections III A 3-III A 5. New computations are needed only when ϑ ∈ [π -2α, 2α] where the reduced boundary R ⊕ is formed by the arcs arc radius center t base curve

C 11 2(1 + η) O [α -ϑ 2 , 2α -ϑ] K 1 (t) C 14 1 + 2η B [0, ϑ] C 1 (t) C 44 2η B + B [0, π -ϑ] K 4 (t) C 43 2η -1 B [ϑ, t 4312 ] C 4 (t) C 12 1 + 2η A [0, t 1243 ] C 1 (t) C 42 2η B + A [(π -α) -ϑ 2 , 2(π -α) -ϑ] K 2 (t)
where t 1243 and t 4312 are given by equations (A.5) and (A.6). The excluded area is then given by

A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ) + Sett(2η, π -ϑ) -Sett(2η -1, t 4312 -ϑ) +Sett(1 + 2η, t 1243 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 ) +T (h 3 , b 3 , b 4 ) + T (h 4 , b 4 , b 5 )] (III.30)
where the bases and the heights of the trapezia are given in equations (III.14), (III.15), and (III.21). In the limit when η 1 it is possible to check that

A(α, ϑ, η) = 6α -2π + ϑ + 2 sin ϑ + sin(ϑ + 2α) + 16αη + O(η 2 ) . (III.31)
The excluded area within this approximation is then When α exceeds π/2, the trimming procedure to obtain the boundary of the Minkowski sum M ⊕ M from the convolution curve ∂M * ∂M becomes more delicate. It is crucial to determine the magnitude of ϑ 4312 and ϑ 4412 as compared to 2απ and 2(πα). To this aim, we impose that ϑ = 2απ or ϑ = 2(πα) solve equations (A.7) or (A.13), respectively. It can be checked that both ϑ 4312 and ϑ 4412 are less than 2(πα), for any value of α and η. On the other hand, ϑ 4312 > 2απ if and only if

A 0 (η, α, θ) :=          2α -ϑ + 2 sin ϑ -sin(2α + ϑ) + 16αη ϑ ∈ [0, π -2α] 6α -2π + ϑ + 2 sin ϑ + sin(ϑ + 2α) + 16αη ϑ ∈ [π -2α, 2α] 2(ϑ + 2α -π) + 2 sin ϑ + 2 cos ϑ sin 2α + 16αη ϑ ∈ [2α, ϑ a (α, η)] 4α + 2 sin 2α cos ϑ + 16αη ϑ ∈ [ϑ a (α,
α < α cr (η) := π 2 + 1 2 arccos(2η) ∈ [ π 2 , 3π 4 ] 
(III.33) whereas ϑ 4412 > 2απ if and only if

α < α * cr (η) := π 2 + 1 2 arccos( η 1 + 2η ) ∈ [ π 2 , 3π 4 
] , (III.34) with α cr < α * cr . A new critical value of ϑ replacing ϑ = ϑ 4312 has to be considered. In fact, when α > π/2 it is possible (see Figure 12) that C 12 becomes tangent to C 44 when ϑ = ϑ * 1244 (α, η) < ϑ 4312 : when this happens, the excluded area suffers a tiny jump, as a function of ϑ.

The angle ϑ * 1244 is defined as the value of ϑ at which the radicand in equation (A.12) vanishes, that is,

ϑ = ϑ * 1244 (α, η) := 2 arctan ν(α) + ν(α) 2 + µ(α) 2 -ω(η, α) 2 µ(α) + ω(η, α) , (III.35)
where we set µ(α) := sin 2 α ν(α) := sin α cos α ω(η, α) := 2η(2η + 1)sin 2 α .

However, the tangency between C 12 and C 44 affects the structure of the convolution curve if (see equation (A.12)) t 4412 := t(ϑ * 1244 ) lies in the interval [0, πϑ] where C 44 belongs to R ⊕ . As can be seen from Fig. 13, ϑ * 1244 ≤ ϑ 4312 and the difference between the two functions is not easy to perceive for most values of α.

