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    NMR spin-lattice relaxation time T1 calculation for molecular reorientation through inequivalent potential barriers in the case of n-fold (n=2,3,4,6) symmetry axis

The aim of the study is to show new possibilities of investigation of molecular reorientations about the axis of the multiplicity greater than 3 (C n , where n>3). Interpretation of the nuclear relaxation on the basis of the NMR results depends on the model of reorientation assumed. The NMR data permit verification of different models of molecular reorientations considered, especially in the solids, and select the most probable one. Assuming a very short time of jumping, the time of the molecule rest in the well is characterised by the correlation time. The temperature study of the nuclear relaxation time and NMR line changes permits determination of the activation parameters of the molecular motion and drawing conclusions on the shape of the potential barriers for a given reorientation.

The simplest molecular motion is the jump between two potential wells, let's say A and B described at first by Look and Lowe for proton NMR relaxation [START_REF] Look | Effect of Hindered Molecular Rotation between Unequal Potential Wells upon Nuclear Magnetic Resonance Spin-Lattice Relaxation Times and Second Moments[END_REF] and applied by Wąsicki in description of molecular reorientation in p-diphenyl [START_REF] Wąsicki | Temperaturowa zaleŜność barier reorientacyjnych molekuł p-trójfenylu (Temperature dependence reorientation barriers of p-triphenylene)[END_REF]. The molecular reorientation through the inequivalent energy barriers is observed or expected in the compounds with hydrogen bonds, the motion of C 2 symmetry described by the matrix method for dicarboxylic acids by Nagaoka [START_REF] Nagaoka | An NMR relaxation study on the proton transfer in the hydrogen bobded carboxylic acid dimmers[END_REF], then supplemented by the tunnelling effect by Horsewill and Aibout [START_REF] Horsewill | The dynamic of hydrogen atoms in the hydrogen bonds of carboxylic acid dimmers[END_REF]. Changes in the proton -proton distance related to the jumps to the alternative well have been described by Latanowicz [START_REF] Andrew | Solid-State Transfer Dynamics and The Proton NMR Second Moment and Proton Relaxation Rates[END_REF]. For the molecular groups of the C 3 symmetry, the reorientation between inequivalent barriers has been described by Anderson [START_REF] Anderson | The Effect of an Asymmetric Local Environment upon NMR Relaxation[END_REF]. Many groups of this symmetry undergo reorientations through three different barriers, such a situation has been analysed by Knop [START_REF] Knop | Solid State NMR Relaxation and Hindered Rotations in Fully Asymmetric Local Enviroments[END_REF]. Recently a review on this subject has been published by Latanowicz [START_REF] Latanowicz | NMR Relaxation Study of Methyl Groups in Solids from Low to High Temperatures[END_REF]. Reorientations about the C 3 , C 4 , C 5 and C 6 axes have been considered by Hoffman in calculation of the correlation function for interpretation of dielectric relaxation results [START_REF] Hoffman | Theory of Dielectric Relaxation for Single-Axis Rotator in a Crystalline Field[END_REF]. The guest molecules in the inclusion compounds of the C 4 symmetry can perform motion of the same symmetry. For substituted benzene and pyridine compounds the motion is expected to have the C 6 symmetry. However, because of the lack of theoretical solution for the T 1 spin-lattice relaxation time for such a reorientation, the description developed for the C 3 symmetry was applied for these compounds, in particular in view of the fact that Ripmeester obtained the same result T 1 for the model of jumps at every 60 0 degrees in the six-well potential for the jumps to the nearest wells only [START_REF] Ripmeester | 1 H and 2 H NMR study of pyridinium iodide. Disorder and molecular motion between inequivalent sites[END_REF] (which is the application of the solution of the C3 model) and the successful application of the Anderson and Ripmeester results by Ito for description of the dynamics of pyridinium ions [START_REF] Ito | 1 H NMR and 35 Cl NQR Studies on the Motion of Pyridinium Ions in Crystalline Pyridinium Tetrachloro-and Tetrabromoaurate(III): (pyH)AuX 4 (X=Cl, Br)[END_REF]. The dynamics of the three-well model has been also applied by Wąsicki group to approximate the dynamics of other pyridinium ions [START_REF] Lewicki | Pressure Effect on Molecular and Lattice Dynamics In Pyridinium Nitrate[END_REF][START_REF] Grottel | 1 H NMR Study of Molecular Motion In Thiourea Pyridinium Nitrate Inclusion Compound[END_REF][START_REF] Kozak | 1 H NMR Study of dipolar coupling between host and guest molecules in bis-thiourea N-methylpyridinium iodide and its deuterated analogues[END_REF]. Attempts were also made to describe the dielectric polarization data for pyridinium tetrafluoroborate by the model of reorientation about the C 6 axis [START_REF] Fojud | Polarization and Energy Bariers in Ferroelectric Pyridinium Tetrafluoroborate[END_REF]. According to Roduner, the deuterated spectra of pyridinium ions are well described by the three-well and six-well models [START_REF] Beck | 2 H NMR study of dynamics, ordering, and phase transitions in ferroelectric pyridinium tetrafluoroborate[END_REF]. The calculations of the shape of the six-well potential of pyridinium iodide by Latosińska [START_REF] Latosińska | Barriers for Cation Reorientation in Pyridinium Iodide Studied by atom-atom and DFT methods[END_REF] also indicate a more complex character of the barrier heights. The T 1 relaxation time measurements by Ishikawa have confirmed the calculations of the potential of the C 6 symmetry in iodine and bromide 5methylbenzene [START_REF] Ishikawa | A 1 H NMR study of molecular motion in chloropentamethylbenzene[END_REF].

