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Abstract 

 
        It has been shown that if reorientational jumps of molecules or their parts take place through 

inequivalent potential barriers, it is possible to draw the information on the multiplicity of the axis of 

reorientation from the spin-lattice T1 time measurements in the NMR experiment. For the model of      

n potential wells of which one is deeper than the others, for n = 2, 3, 4, 6 the analytical formulae have 

been derived for the T1 relaxation time as a function of the correlation time and n. The recurrent form 

of the formulae for the conditional probability of the well population has been obtained, which permits 

calculation of the relaxation time for any n. 
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1. Introduction      

            The aim of the study is to show new possibilities of investigation of molecular 

reorientations about the axis of the multiplicity greater than 3 (Cn, where n>3). Interpretation 

of the nuclear relaxation on the basis of the NMR results depends on the model of 

reorientation assumed. The NMR data permit verification of different models of molecular 

reorientations considered, especially in the solids, and select the most probable one. Assuming 

a very short time of jumping, the time of the molecule rest in the well is characterised by the 

correlation time. The temperature study of the nuclear relaxation time and NMR line changes 

permits determination of the activation parameters of the molecular motion and drawing 

conclusions on the shape of the potential barriers for a given reorientation.  

           The simplest molecular motion is the jump between two potential wells, let’s say A 

and B described at first by Look and Lowe for proton NMR relaxation [1] and applied by 

Wąsicki in description of molecular reorientation in p-diphenyl [2]. The molecular 

reorientation through the inequivalent energy barriers is observed or expected in the 

compounds with hydrogen bonds, the motion of C2 symmetry described by the matrix method 

for dicarboxylic acids by Nagaoka [3], then supplemented by the tunnelling effect by 

Horsewill and Aibout [4]. Changes in the proton – proton distance related to the jumps to the 

alternative well have been described by Latanowicz [5]. For the molecular groups of the C3 

symmetry, the reorientation between inequivalent barriers has been described by Anderson 

[6]. Many groups of this symmetry undergo reorientations through three different barriers, 

such a situation has been analysed by Knop [7]. Recently a review on this subject has been 

published by Latanowicz [8].  Reorientations about the C3, C4, C5 and C6 axes have been 

considered by Hoffman in calculation of the correlation function for interpretation of 

dielectric relaxation results [9].  The guest molecules in the inclusion compounds of the C4 
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symmetry can perform motion of the same symmetry. For substituted benzene and pyridine 

compounds the motion is expected to have the C6 symmetry. However, because of the lack of 

theoretical solution for the T1 spin-lattice relaxation time for such a reorientation, the 

description developed for the C3 symmetry was applied for these compounds, in particular in 

view of the fact that Ripmeester obtained the same result T1 for the model of jumps at every 

60
0
 degrees in the six-well potential for the jumps to the nearest wells only [10] (which is the 

application of the solution of the C3 model) and the successful application of the Anderson 

and Ripmeester results by Ito for description of the dynamics of pyridinium ions [11]. The 

dynamics of the three-well model has been also applied by Wąsicki group to approximate the 

dynamics of other pyridinium ions [12-14].  Attempts were also made to describe the 

dielectric polarization data for pyridinium tetrafluoroborate by the model of reorientation 

about the C6 axis [15]. According to Roduner, the deuterated spectra of  pyridinium ions are 

well described by the three-well and six-well models [16]. The calculations of the shape of the 

six-well potential of pyridinium iodide by Latosińska [17] also indicate a more complex 

character of the barrier heights. The T1 relaxation time measurements by Ishikawa have 

confirmed the calculations of the potential of the C6 symmetry in iodine and bromide 5-

methylbenzene [18].  

  

        In this paper the expected correlation and T1 spin-lattice relaxation times have been 

calculated for particular models of reorientation taken as random steps with respect to the C2,  

C3, C4, C6  axes, for inequivalent and equivalent energy barriers. It was assumed that one 

potential well is deeper and all others have the same depth and that the particle can jump from 

each well to all others. Knowing the function describing the time changes in the population of 

the wells it is possible to calculate the autocorrelation function describing changes in the 

position of the dipole moment vector. On the basis of the latter it is possible to find the spectra 
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density function related to a given type of reorientation and the physical value that could be 

measured in experiment, e.g. the spin-lattice correlation time measured in NMR.   