1. ϑ ∈ [0, ϑ * 1244 ]
The arcs that contribute to the excluded area are: arc radius center t base curve

C 11 2(η + 1) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [0, ϑ] C 1 (t) C 44 2η B + B [0, π -ϑ] K 4 (t) C 43 2η -1 B [ϑ, t 4312 ] C 4 (t) C 12 1 + 2η A [0, t 1243 ] C 1 (t) C 42 2η B + A [π -α -ϑ 2 , 2(π -α) -ϑ] K 2 (t)
The excluded area is then given by

A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ) + Sett(2η, π -ϑ) -Sett(2η -1, t 4312 -ϑ) +Sett(1 + 2η, t 1243 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 ) + T (h 3 , b 3 , b 4 ) +T (h 4 , b 4 , b 5 )] (III.36)
where the bases and the heights of the trapezia are given by equations (III.14), (III.15), and (III.21). We note that the heights h 2 and h 3 could be negative, as it should be to obtain the correct value of the excluded area. When C 12 and C 44 touch at a point on the set R ⊕ we need to consider values t ∈ [0, t 1244 ] along C 12 and values t ∈ [ϑ, t 4412 ] along C 44 , while C 43 is trapped in the interior of R ⊕ . In this regime, the following arcs contribute to the reduced boundary R ⊕ : arc radius center t base curve

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [0, ϑ] C 1 (t) C 44 2η B + B [t 4412 , π -ϑ] K 4 (t) C 12 1 + 2η A [0, t 1244 ] C 1 (t) C 42 2η B + A [(π -α) -ϑ 2 , 2(π -α) -ϑ] K 2 (t)
where t 1214 and t 1412 are given in equations (A.15) and (A. [START_REF] Martinez-Ratón | Effect of particle geometry in two-dimensional liquid crystals[END_REF]). The excluded area is given by

A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ) + Sett(2η, π -ϑ -t 4412 ) + Sett(1 + 2η, t 1244 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 ) + T (h 3 , b 3 , b 5 )] (III.37)
where equations (III.14), (III.15), (III.21), and (III.24) have been employed too.

3. ϑ ∈ [ϑ4412, 2(π -α)]
The arc C 44 no longer contributes to the set ∂(M⊕M ) and the arcs C 12 and C 14 intersect each other. The reduced boundary R ⊕ is formed by the following arcs arc radius center t base curve

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [t 1412 , ϑ] C 1 (t) C 12 1 + 2η A [0, t 1214 ] C 1 (t) C 42 2η B + A [(π -α) -ϑ 2 , 2(π -α) -ϑ] K 2 (t)
Correspondingly, the excluded area is given by Here the arc C 42 is replaced by the arc C bis 11 with scaled radius 2(1 + η), centered at O, based on the curve C 1 and symmetric about the y-axis. Then, the excluded area is now given by Here we need to distinguish the following regimes, according to whether ϑ ∈ [0,

A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ -t 1412 ) + Sett(1 + 2η, t 1214 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) + T (h 2 ,
On R ⊕ , t ∈ [ ϑ 2 -(π -α), ϑ -2(π -α)] along
C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [t 1412 , ϑ] C 1 (t) C bis 12 1 + 2η A [0, t bis 1214 ] K 2 (t) C bis 11 2(1 + η) O [ ϑ 2 -(π -α), ϑ -2(π -α)] C 1 (
A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ -t 1412 ) + Sett(1 + 2η, t bis 1214 ) + 1 2 Sett(2(1 + η), ϑ -2(π -α)) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 )] (III.
ϑ * 1244 ], ϑ ∈ [ϑ * 1244 , 2α -π], ϑ ∈ [2α -π, ϑ 4412 ], ϑ ∈ [ϑ 4412 , 2(π -α)] or ϑ ∈ [2(π -α), π]. 1. ϑ ∈ [0, ϑ * 1244 ]
The reduced boundary R ⊕ is formed by the arcs arc radius center t base curve

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [0, ϑ] C 1 (t) C 44 2η B + B [0, π -ϑ] K 4 (t) C 43 2η -1 B [ϑ, t 4312 ] C 4 (t) C 12 1 + 2η A [0, t 1243 ] C 1 (t) C 42 2η B + A [π -α -ϑ 2 , 2(π -α) -ϑ] K 2 (

t) and the excluded area is given by

A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ) + Sett(2η, π -ϑ) -Sett(2η -1, t 4312 -ϑ) +Sett(1 + 2η, t 1243 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) +T (h 2 , b 2 , b 3 ) + T (h 3 , b 3 , b 4 ) + T (h 4 , b 4 , b 5 )] .
(III.43)

2. ϑ ∈ [ϑ * 4412 , ϑ4412]
The reduced boundary is formed by the arcs arc radius center t base curve The essential boundary is formed by the arcs arc radius center t base curve

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [0, ϑ] C 1 (t) C 44 2η B + B [t 4412 , π -ϑ] K 4 (t) C 12 1 + 2η A [0, t 1244 ] C 1 (t) C 42 2η B + A [(π -α) -ϑ 2 , 2(π -α) -ϑ] K 2 (t) and the excluded area is A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ) + Sett(2η, π -ϑ -t 4412 ) + Sett(1 + 2η, t 1244 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) + T (h 2 ,
C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [t 1412 , ϑ] C 1 (t) C 12 1 + 2η A [0, t 1214 ] C 1 (t) C 42 2η B + A [π -α -ϑ 2 , 2(π -α) -ϑ] K 2 (t) and the excluded area is A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ -t 1412 ) + Sett(1 + 2η, t 1214 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 5 )] .
(III.45)

4. ϑ ∈ [2(π -α), π]
When ϑ ranges in this interval, the excluded region coincides with that found in Section (III C 4) for ϑ ranging in the same interval, and the excluded area is given by equation (III.41).

