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Thermodynamic properties of binary mixtures of hard spheres of various size and pseudo-hard bodies, mimicking the short-range non-additive repulsive interactions in realistic models of water, have been determined over the entire concentration range using standard NVT Monte Carlo simulations. Virial coefficients of the mixture have also been computed. Having no other theoretical tool currently available, a perturbed virial expansion is examined with respect to its potential to estimate/predict the properties of the mixture without resorting to any fitting of simulation data. The perturbed virial expansion is found to perform quite accurately for the mixtures containing larger spheres, whereas for small spheres dissolved in water the result is only qualitatively correct.

Some time ago we investigated thermodynamic properties of pure fluids of various PHB's and showed that the perturbed virial expansion about an effective HS reference may provide a very accurate result [11,12]. With respect to the recent development of perturbed equations of state of water [7,10] and their potential to be simply extendable to mixtures, knowledge of the properties of mixtures of PHB's becomes highly desirable.

As a first attempt, which should be viewed as a feasibility study investigating a possibility to make use of the results obtained for pure PHB's also for their mixtures, we consider the binary mixture with one PHB component only and examine to what extent such an approach may be fruitful/promising. Thus, the studied mixture consists of HS's of diameter σ HS and PHB's representing the repulsive interactions in the primitive model of TIP4P water, PM/TIP4P [13]. This PHB is defined by a HS (hard core) of diameter σ O and two embedded sites X located on the surface of the sphere. We set σ O = 1 henceforth without loss of generality. The X-sites interact as HS of diameter σ X = 0.8, but are 'invisible' to the hard core. Consequently, it is not possible to assign any volume to the PHB which is the main problem for theory (for details see the original papers [11,12]).

To obtain accurate and reliable information on the thermodynamic behavior of the considered mixture we performed extensive simulations using the standard NVT Metropolis Monte Carlo method on a system with the total number of particles N = 500 [START_REF] Allen | The Computer Simulation of Liquids[END_REF][START_REF] Nezbeda | [END_REF].

In addition, simulations on the pure PHB model were performed as well. The compressibility factor (pressure) was computed via the contact value of the site-site correlation functions and associated G αβ 100 spherical harmonic coefficients [16]. To verify these results, pressure was simultaneously also determined using the virtual volume change method.

Following the success achieved for pure PHB fluids we consider the compressibility factor, z, of the mixture in a general form

z mix ≡ (P/ρk B T ) mix = z ref + M i=2 B (i) mix -B (i) ref ρ i-1 mix , ( 1 
)
where P is the pressure, ρ is the number density, ρ = N/V , T is the absolute temperature, 3 'mix' refer to the properties of the reference and mixture properties, respectively. For pure PHB fluids the reference is the fluid of HS of an effective diameter σ eff . To incorporate this result as a limiting case of PHB mixtures, the reference in equation ( 1) must be thus the mixture of HS. The compressibility factor of HS binaries is accurately given by the BMCSL (Boublik-Mansoori-Carnahan-Starling-Leland) equation [17],

z mixHS = 1 1 -ζ 3 + 3ζ 1 ζ 2 ζ 0 (1 -ζ 3 ) 2 + ζ 3 2 (3 -ζ 3 ) ζ 0 (1 -ζ 3 ) 3 , ( 2 
)
where ζ i are defined as 

ζ i = π 6 α ρ α σ i α , (3) 
B (z) = 2 i=1 2 j=1 . . . 2 z=1 x i x j . . . x z B (z) ij...z (4) 
where B

(z) ij...z is the irreducible diagram of order z made up of field points i, j, . . . , z, and x i . . . x z are the corresponding mole fractions, x i = N i /N , i = 1, 2. In the following index 1 refers to the HS component and index 2 to the PHB one. For binary HS mixtures analytical expressions for some lower B (z) ij...z are known [17]. However, no analytical expressions are known for the irreducible diagrams with PHB field points and they must be therefore evaluated numerically. We used the standard Monte Carlo integration method.

When applying the perturbed virial expansion, it is usual to consider it up to the third order, i.e., to set M = 4 in equation (1). This is however primarily the case of pure fluids. For mixtures the evaluation of the fourth virial coefficient becomes rather tedious and time consuming and likely would not be used in practical applications; we therefore set M = 3 in (1). For this reason we set M = 3 also for the pure PHB fluid when evaluating the effective diameter; the resulting value of σ eff is 1.1118. Performance of this approximation is shown in figure 1 where it is also compared with the common third order approximation. As it is seen, the perturbed virial equation of state with M = 3 performs also very well.