The analytical results obtained for the first time for the reorientation about the C4 and C6 axes 

have shown that when the reorientation takes place between inequivalent barriers about the Cn 

axis, where n≥3, the T1 data from the NMR experiment allow concluding about the 

multiplicity of the reorientation axis. However, such a conclusion cannot be drawn when the 

reorientation takes place among equivalent barriers.  

2. The method for the relaxation time calculations for the angular reorientation 

among inequivalent barriers  

       The spin-lattice relaxation time T1 is still the subject of interest in scientific research. In 

solid state the reorientations of molecules, molecular groups or ions are considered assuming 

different models of reorientations, in particular those taking into account no only the 

equivalent positions in the crystal lattice, but also those describing the reorientation through 

inequivalent potential barriers. In general to be able to make comparisons with experiment, 

the relaxation time is calculated from the BPP formula [19]: 

 

                              ))2()()(1(
2

31
21

24

1

ωωγ JJII
T

++= h ,                                                       (1) 

Where γ is the gyromagnetic coefficient of the atomic nucleus of the spin I, J1(ω) and J2(2ω) 

are the spectral density functions and depend on the model of reorientation chosen. The 

coefficient 3/2 γ4⁄h2
I(I+1) describes the dipole interaction of two identical magnetic nuclei. 

The spectral density of the order of l is defined as: 

                     ∫
∞

∞−

−= .)(Re)( τω ωτ
dtFeJ l

i

l                                                                       (2) 

The integral is calculated from the real component of the correlation function Fl(t). 
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• Correlation functions for reorientations  

 

The molecular reorientation in the plane can be described in terms of the correlation functions 

calculated for different models of reorientation with the help of the linear combinations of 

Legendre polynomials. The reorientational correlation function of the order of l is: 

                   ,)()()(
* >+=< τtFtFtF ll                                                           (3) 

Where <> is the averaging over the whole set of nuclear spins  and l = 0, 1, 2  is the order of 

the Legendre polynomial. The asterisk stands for the coupled function. For the reorientations 

in plane about an axis e.g. perpendicular to the plane, the function Fl(t) is a function of the Θ 

angle. Knowing the possible angular Θi reorientations and the probability Pi of finding a 

molecule or particle  at this orientation, it is possible to relate the previous and subsequent 

position of the molecule through the conditional probability Pi(Θo׀ Θ, τ). Then, the mean 

value of the autocorrelation function is defined as   

                                                                                                               

                   (4) 

 

where j is the i-th position of the molecule or its fragment, if the molecule or its fragment 

before the time τ were at the position i. For the sake of simplicity, Pi stands for Pi(Θ0) and Pij 

stands for the conditional probability Pj(Θo׀ Θ, τ). For the reorientation e.g. about the C2 axis,  

i=1, 2 the sum is composed of 2*2 = 4 products, while for the reorientation about the C6 axis; 

i = 1, 2, ....  6; so the sum is composed of 36 products. If the vector of a length r reorients 

about the axis of reorientation from the position Θ0 to the position Θ,  and if the axis takes 

random positions with respect to the external distinguished direction (e.g. the direction of the 

external magnetic field), the averaging over the orientation of this axis must be taken into 

regard, which is denoted by the symbols <> used below. The mean values of the correlation 

functions are [19,7]:  

                            <(F0,i(Θ0)F0,i
*
( Θ)> = 4/5 r 

-6
, 

∑ Θ Θ Θ Θ Θ >= Θ Θ =< 

j i 
j i j l i l l l l P P F F F F t  F 

, 
0 0 

* 
, 0 , 

* 
0 ) , ( ) ( ) ( ) ( ) ( ) ( ) ( τ 
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                            <F1,i(Θ0)F1,i
*
( Θ)> = 2/15 r 

-6
, 

                            <F2,i(Θ0)F2,i
*
( Θ)> = 8/15 r 

-6
,                                                (5) 

                            <F0,i(Θ0)F0,j
*
( Θ)> = 4/5 r 

–6
 P2(cos α), 

                            <F1,i(Θ0)F1,j
*
( Θ)> = 2/15 r 

–6
 P2(cos α), 

                            <F2,i(Θ0)F2,j
*
( Θ)> = 8/15 r 

–6
 P2(cos α). 