E. Horseshoes III

: α ∈ [α cr * , α0]
The lower bound of this interval is the value α cr * of α at which ϑ 4412 = 2απ and the upper bound is the value α 0 of α at which ϑ * 1244 = 0. By use of equation (III.35) we obtain

α 0 := π -arcsin η(2η + 1) . 1. ϑ ∈ [0, ϑ * 1244 ]
The reduced boundary is formed by the arcs arc radius center t base curve

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [0, ϑ] C 1 (t) C 44 2η B + B [0, π -ϑ] K 4 (t) C 43 2η -1 B [ϑ, t 4312 ] C 4 (t) C 12 1 + 2η A [0, t 1243 ] C 1 (t) C 42 2η B + A [π -α -ϑ 2 , 2(π -α) -ϑ] K 2 (

t) and the excluded area is given by

A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ) + Sett(2η, π -ϑ) -Sett(2η -1, t 4312 -ϑ) +Sett(1 + 2η, t 1243 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) +T (h 2 , b 2 , b 3 ) + T (h 3 , b 3 , b 4 ) + T (h 4 , b 4 , b 5 )] (III.46) 2. ϑ ∈ [ϑ * 1244 , ϑ4412]
The essential boundary is formed by the arcs 

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [0, ϑ] C 1 (t) C 44 2η B + B [t 4412 , π -ϑ] K 4 (t) C 12 1 + 2η A [0, t 1244 ] C 1 (t) C 42 2η B + A [π -α -ϑ 2 , 2(π -α) -ϑ] K 2 (t) and the excluded area is A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ) + Sett(2η, π -ϑ -t 4412 ) + Sett(1 + 2η, t 1244 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 ) + T (h 3 , b 3 , b 5 )] .
(III.47)

3. ϑ ∈ [ϑ4412, 2(π -α)]
The essential boundary is formed by the arcs arc radius center t base curve

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [t 1412 , ϑ] C 1 (t) C 12 1 + 2η A [0, t 1214 ] C 1 (t) C 42 2η B + A [π -α -ϑ 2 , 2(π -α) -ϑ] K 2 (t) and the excluded area is A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ -t 1412 ) + Sett(1 + 2η, t 1214 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 5 )] .
(III.48)

4. ϑ ∈ [2(π -α), π]
The essential boundary is formed by the arcs arc radius center t base curve

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [t 1412 , ϑ] C 1 (t) C bis 12 1 + 2η A [0, t bis 1214 ] K 2 (t) C bis 11 2(1 + η) O [ ϑ 2 -π + α, ϑ -2(π -α)] C 1 (t) and the excluded area is A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ -t 1412 ) + Sett(1 + 2η, t bis 1214 ) + 1 2 Sett(2(1 + η), ϑ -2(π -α)) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 )] .
(III.49)

F. Horseshoes IV: α ∈ [α0, αm]
For these values of α, ϑ * 1244 < 0 and so the arc C 43 never enters the reduced boundary. As a result, only three regimes survive. The essential boundary is formed by the arcs arc radius center t base curve

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [0, ϑ] C 1 (t) C 44 2η B + B [t 4412 , π -ϑ] K 4 (t) C 12 1 + 2η A [0, t 1244 ] C 1 (t) C 42 2η B + A [π -α -ϑ 2 , 2(π -α) -ϑ] K 2 (t) and the excluded area is A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ) + Sett(2η, π -ϑ -t 4412 ) + Sett(1 + 2η, t 1244 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 ) + T (h 3 , b 3 , b 5 )] .
(III.50)

2. ϑ ∈ [ϑ4412, 2(π -α)]
The essential boundary is formed by the arcs arc radius center t base curve

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [t 1412 , ϑ] C 1 (t) C 12 1 + 2η A [0, t 1214 ] C 1 (t) C 42 2η B + A [π -α -ϑ 2 , 2(π -α) -ϑ] K 2 (t) and the excluded area is A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ -t 1412 ) + Sett(1 + 2η, t 1214 ) + 1 2 Sett(2η, 2(π -α) -ϑ) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 5 )] .
(III.51)

3. ϑ ∈ [2(π -α), π]
The essential boundary is formed by the arcs arc radius center t base curve