In this paper the expected correlation and T 1 spin-lattice relaxation times have been calculated for particular models of reorientation taken as random steps with respect to the C 2, C 3 , C 4, C 6 axes, for inequivalent and equivalent energy barriers. It was assumed that one potential well is deeper and all others have the same depth and that the particle can jump from each well to all others. Knowing the function describing the time changes in the population of the wells it is possible to calculate the autocorrelation function describing changes in the position of the dipole moment vector. On the basis of the latter it is possible to find the spectra The analytical results obtained for the first time for the reorientation about the C 4 and C 6 axes have shown that when the reorientation takes place between inequivalent barriers about the C n axis, where n≥3, the T 1 data from the NMR experiment allow concluding about the multiplicity of the reorientation axis. However, such a conclusion cannot be drawn when the reorientation takes place among equivalent barriers.

The method for the relaxation time calculations for the angular reorientation among inequivalent barriers

The spin-lattice relaxation time T 1 is still the subject of interest in scientific research. In solid state the reorientations of molecules, molecular groups or ions are considered assuming different models of reorientations, in particular those taking into account no only the equivalent positions in the crystal lattice, but also those describing the reorientation through inequivalent potential barriers. In general to be able to make comparisons with experiment, the relaxation time is calculated from the BPP formula [START_REF] Bloembergen | Relaxation Effects in Nuclear Magnetic Resonance Absorption[END_REF]:
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Where γ is the gyromagnetic coefficient of the atomic nucleus of the spin I, J 1 (ω) and J 2 (2ω) are the spectral density functions and depend on the model of reorientation chosen. The coefficient 3/2 γ 4 ⁄h 2 I(I+1) describes the dipole interaction of two identical magnetic nuclei.

The spectral density of the order of l is defined as:
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The integral is calculated from the real component of the correlation function F l (t). 