 

The Legendre function P2(cos α) will be henceforth denoted by G because P stands for the 

probability of the well population for a system of molecules.  
Here          αij = Θj – Θi ,                                                                                                    (6) 

                   and     Gij = ½ (3cos
2
 αij –1).                                                           (7) 

 

Therefore, for the n –fold reorientation we get a set of Gij, making a matrix [G]. 

As follows from the above, the only problem to get the spectral density function is to find the 

set of the conditional probabilities. This search is related to the choice of the model of 

reorientation, the number of the equilibrium positions or the multiplicity of the reorientation 

axis and the choice of the equivalent or inequivalent reorientational barriers.   

 

• Probability of jumps between the wells and the probability of well population  

 

       The particle in the equilibrium position, i.e. in the steady state, is in the potential well. A 

transition to another position, i.e. to the neighbouring well, needs overcoming of the potential 

barrier. If Pi is the probability of the particle resting in the i-th well, the change in 

theprobability of population dPi/dt is related to the probability Pi through the factor W [6]:   

                                            d Pi/ dt  =  W· Pi.                                                  (8) 
 

The factor W or the probability of transition to another potential well depends exponentially 

on the height of the potential barrier E : 

 

                                            W = W0 exp (-E/RT),                                             (9) 
where R is the gas constant, and T is temperature [K]. 
 

The differential equation for dP/dt can be generalised on n wells and then [dP/dt] and [P] are 

the column matrices of n rows, and [A] is the square matrix of the size n·n containing all 

probabilities of transitions.  

The number of wells is n, and the height of the barrier is involved in the matrix [A]. 
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Therefore, in the matrix formulation: 

                                                    =





dt

dP
[A][P]                                                                (10) 

The solution of the differential equations gives the exponential dependence of the probability 

of population of the i-th well Pi(t) at the known initial probability Pi(0).  

In general, the solution is:                                              

                                                 [ P] =  exp ([A] t) [P(0)]                                                    (11) 

 

At the initial moment at t=0 we can have P1(0)=1 or P2(0)=1, or P3(0)=1 and the same for the 

other wells Pi, which means that the preliminary position of the molecule is in well 1, 2 or 3 

or i-th. Depending on the preliminary situation, after the time t we get different values of P1, 

P2, P3, in general Pi , making the column matrix [P] , which is the solution of the differential 

equation. To avoid getting a solution with the matrix in the exponent we use the 

transformation [20]: 

 

                                         exp ([A]t) = [U] exp( [D ]t) [U
-1

] ,                                           (12) 

 

 in which [D] is the diagonal matrix of different eigenvalues λi of the matrix [A]. 

 

The exponent of the matrix [Dt] is as follows: 

 

                   
[ ]





















=

t

t

t

Dt

ne

e

e

e

λ

λ

λ

000

0...00

000

000

2

1

.                                                                       (13) 

 

 

The columns Ui  of the unitary matrix of the eigenvectors [U] are most frequently found from 

the set of n equations:  

 

                                        ([A]- λi[I]) [U] = 0.                                                                       (14) 

 

 

If matrix [U] is well obtained it should diagonalise matrix [A], according to the following 

transformation: 
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                                          [D] = [U
-1

][A ][U].                                                                    (15) 

  

 

The conditional probability Pij  is obtained by solving equation (10) n times, for P1(0)=1 and 

for the other (n-1) values Pj(0)=0, then P2(0)=0 etc. until Pn(0)=1 and all the others Pj(0)=0. It 

means that we assume the molecule to be initially in well 1 and later in any of n wells. The 

results are the n column matrices for the n initial positions of the molecule. They can be 

arranged in the matrix [P] of the Pij terms, where i stands for the conditional probability of the 

molecule to be in the j-th well if it initially was in the well i.  