C 11 2(1 + η) O [0, α -ϑ 2 ] K 1 (t) C 14 1 + 2η B [t 1412 , ϑ] C 1 (t) C bis 12 1 + 2η A [0, t bis 1214 ] K 2 (t) C bis 11 2(1 + η) O [ ϑ 2 -(π -α), ϑ -2(π -α)] C 1 (t) and the excluded area is A(α, ϑ, η) = 2[ 1 2 Sett(2(1 + η), 2α -ϑ) + Sett(1 + 2η, ϑ -t 1412 ) + Sett(1 + 2η, t bis 1214 ) + 1 2 Sett(2(1 + η), ϑ -2(π -α)) + T (h 1 , b 1 , b 2 ) + T (h 2 , b 2 , b 3 )] .
(III.52)

IV. RESULTS

By joining the expressions given in equations (III.16), (III. when they are at a relative angle ϕ := πϑ. Figure 8 illustrates the behaviour of the excluded area against ϕ, when η = 10 -2 , and α = π/6 and π/3, respectively. The graphs clearly indicate that the excluded area attains its absolute minimum when the molecules are antiparallel, while the configuration at which the molecules are parallel is only a local minimum. The two minima are separated by a maximum attained at ϕ π 2 . Thus we can say that steric interactions are polar since they distinguish between parallel and antiparallel alignments. Moreover, the fact that the excluded area is minimized when two boomerangs are antiparallel suggests the possibility that an ensemble made of these molecules could exhibit a rich variety of phase transitions: hence, it would be interesting to use the excluded area found here to build a steric interaction potential in the spirit of [START_REF] Martinez-Ratón | Effect of particle geometry in two-dimensional liquid crystals[END_REF] or [START_REF] Schlacken | Orientational transitions of two-dimensional hard rod fluids[END_REF]. In particular, if a scaled particle approach is followed, the excluded area has to be modified to account the different size of the interacting molecules.

Figure 10 shows the excluded area for a pair of horseshoes against the relative orientation ϕ = πϑ, for four values of α, one for each regime considered here. At variance with boomerangs, the difference between the relative minimum at ϕ = 0 and the absolute maximum decreases when the opening angle approaches its upper bound α M . This is not surprising since, when α is close to α M , the molecular morphology hinders the exploration of the concave regions when the molecules are antiparallel. Equivalently, when α → α M the molecules tend to acquire an equatorial symmetry that makes parallel and antiparallel configurations undistinguishable.

Following [START_REF] Bisi | Polar steric interactions for V-shaped molecules[END_REF], to measure the relative magnitude of the minima of the excluded area, we introduce the polarity index defined according to

(η, α) := 3 A(α, 0, η) -A(α, π, η) A(α, 0, η) + A(α, π, η) (IV.1)
where the second argument in A is the value of ϕ and the factor 3 has been chosen to normalize the maximum value of at 1: in the parlance of [START_REF] Bisi | Polar steric interactions for V-shaped molecules[END_REF], (η, α) = I p (0). Figure 11 shows the behaviour of as a function of α ∈ [0, α M ], when η = 10 -2 . As a result, the polarity index does not have a monotonic profile. For boomerangs (α ≤ π

2 ) the polarity index steadily increases from the value (0) = 0 attained for discorectangles that are centro-symmetric molecules. For horseshoes fails to be a monotone function of α but decreases as α approaches α M , attaining the asymptotic value (α M ) = 0 in the limit when η → 0, so that a horseshoe reduces to a circle with no shape polarity. Finally, the absolute maximum of saturates at 1 in the limit when η 1. The analytic piecewise expression of the excluded area for a pair of boomerangs or horseshoes could be difficult to handle. However, the function A 0 defined in equation (III.29) represents a good approximation in the limit when η 1 and so the molecules are slender bodies. Figure 9 shows the graphs of both A(0.1, ϕ, π 6 ) and A 0 (0.1, ϕ, π 6 ). Although η is not exceedingly small, A 0 is still able to capture the essential behaviour of the excluded area. When η = 10 -2 , the two graphs are practically identical. We also note that, at this level of approximation, η and ϕ are weakly coupled through the angle ϑ a (α, η). In particular, a pair of thin boomerangs and a pair of genuine arcs with η ≡ 0 have excluded areas with the same anisotropic part.

V. CONCLUSIONS

We computed analytically the excluded area for a pair of planar, identical molecules that are a generalization of the discorectangles considered in [START_REF] Martinez-Ratón | Effect of particle geometry in two-dimensional liquid crystals[END_REF]. The molecules, named boomerangs or horseshoes, depending on the value of an angular parameter, have two important geometric properties. They are not convex and they lack a center of symmetry. The former feature makes the explicit computation of the excluded area a non-trivial task that was overcome by resorting to techniques employed in CAGD that relate the Minkowski sum of two bodies to their convolution curve. Obtaining the convolution curve requires tracking the behaviour of the Gauss map of the two bodies while extracting information on the Minkowski boundary from the profile of the convolution curve requires a trimming procedure for which at the moment there is no analytic general procedure. We managed to succeed by using a molecular profile formed by piecewise circular arcs.