We simulated the mixtures at packing fractions covering the range (0.05, 0.35) and for equally spaced compositions ranging from 0.05 to 0.95 with a grid of 0.05. Furthermore, for all these mixtures we considered five different values of the HS diameter, σ HS = {0.8, 1.0, 1.5, 2.0, 2.5}, to get a complete overview of their behavior. The obtained virial coefficients of the mixtures and the pure PHB fluid are given in table 1. The compressibility factors are shown in figures 2 through 6 where they are also compared with the analytic (perturbed virial expansion) results. For further discussion we also show in these figures the compressibility factor of the HS reference.

Since both pure fluids are described accurately by the HS equations, the analytic results must be accurate at both concentration ends and largest discrepancies will be observed for intermediate concentrations. Three main conclusions can be drawn from these figures. First, the perturbed virial expansion performs very well for all concentrations for large diameters of the dissolved HS. Second, this accuracy however decreases as the HS decreases and becomes comparable with the hard core of the PHB. Yet, at least qualitative agreement, i.e., the curvature of the z vs. η curve is maintained. Third, and likely surprisingly at first sight, the reference HS mixture performs also quite accurately for large HS diameters away from the low HS concentration region. This means that the virial coefficients of the PHB and HS mixtures are very similar and this is the case as demonstrated in figure 7. On the other hand, for small HS diameters the reference HS mixture exhibits the well known nearly linear dependence and reasonable agreement is of observed properties of fluids. For many solutions/mixtures hard spheres can be and have been used to estimate these effects but for solutions in or mixtures of complex (i.e., polar or associating) fluids the use of hard spheres may be hardly justified and mixtures of PHB's should be used instead. For this reason we have attempted to estimate analytically the thermodynamic behavior of mixtures of HS's and PHB's. Demonstrated accuracy of the employed perturbed virial expansion should be sufficient to justify its use in studies of, e.g., aqueous solutions of hydrocarbons whose full understanding is still missing, and to assess the entire concept of primitive models and its use in applications.
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  ∈ {HS, eff}, and ζ 3 ≡ η is the common packing fraction. The BMCSL equation reduces to the Carnahan-Starling equation for the pure HS fluid.To implement the above perturbed equation of state one has to evaluate the required virial coefficients first. For a 2-component mixture the z-th virial coefficient is given by[17] 
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Figure 1 .

 1 Figure 1. Comparison of the perturbed virial equation of state with an effective hard sphere reference of the considered PHB model (dashed line, M = 3; full line, M = 4) with simulation data (circles).

Figure 2 .

 2 Figure 2. Comparison of the concentration dependence of the compressibility factors at constant packing fraction obtained from the perturbed virial equation of state (full line) and of the reference mixture of hard spheres (dashed line) with simulation data for σ HS = 0.8 (circles). The results are, from bottom to top, at packing fractions η = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35.

Figure 3 .Figure 4 . 5 Figure 5 .Figure 6 . 5 Figure 7 . 9 PageFig. 1 /Fig. 2 /Fig. 3 /Fig. 4 /Fig. 5 /Fig. 6 /

 34556579123456 Figure 3. The same as figure 2 for σ HS = 1.0
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  B is the Boltzmann constant, B (i) is the i-th virial coefficient, and subscripts 'ref' and 
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Table 1 :

 1 Virial coefficients of the mixture of hard spheres (1) and the considered pseudohard bodies(2). All coefficients are scaled by the appropriate power of σ 3 O ; the coefficients marked by the asterisks were determined analytically.

	σ HS B 11 * B (2)	(2) 12 * B	(2) 22	B	(3) 111 * B	(3) 112 * B 122 (3)	B	(3) 222
	0.8	1.07	1.53 3.47	0.72	1.14 2.16	6.9
	1.0	2.09	2.09 3.47	2.74	2.74 3.48	6.9
	1.5	7.07	4.09 3.47 31.23 14.61 8.84	6.9
	2.0 16.76	7.07 3.47 175.46 51.18 17.88	6.9
	2.5 32.72 11.22 3.47 669.33 140.83 31.51	6.9
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