• Correlation functions, spectral density functions and T1 spin-lattice 

relaxation times  
 

       According to formulae 4, 5, 7 and 11, the correlation functions are composed of the sum 

of the products: 

 

                                                                                                                                                                                           (16) 

 

      and                  

 

                      )(4)( 12 tFtF ⋅= .                                                                                                (17) 

 

                      

The spectral density function is calculated from the formulae given by BPP [19]: 

 

                          ∫
∞

∞−

−= τω ωτ
dtFeJ

i )()( 0
)0(

, 

                            

                           ∫
∞

∞−

−= τω ωτ
dtFeJ

i )()( 1
)1( ,                                                                      (18)                                                    

 

                          ∫
∞

∞−

−= τω ωτ
dtFeJ

i )()2( 2
)2( .   

 

                                

As will be shown later, in selected models of reorientation through n walls, the 

diagonalization of matrix [A] gives n-1 eigenvalues λi different from zero. The correlation 

times were calculated for the models of reorientation related to the molecular symmetries C2, 

∑ ∑ 

= = 

− ⋅ ⋅ ⋅ ⋅ = 
n 

i 
ij ij oi 

n 

j 

P G P r t F 

1 1 

6 
1 15 

2 
) ( 
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C3, C4 and C6 , assuming the presence of one deeper potential well and the possibility of 

jumps from each well to each of the other wells. This means that matrix [A] does not have 

zero elements. Then, biexponential solutions are obtained as one of the exponents includes the 

multiple root of the characteristic equation of the matrix of the jump probability [A].  

• Potential well models; an example of C2 

        For the two inequivalent potential wells the reorientation takes place about the twofold 

axis C2. The position of the wells and the probabilities of transitions between them are shown 

in Fig. 1. if the vector r performs reorientation from the position defined by the angle Θo to Θ, 

so performs the angular jump α , we obtain the following matrix G: 

 

[ ]
















−⋅⋅

−⋅⋅
=

11)αcos(3
2

1

1)αcos(3
2

1
1

G
2

2

.                                                                          (19) 

description of the jumps between two energy levels 1- lower and 2- higher (Fig. 1.): 

 

transition 1→2 with the probability W12 requires the energy E12, 

transition 2→1 with the probability W21 requires the energy E21. 

 The energy difference between the levels is ∆ = E12-E21.                                                    (20) 

 

According to the Boltzmann distribution :   

                                                         W12= W0 exp (-E12/RT),                                        (21) 

                                                        W21= W0 exp (-E21/RT),                                         (22) 

 a = 
1

2

P

P
 (population of well 2 relative to that of well 1), so  

                                                                   a= exp (-∆/RT).                                                    (23)                                             

Change in the population of well 1 and well 2: 

                                     

                                              =
dt

dP1  - W12P1+W21P2, 

                                                                                                                                       (24) 

                                              =
dt

dP2  W12P1 - W21P2 

 

Matrix  [A] of the probabilities of transitions  

   

          



=

2221

1211][
AA

AA
A    ,     or        [A] 





−
−⋅=

1
1

21 a
a

W .                                    (25) 
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         Fig.1 Two-well potential. 

 

 

Therefore, the set of differential equations can be presented in the matrix form (equation 10): 

                                                                                                                                                                                                          

 

                                                                                                                                           

                                                       .                                                             (26) 

 

 

The eigenvalues of the characteristic equation of matrix [A] can be presented in the column 

matrix  

 

                                





+⋅− )1(
0

21 aW
                                                                     (27) 

or in the diagonal matrix [D]:  

 

                     







+−

⋅=
)1(0

00
][ 21

a
WD .                                                          (28) 

 

The matrix of the eigenvectors (unitary) is: 

 

                             

















+

−
+=

1
1

1
1

1

][

a

a
aU .                                                               (29) 

 

The inverse matrix is   
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Now, we check if the matrix of eigenvectors transforms the matrix of the probabilities of 

transitions W21 in the diagonal matrix D:  
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which has to be proved.  