Lack of central symmetry in the molecules makes it possible to explore shape polarity effects on the excluded area. Precisely, it turns out that the absolute minimum of the excluded area as a function of the relative orientation between the two molecules is attained when the molecules are antiparallel, instead of parallel. Following [START_REF] Bisi | Polar steric interactions for V-shaped molecules[END_REF], we introduced a polarity index to measure the magnitude of this effect. It turned out that the polarity index attains its absolute maximum when 2α π while its absolute minimum 0 is always attained at α = 0 and also at α = α M , when η → 0. This behaviour can be explained by noting that large values of the opening angle mask the concave region bounded by an horseshoe, that cannot be explored by the other molecule. As a result, though the molecules are not centro-symmetric, their asymmetry is hidden.

Clearly this paper opens the ways to several studies. First, it would be interesting to use the analytic expression of the excluded area for a pair of boomerangs or even its approximation (III.29) to explore phase transition by building a density-functional theory, in the spirit of [START_REF] Martinez-Ratón | Effect of particle geometry in two-dimensional liquid crystals[END_REF]. Then, it raises a natural question. Do the techniques employed here work in three space dimensions? By looking again at the CAGD literature ( [START_REF] Hass | Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme[END_REF], [START_REF] Gravesen | Surfaces parametrized by the normals[END_REF]) we gain the impression that, if the molecular shapes are modelled as union of simple patches on which the Gauss map is easily computable, then the task could be successfully pursued, maybe numerically. Another three-dimensional extension that dwells on a different method has been studied in [START_REF] Bisi | Excluded volume for molecules formed by aggregates of spheres[END_REF] where, by resorting to a mixed approach, both analytical and numerical, we are able to obtain the excluded volume for molecules conceived as aggregates of spheres, generalizing the results of [START_REF] Williamson | Excluded volume for a pair of linear chains of tangent hard spheres with an arbitrary relative orientation[END_REF] and [START_REF] Jaffer | The nematic-isotropic phase transition in linear fused hard sphere chain fluids[END_REF] to different molecular morphologies.

However, also remaining in two space dimensions could be of interest. The unusual behaviour of the excluded area as a function of the relative orientation suggests that a study of an ensemble formed by boomerangs could lead to a rich spectrum of phase transitions, especially when the polarity index is high. A density-functional or a scaled particle theory approach could benefit from the knowledge of the explicit formula for the excluded area as provided in the present paper.

APPENDIX A: ARCS FORMING A BOOMERANG

We give here the explicit parameterization of the arcs C ij whose properties were listed concisely in the Tables of Sec. III.

C 11 -O = 2(η + 1)[-sin(t -α + ϑ 2 )e x + cos(t -α + ϑ 2 )e y ];
in some cases a different base curve was required, leading to the arc

C bis 11 -O = 2(η + 1)[-sin(t -α - ϑ 2 )e x + cos(t -α - ϑ 2 )e y ]. C 14 -O = B -O + (1 + 2η)[-sin(t -α - ϑ 2 )e x + cos(t -α - ϑ 2 )e y ] (A.1) 
C 44 -O = (B -O) + (B -O) + 2η[-sin(π + t -α + ϑ 2 )e x + cos(π + t -α + ϑ 2 )e y ] (A.2) C 43 -O = (B -O) + (2η -1)[-sin(π + t -α - ϑ 2 )e x + cos(π + t -α - ϑ 2 )e y ] (A.3) C 42 -O = (B -O) + (A -O) + 2η[-sin(t + α + ϑ 2 )e x + cos(t + α + ϑ 2 )e y ],
where the vectors A -O, A -O, B -O, and B -O are given by equations (III.10). When α < π/4, but ϑ ∈ [2α, π -2α], the arc C 11 is replaced by the arc C 24 given by

C 24 -O = (A -O) + (B -O) + 2η[-sin(t + α - ϑ 2 )e x + cos(t + α - ϑ 2 )e y ],
with base curve given by C 2 . When ϑ exceeds π -2α, the arc C 12 contributes the set ∂(M ⊕ M ). We take C 1 as its base curve, so that

C 12 -O = (A -O) + (1 + 2η)[-sin(t -α - ϑ 2 )e x + cos(t -α - ϑ 2 )e y ]. (A.4)
When K 2 was needed as a base curve, we had to consider the arc 

C bis 12 -O = (A -O) + (1 +
-cos ϑ) = 2η - 1 2 [1 -cos(2α + ϑ)]
which, after little labour, can be reduced to the form

c 43 sin ϑ + b 43 cos ϑ -a 43 = 0 (A.7)
where

a 43 (η, α) := 1 2 (2η -1) cos 2α + 1 2 -2η b 43 (η, α) := 1 2 cos 2α + η - 1 2 c 43 (α) = - 1 2 sin 2α .
and that can be solved by setting x := tan ϑ 2 and using the identities

sin ϑ = 2x 1 + x 2 cos ϑ = 1 -x 2 1 + x 2 . (A.8)
As a result, the acceptable root is

ϑ 4312 (η, α) = 2 arctan c 43 -c 2 43 + b 2 43 -a 2 43 η(cos 2α -1) . (A.9)
When ϑ > ϑ 4312 , the arc C 43 no longer contributes to ∂(M ⊕ M ), and we have to look for C 12 ∩ C 44 . Thus, we first solve In the limit when η → 0, both ϑ 4312 and ϑ 4412 tend to the continuous function

|C 12 (t) -(B -O) -(B -O)| 2 = 4η
ϑ l (α) := π if α ∈ [0, π 2 ] 2(π -α) if α ∈ [ π 2 , π].
To study the behaviour of ϑ 4312 and ϑ 4412 when α < π 2 we set

ϑ 4312 = π -(γ 1 η + γ 2 η 2 )
in equation (A.7) and

ϑ 4412 = π -(λ 1 η + λ 2 η 2 )
in equation (A.10) and expand the resulting equations in powers of η. By setting the coefficients of different powers of η equal to zero we obtain

γ 1 = λ 1 = 2 tan α , γ 2 = -2 tan 3 α , λ 2 = 2 tan α(2 -tan 2 α) .
This approach fails at α = π 2 where both πϑ 4312 and πϑ 4412 behave like √ η, instead of η like in this case. In fact, this is a consequence of the knee that the limit function ϑ l (α) has at α = π 2 . We limit ourselves to point out this feature, but we do not proceed in the computations.

When ϑ > ϑ 4412 also C 44 lies in the interior of M ⊕ M and we have to turn attention to C 12 ∩ C 14 . We first solve 

|C 12 (t) -(B -O)| 2 = (1 + 2η)
O V 2 V 1 V 3 V 4 O V 2 V 1 V 3 V 4 V 2 V 1 V 3 V 4 O V 2 V 1 V 3 V 4 
O V 2 , ∠V 2 O V 4 , ∠V 4 OV 3 ∠V 1 O V 3 .
Finally, in c), the two crosses are superimposed to see the arcs along which the Gauss maps coincide: this happens, for instance, along ∠V 1 OV2 for the arcs C1 and K1, and along ∠V2OV 2 for the arcs C2 and K1. We note that this scenario holds when α ∈ [0, All profiles have the same qualitative behaviour: the excluded area has a plateau that becomes larger and larger when α increases, and then attains it absolute minimum at ϕ = π. On increasing α, the local minimum at ϕ = 0 becomes shallower and shallower. We note that the discontinuity at ϕ = πϑ * 1244 cannot be appreciated on this scale. 

O ′ V ′ 2 V ′ 1 V ′ 3 V ′ 4 O V 2 V 1 V 3 V 4 V ′ 2 V ′ 1 V ′ 3 V ′ 4 O V 2 V 1 V 3 V 4 

  Minkowski sums can be generalized to vector spaces of arbitrary dimension n. To visualize the Minkowski sum of A and B, the following kinematic construction can be of some help. Place the reference point O of B on a point of the boundary ∂A of A and translate B by keeping O along ∂A: the contour of the region spanned by B during this boundary of A ⊕ B.

  18) while b 2 -b 4 and h 2 , h 3 are still given by equations (III.14) and (III.15). With the results shown in Appendix A we obtain A(α, ϑ, η) = 4 sin ϑ sin 2 α + 16αη + 4πη 2 .

7 3

 7 . ϑ ∈ [π -2α, ϑ4312]

5 .

 5 ϑ ∈ [ϑ4412, π]

3 .

 3 b 2 , b 3 ) + T (h 3 , b 3 , b 5 )] . (III.44) ϑ ∈ [ϑ4412, 2(πα)]

1 .

 1 ϑ ∈ [0, ϑ4412]

  19)-or (III.30), if α ∈ [ π 4 , π 2 ]-(III.20), (III.23), and (III.26) we obtain a piecewise expression for the area A(α, ϑ, η) enclosed by the Minkowski sum M⊕M . By Theorem II.1 and since we are in a planar setting, A(α, ϑ, η) also represents the excluded area between the same molecules
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 1243 FIG.1: Sketch of: a) a boomerang and b) a horseshoe. The molecules differ because the angle α is less than π 2 in the former case and larger than π/2 in the latter. Apart from this, both molecules can be obtained by moving the center of a disk of radius h, dashed in both figures, along the dashed circular arc of radius R.