Differential equation (26) is solved according to eq.(11) and the solution is: 
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The conditional probabilities are calculated assuming P1(0)=1: 
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   and then P2(0)=1:  
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 P11 = P1(P1(0)=1), P12 = P2(P1(0)=1), P21 = P2 (P2(0)=1), P22 = P2(P2(0)=1).  

Therefore, Pij is the probability of finding the molecule in the jth well after the time t, if the 

molecule was initially in the ith well.  

Assuming the notation )1(
1

21 +⋅= aW
τ

 and setting the Pij   in one matrix [P] we get the 

matrix of the conditional probabilities: 

 

                                                  

                                                 .                                                       (36) 

 

 

 

The first index in [P] defines the initial situation, that is informs in which well the molecule 

was at t=0. The above matrix is exactly [P(Θ0 │Θ,τ)] , however, for the sake of simplicity it is 

denoted as  [P]. The matrix [P(Θ0 )] (row matrix) is for the sake of simplicity denoted as [Po]  

and has elements Poi  defined as the probability of population of the wells in thermodynamic 

equilibrium (steady state) for the whole ensemble of particles. Since, according to (23), the 

probability of population of individual wells in the steady-state is:  

                12 oo PaP ⋅=  and 

 the sum                

                121 =+ oo PP . 

We have  

         
1

1
1 +

=
a

Po   and   
1

2 +
=

a

a
Po  .                                                                               (37) 

Therefore 

                              [ ] [ ] 
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==
11

1
21

a

a

a
PPP ooo .                                                         (38) 

 

 

Now, the calculation of the correlation function is simple, and should be performed according 

to scheme (16).
2
  

 

The correlation function is  
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2
 The above sum [16] can be showed as the matrix multiplicity  

F1(t)=2⁄15 r
-6

 [Po][GijPij][K], 

where elements of middle matrix become from the multiplying Gij by Pij, and matrix [K] is only one column 

matrix with amounts equaled to 1 [28, 3. 34]. 
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Therefore, the spectral densities calculated from equation (18) are: 
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16
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τω

τα
ω

⋅+
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⋅
⋅⋅= −

a

a
rJ .                               (42) 

 

         The T1 spin-lattice relaxation in NMR provides information on the molecular jumps 

through the potential barriers and the type of the barrier is included in the spectral density 

function, eq. (1). For the reorientations through the inequivalent barrier of the C2 type, with a 

single correlation time τ , substituting the spectral densities expressed by eq. (41) and (42) 

into eq. (1) we get the relaxation rate  

 

               
( )

),(
1

sin
)1(

5

61
012

2
6

,

24

1

τω
α

γ g
a

a
rIIh

T
nm

+
+= − ,                                                (43) 

 

Where  rm,n  is the distance between the nuclei m and n  (n is not the multiplicity of the 

barrier) 

 

and                       
22

0

22

0

01
41

4

1
),(

i

i

i

i
ig

τω
τ

τω
τ

τω
+

+
+

= .                                                           (44) 

If in a given substance there is more than one pair of interacting atomic nuclei, the summation 

should be performed over all possible N pairs [21], so in eq. (43) the term ∑
>

−

mn

nmr
N

6

,

1
 should 

replace 6

,

−
nmr .                                                                     

 

 

 

 

 

 

• Multiple reorientation barriers  

 

      Following the analogous procedure for reorientation through multiple potential barriers it 

is possible to get the formulae describing the relaxation rate as a function of the parameter of 

inequivalence α but also as a function of the barrier multiplicity n. The terms Gij were 

calculated from eq. (7). Results are collected in Tables 1-4. 

 
Table 1. Model description of the reorientation about the Cn, axis when one potential well is deeper than the 

others  
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As follows from the table the terms Aij, P01 , P02 ,τ1 and  τ2 can be expressed as functions of 

the multiplicity of the barrier.  

The elements of the matrix of the jump probability Aij are: 

 

                                       

                                         

                                                                                                    (45) 

                                         
                                          

 

                                       

The steady-state probability of the population of the deeper potential well is: 
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1
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P ,                                                                            (46) 

And the probabilities of population of the other wells are: 

 

                                     0102 aPP = .                                                                                        (47) 

There are exactly two correlation times (inverse eigenvalues of matrix [A] ): one 

corresponding the population of the deeper well: 

 

                                      [ ] 1

211 1)1(
−+−= anWτ ,                                                                     (48) 

And the other corresponding to the population of the other equivalent wells: 

                                      [ ] 1
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−= nWτ .                                                                                    (49) 
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For the sake of simplicity the elements Pij of the matrix of the conditional probabilities [P] 

can be expressed in the form of recurrent formulae: 

 

                                                                                                                                                                                                                      

 

 

 

 

 

(50) 

 

 

 

 

 

 

 

 

 

At this point we have all the expressions needed to calculate the correlation function 

according to eq. (16). We have derived the formulae describing the correlation function F1, the 

spectral density and the T1 spin-lattice relaxation rate as functions of the correlation time and 

the formulae are given in Tables 2a, b, c, for each multiplicity of the reorientation axis 

considered.  

 
Table 2a. Correlation functions for different multiplicities of the reorientation axis Cn 
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Table 2b. Spectral densities for different multiplicities of the reorientation axis Cn 
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Table 2c. Relaxation rates for different multiplicities of the reorientation axis Cn 

 

 
 

C2 

 
C3 

 
C4 

 
C6 

 
 

      The formulae given in Table 2c reveal that the relaxation rate is determined by two 

contributions related to proper correlation times. Fig. 2 presents the T1 spin-lattice relaxation 

time as a function of temperature T for different multiplicities of the axis of reorientation 

when the ratio of ∆ to E21 is ½. Analogous plots can be made for different values of this ratio. 

Their application is discussed in the following part of the paper. Fig. 3 illustrates the effect of 

the correlation times on the T1 relaxation time, on the example of C6 type reorientation.  

2 4 6 8 1 0

1 0

1 0 0

1 0 0 0

1 0 0 0 0

T
1
 [s ]

C 2

C 3

C 4

C 6

1 0 0 0 /T   [K
-1

]

 
Fig. 2. Temperature dependence of the T1 relaxation time for different multiplicities of the axis of reorientation; 

the calculations are performed for E21= 3 kcal/mole; ∆= 1,5 kcal/mole; K= 1·10
13

 s
-1

; ω0=2Π·60 MHz. 
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Fig. 3. T1 relaxation time as a function of inverse temperature T for the reorientations about the C6 axis ; E21= 3 

kcal/mole; ∆= 1 kcal/mole; K= 1·10
13

 s
-1

; ω0=2Π·60 MHz. 

 

      If ∆ > E21, the plot of the T1 relaxation time versus inverse temperature does not have a 

minimum but only an inflection point, see Fig. 4. 
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Fig. 4.T1 relaxation time versus inverse temperature for different multiplicities of the axis of reorientation, for 

E21= 3 kcal/mole; ∆= 6 kcal/mole; K= 1·10
13

 s
-1

; ω0=2Π·60 MHz 
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3. Discussion  

 

          As follows from Fig. 2, the higher the value of n, the shorter the T1 relaxation time. The 

changes in the position of the T1 time minima are almost unnoticeable. The minima are 

asymmetric with the greater slope on the low-temperature side. This observation will be 

analysed further on in the text. The temperature of the relaxation time minimum is related to 

the correlation time τ1=1/[W21(n-1)a+1]. The slope of the function near the relaxation time 

minimum is not steeper on the low-temperature side than on the high-temperature side. When 

in the experiment the times no longer than 10·T1 at the minimum are available, it is easy to 

confuse the reorientation through inequivalent barriers with other types of motion, e.g. a 

combination of two types of molecular motions. It should be emphasised that near the 

relaxation time minimum, the illusion of the symmetric minimum is the more pronounced the 

greater the multiplicity of the reorientation n. 