FIG. 4 :

 4 FIG.4:The cross in a) schematically represents the images of the Gauss maps along the arcs of M. The Gauss map N (C1) spans the angle ∠V1OV2; N (C2) spans the π-angle ∠V2OV4; N (C3) spans (clockwise) the angle ∠V4OV3 and N (C 4 ) spans the π-angle ∠V1OV3. The cross in b) conveys the same information for M and so the Gauss maps N (K1),..., N (K4) span, respectively, the angles∠V 1 O V 2 , ∠V 2 O V 4 , ∠V 4 OV 3 ∠V 1 O V 3 .Finally, in c), the two crosses are superimposed to see the arcs along which the Gauss maps coincide: this happens, for instance, along ∠V 1 OV2 for the arcs C1 and K1, and along ∠V2OV 2 for the arcs C2 and K1. We note that this scenario holds when α ∈ [0, π 4 ] and ϑ ∈ [0, 2α].
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 4567383149 FIG.4:The cross in a) schematically represents the images of the Gauss maps along the arcs of M. The Gauss map N (C1) spans the angle ∠V1OV2; N (C2) spans the π-angle ∠V2OV4; N (C3) spans (clockwise) the angle ∠V4OV3 and N (C 4 ) spans the π-angle ∠V1OV3. The cross in b) conveys the same information for M and so the Gauss maps N (K1),..., N (K4) span, respectively, the angles∠V 1 O V 2 , ∠V 2 O V 4 , ∠V 4 OV 3 ∠V 1 O V 3 .Finally, in c), the two crosses are superimposed to see the arcs along which the Gauss maps coincide: this happens, for instance, along ∠V 1 OV2 for the arcs C1 and K1, and along ∠V2OV 2 for the arcs C2 and K1. We note that this scenario holds when α ∈ [0, π 4 ] and ϑ ∈ [0, 2α].
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 810 FIG.10:The dimensionless excluded area A(α, ϕ, η) has been plotted against the relative orientation ϕ = πϑ when η = 0.01, for different values of α that, from bottom to top, bisect each of the intervals [ π 2 , αcr], [αcr, α * cr ], [α * cr , α0], and [α0, αM ]. All profiles have the same qualitative behaviour: the excluded area has a plateau that becomes larger and larger when α increases, and then attains it absolute minimum at ϕ = π. On increasing α, the local minimum at ϕ = 0 becomes shallower and shallower. We note that the discontinuity at ϕ = πϑ * 1244 cannot be appreciated on this scale.
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 111213 FIG.11:The polarity index defined in equation (IV.1) is plotted against α ∈ [0, αM ], when and η = 10 -2 . As a general rule, attains its maximum when α is slightly larger than π 2 . On varying η, no qualitative changes occur in the graph of whose maximum saturates at 1 when η → 0.

  26) where b 2 = x 14 (t 1412 ) h 1 = y 14 (2α)y 14 (t 1412 ) h 2 = y 12 (t 1214 )y 12 (0) .

			(III.27)
	When values η	1 are considered, then
		A(α, ϑ, η) = 4α + 2 sin 2α cos ϑ + 16αη + O(η 2 ).	(III.28)
	Finally, by collecting together equations (III.16), (III.19), (III.22), and (III.28

  C bis 11 . Moreover, the arc C 12 is replaced by C bis 12 that differs from C 12 only for the base curve and along which t ∈ [0, t bis 1214 ]. The reduced boundary is formed by the following arcs:

	arc radius center t	base curve

  The value of t 1412 is still given by (A.16), while the value t bis 1214 can be obtained in the same way as t 1214 (see equation (A.15)) apart from the different parametrization of the arc C bis 12 as compared to C 12 . As a result, t bis