 

         On the basis of the results presented in Table 1, the relation between the inverse 

correlation time 1/τ and the inequivalence parameter a , where a ∈ <0,1>  and W12 = a·W21 has 

been analysed for the reorientations Cn. For a→ 0 , the probability of jump from a deeper well 

is W12 → 0 , while for a = 1 , the potential wells are equivalent. Since the functions g1(ω,τi) for 

i=1 and i=2 have different amplitudes, (fraction coefficients) A1 and A2, their behaviour as a 

function of the inequivalence parameter a for different multiplicities of the reorientation axes 

has been analysed. Results are presented in Fig. 5. 
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Fig. 5. The behaviour of amplitudes A1 and A2 as a function of the inequivalence parameter a for different 

multiplicities of the reorientation axis Cn. 

  

As follows from Fig. 5, with increasing a , the amplitudes A1 very slowly decrease, except the  

C2 reorientation, while the amplitudes A2 grow. This means that with the process of the 

barrier equalisation the contribution of the relaxation time expressed by the formula τ2-1 
= 

1/(nW21)  related to the occupation of the wells of higher energy separated by the equivalent 

barriers, increases. The shape of the high-temperature side of the plot of the relaxation time 

versus the inverse temperature is determined by the contribution related to the correlation time 

τ2, while that of the high-temperature of this plot is determined by the contribution described 

by the correlation time τ1.  The greater the multiplicity of the barrier, the higher A2 and the 

lower A1. For a = 1 , the correlation times τ1 = τ2, and the sum of the amplitudes multiplied by 

the relaxation constant gives the same relaxation time for all multiplicities of the reorientation 

axis, consistent with the result [22] for the three-spin groups reorienting about the C3 axis. 

Therefore, it is interesting to look at the relation between the increase in the relaxation time at 

the T1 time minimum relative to T1min of  reorientation through inequivalent barriers [23] and 

the parameter x=∆/E21 , see Fig. 6. 
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  Fig. 6. The increase in T1 at its minimum versus the ratio of ∆ to the activation energy E21.  

 

Interestingly, for x> 0.3 the T1 at its minimum become well discernible for different types of 

reorientations. If we knew the energy E21 and ∆, we could be able to conclude about the 

multiplicity of the reorientation axis from the increase in T1. The low-temperature side of the 

plot of T1 as a function of 1000/T (Fig. 2.) is characterised by a steeper slope so a higher 

activation energy El than the high-temperature side corresponding to the activation energy Eh. 

To find ∆ and E21, the slopes of the two sides of the plot minimum for the multiplicity of 

reorientation considered were analysed (taking into regard the relaxation times > 10·T1 at 

minimum). For the high- and low-temperature sides the following expressions were obtained:  

                            

                    Eh= (0,020n +1,140)∆ – (0,037n+1,223)E21 

                                                                                                                                               (51) 

                    El= (0,019n +0,916)∆ – (0,024n - 1,040)E21. 

 

In the first approximation it can be assumed that in the above equations the dependence on the 

multiplicity of reorientations n is neglected, E21 and ∆ can be found from the above equations, 

and then n is found from the increase in T1 versus ∆/E21 .  In the second approximation we use 

the equations containing n and for a given n we find E21 and ∆. When the activation energies 
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Eh and El are determined to an accuracy of 5 % , determination of the multiplicity of the 

reorientation axis n is ambiguous. Only knowing n, E21, ∆ it is reliable to fit the T1 relaxation 

time dependence on the inverse temperature. However, in experiment it is very rare that on 

both sides of the T1 relaxation time minimum the increase in the relaxation time is sufficiently 

high. If it is not, then the course of the T1 relaxation time dependence on the inverse 

temperature should be found for each model of the reorientation and the model ensuring the 

best fit to the experimental data is assumed. This procedure was applied to choose the model 

of reorientation about the C6 axis for the pyridinium ring in thiourea pyridinium nitrate 

inclusion compound [13]. The study of proton relaxation in bromo- and 

iodopentamethylbenzene reported in [24] was undertaken to show that the temperature 

dependence of the T1 relaxation time could be explained by their jumps about the C6 axis 

between the potential wells of different depth.  

In this paper the simplest possible model of one well deeper than the other five equivalent 

wells was chosen in order to obtain the analytical expressions for the rate of relaxation that 

can be applied by any experimenter. This model of reorientation about the C6 axis with only 

one well deeper than the others has been recently applied for description of the reorientation 

of the pyridine ring in pyridinium  nitrate and in its inclusion compound with thiourea [25]. 

The confirmation of this model obtained in the deuterium experiment [26] in pyridinium 

periodate in low temperature phase suggests that it could also be applied for interpretation of 

the earlier T1 time relaxation results in pyridinium  nitrate reported in [27]. 
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4. Conclusions 

 

1. The analytical formulae have been derived in the matrix formulation for the T1 spin-

lattice relaxation rate of the nuclear spins undergoing reorientation through inequivalent 

potential barriers between n wells of which only one is deeper than the others (n=2, 3, 4, 

6).  

2. The recurrent form of the formulae for the matrix elements containing the conditional 

probabilities of jumps between the wells permits the calculation of the elements for an 

arbitrary number of wells, if only one of them is deeper than the others.  

3. The T1 spin-lattice relaxation time minimum is expected to occur if the difference in the 

energy levels of the wells is lower than the potential barrier for the jump from the higher  

well to the other wells. Otherwise, not a minimum in T1 relaxation time but an inflection 

point is expected.  

4. The higher the barrier multiplicity, the shorter the relaxation time at the T1 minimum.  

5. If the experiments permits observation of both sides of the asymmetric relaxation  time 

T1 minimum as a function of 1000/T,  it is possible to determine the multiplicity of the 

axis of reorientation on the basis of the activation energies of the jumps corresponding to 

the low- and high-temperature sides of the minimum and the relative increase of T1 min. 

with respect to the T1 minimum expected for the equivalent barriers. . 

6. If temperature T → ∞ or if the energy level difference between the wells tends to zero 

all the potentials become the same and the multiplicity of the reorientation axis is 

impossible to be found from the T1 experiment data. The relaxation time takes the same 

value for all n ≥ 3. 

7. If a reorientation through inequivalent potential barriers is supposed on the basis of 

some data, measurements of the spin-lattice relaxation time can be important argument 

for or against confirmation of this supposition by other methods.  
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 Tables 

 Table 1. Model description of the reorientation about the Cn, axis when one potential well is 

deeper than the others  

 

Table 2a. Correlation functions for different multiplicities of the reorientation axis Cn 

 

Table 2b. Spectral densities for different multiplicities of the reorientation axis Cn 

 

Table 2c. Relaxation rates for different multiplicities of the reorientation axis Cn 
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Figure captions 

Fig.1 Two-well potential 
 

Fig. 2. Temperature dependence of the T1 relaxation time for different multiplicities of the 

axis of reorientation; the calculations are performed for E21= 3 kcal/mole; ∆= 1,5 kcal/mole; 

K= 1·10
13

 s
-1

; ω0=2Π·60 MHz. 

 

Fig. 3. T1 relaxation time as a function of inverse temperature T for the reorientations about 

the C6 axis ; E21= 3 kcal/mole; ∆= 1 kcal/mole; K= 1·10
13

 s
-1

; ω0=2Π·60 MHz. 

 

Fig. 4.T1 relaxation time versus inverse temperature for different multiplicities of the axis of 

reorientation, for E21= 3 kcal/mole; ∆= 6 kcal/mole; K= 1·10
13

 s
-1

; ω0=2Π·60 MHz. 

 

Fig. 5. The behaviour of amplitudes A1 and A2 as a function of the inequivalence parameter a 

for different multiplicities of the reorientation axis Cn. 

 

Fig. 6. The increase in T1 at its minimum versus the ratio of ∆ to the activation energy E21.  
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