				1214
	attains the value			
	t bis 1214 := π -α + arcsin	sin α 1 + 2η	.	(III.40)
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  C 12 (0) coincides with C 42 (2π -2αϑ), the largest value of t for which C 12 belongs to ∂(M 1 ⊕ M 2 ) depends on ϑ. In fact, C 12 intersects C 43 at a point where t = t 1243 . Correspondingly, t ∈ [ϑ, t 4312 ] ⊆ [ϑ, π] along the portion of the arc C 43 that contributes to ∂(M ⊕ M ). When ϑ = ϑ 1243 , the whole arc C 43 lies inside ∂(M ⊕ M ) and C 12 now crosses the portion of C 44 belonging to ∂(M ⊕ M ) at a point where t = t 1244 . Correspondingly, C 44 belongs to ∂(M ⊕ M ) only when t ∈ [t 4412 , πϑ], for a suitable value t 4412 > 0 of t. When ϑ = ϑ 1244 , the arc C 44 lies completely in the interior of M ⊕ M . Then, C 12 crosses C 14 when t = t 1214 , and the portion of C 14 in ∂(M ⊕ M ) satisfies t ∈ [t 1412 , 2α] We now show how to compute the critical values of ϑ separating different regimes, together with the values of t at which the different arcs intersect. Let us determine C 12 ∩ C 43 . The values of t at which a point on C 12 also belongs to C 43 satisfy the equation |C 12 (t) -(B -O)| 2 = (2η -1) 2 Since t = ϑ is the smallest admissible value of t on C 43 , to determine the value of ϑ 4312 we simply solve the equation |C 43 (ϑ) -(A -O)| 2 = (2η + 1) 2 in terms of ϑ. After use of elementary trigonometric identities this requirement is

	and a straightforward computation based on equations (A.4) and (III.10) shows that the acceptable value of t is
	t 1243 (η, α, θ) =	ϑ 2	+ α -arcsin	2η + sin 2 α + ϑ 2 (1 + 2η) sin α + ϑ 2	.	(A.5)
	2η)[-sin(t + α + r e R e v i e ϑ 2 w )e x + cos(t + α + O n l ϑ 2 y )e y ]. Similarly, by imposing |C 43 (t) -(A -O)| 2 = (2η + 1) 2 and using equations (A.3) and (III.10) we arrive at o r t 4312 (η, α, θ) = ϑ 2 + α + arcsin 2η -sin 2 α + ϑ 2 (2η -1) sin α + ϑ 2 . While at t = 0 F recast as P e 2η -1 2 (cos 2α	(A.6)

  2 by finding (see equations(A.4) and (III.10)) the values of u := tα -ϑ 2 that obey a 44 sin ub 44 cos u + k Since the largest value of t for which C 44 is an admissible arc is t = πϑ, by solving the equation |C 44 (πϑ) -(A -O)| 2 = (1 + 2η) 2 in terms of ϑ we find the upper bound on the values of ϑ for which the arc C 44 contributes to ∂(M ⊕ M ). It turns out that ϑ has to satisfy the equation d 44 cos ϑe 44 sin ϑ + f

									18
	It is not difficult to verify that the admissible solution of equation (A.10) in terms of t is
		t 1244 (η, α, ϑ) = α +	ϑ 2	+ 2 arctan	-a 44 -a 2 44 + b 2 44 -k 2 44 k 44 + b 44	(A.11)
	Correspondingly, by solving |C 44 (t) -(A -O)| 2 = (1 + 2η) 2 and using equations (A.2) and (III.10) we find
		t 4412 (η, α, ϑ) = α -	ϑ 2	+ 2 arctan	   	-a 44 + a 2 44 + b 2 44 -c44 η -1 b 44 + c44 η -1	2	    .	(A.12)
	where	44 = 0 (cos 2α -1) e 44 (η, α) := sin 2α 1 + r F o d 44 (η, α) := 1 + 1 2η 1 2η	f 44 (η, α) :=	1 2η	(cos 2α -1) .	(A.13)
	P By resorting to the identities (A.8), it is possible to prove that
				e r e ϑ 4412 (η, α) = 2 arctan	e 44 + e 2 44 + d 2 44 -f 2 44 f 44 -d 44	.	(A.14)
						R
								e
								v i e
									w
									O n l
									44 = 0	y	(A.10)
	where							
		a 44 (α, ϑ) := 2 sin α +	ϑ 2	+ sin α -	ϑ 2		, b 44 (α, ϑ) := cos α -	ϑ 2	, k 44 (η, α, ϑ) := 1 +	2c 44 (α, ϑ) 1 + 2η
	with							
				c 44 (α, ϑ) := 2 sin α +	ϑ 2	sin α cos	ϑ 2	.

  2 to determine the value t 1214 of t at which C 12 intersects C 14 . It is not difficult to check that

				19 20
	it is possible to prove that the admissible root is given by			
	t 1412 (η, α, ϑ) := α + ϑ -π -arcsin	1 1 + 2η	sin α .	(A.16)
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	t 1214 (η, α, ϑ) = α + ϑ -π + arcsin	1 1 + 2η	sin α .	(A.15)
	Similarly, by use of equations (A.1) and (III.10) we determine the value t 1412 of t at which C 14 crosses the arc C 12 by
	imposing that			
	|C 14 (t) -(A -O)| 2 = (1 + 2η) 2 :