• Correlation functions for reorientations

The molecular reorientation in the plane can be described in terms of the correlation functions calculated for different models of reorientation with the help of the linear combinations of Legendre polynomials. The reorientational correlation function of the order of l is:
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Where <> is the averaging over the whole set of nuclear spins and l = 0, 1, 2 is the order of the Legendre polynomial. The asterisk stands for the coupled function. For the reorientations in plane about an axis e.g. perpendicular to the plane, the function F l (t) is a function of the Θ angle. Knowing the possible angular Θ i reorientations and the probability P i of finding a molecule or particle at this orientation, it is possible to relate the previous and subsequent position of the molecule through the conditional probability P i (Θ o | Θ, τ). Then, the mean value of the autocorrelation function is defined as [START_REF] Horsewill | The dynamic of hydrogen atoms in the hydrogen bonds of carboxylic acid dimmers[END_REF] where j is the i-th position of the molecule or its fragment, if the molecule or its fragment before the time τ were at the position i. For the sake of simplicity, P i stands for P i (Θ 0 ) and P ij stands for the conditional probability P j (Θ o | Θ, τ). For the reorientation e.g. about the C 2 axis, i=1, 2 the sum is composed of 2*2 = 4 products, while for the reorientation about the C 6 axis; i = 1, 2, .... 6; so the sum is composed of 36 products. If the vector of a length r reorients about the axis of reorientation from the position Θ 0 to the position Θ, and if the axis takes random positions with respect to the external distinguished direction (e.g. the direction of the external magnetic field), the averaging over the orientation of this axis must be taken into regard, which is denoted by the symbols <> used below. The mean values of the correlation functions are [START_REF] Bloembergen | Relaxation Effects in Nuclear Magnetic Resonance Absorption[END_REF][START_REF] Knop | Solid State NMR Relaxation and Hindered Rotations in Fully Asymmetric Local Enviroments[END_REF]: The Legendre function P 2 (cos α) will be henceforth denoted by G because P stands for the probability of the well population for a system of molecules. Here
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and G ij = ½ (3cos 2 α ij -1). [START_REF] Knop | Solid State NMR Relaxation and Hindered Rotations in Fully Asymmetric Local Enviroments[END_REF] Therefore, for the n -fold reorientation we get a set of G ij , making a matrix [G].

As follows from the above, the only problem to get the spectral density function is to find the set of the conditional probabilities. This search is related to the choice of the model of reorientation, the number of the equilibrium positions or the multiplicity of the reorientation axis and the choice of the equivalent or inequivalent reorientational barriers.

• Probability of jumps between the wells and the probability of well population

The particle in the equilibrium position, i.e. in the steady state, is in the potential well. A transition to another position, i.e. to the neighbouring well, needs overcoming of the potential barrier. If P i is the probability of the particle resting in the i-th well, the change in theprobability of population dP i /dt is related to the probability P i through the factor W [START_REF] Anderson | The Effect of an Asymmetric Local Environment upon NMR Relaxation[END_REF]:

d P i / dt = W· P i . (8)
The factor W or the probability of transition to another potential well depends exponentially on the height of the potential barrier E :

W = W 0 exp (-E/RT), ( 9 
)
where R is the gas constant, and T is temperature 
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The solution of the differential equations gives the exponential dependence of the probability of population of the i-th well P i (t) at the known initial probability P i (0).

In general, the solution is:
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)
At the initial moment at t=0 we can have P 1 (0)=1 or P 2 (0)=1, or P 3 (0)=1 and the same for the other wells P i , which means that the preliminary position of the molecule is in well 1, 2 or 3 or i-th. Depending on the preliminary situation, after the time t we get different values of P 1 , P 2 , P 3 , in general P i , making the column matrix [P] , which is the solution of the differential equation. To avoid getting a solution with the matrix in the exponent we use the transformation [START_REF] Ogata | State Space Analysis of Control Systems[END_REF]:

exp ([A]t) = [U] exp( [D ]t) [U -1 ] , ( 12 
)
in which [D] is the diagonal matrix of different eigenvalues λ i of the matrix

[A].
The exponent of the matrix [Dt] is as follows: (
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The columns U i of the unitary matrix of the eigenvectors [U] are most frequently found from the set of n equations:

([A]-λ i [I]) [U] = 0. ( 14 
)
If matrix [U] is well obtained it should diagonalise matrix [A], according to the following transformation:

F o r P e e r R e v i e w O n l y 9 [D] = [U -1 ][A ][U]. ( 15 
)
The conditional probability P ij is obtained by solving equation ( 10) n times, for P 1 (0)=1 and for the other (n-1) values P j (0)=0, then P 2 (0)=0 etc. until P n (0)=1 and all the others P j (0)=0. It means that we assume the molecule to be initially in well 1 and later in any of n wells. The results are the n column matrices for the n initial positions of the molecule. They can be arranged in the matrix [P] of the P ij terms, where i stands for the conditional probability of the molecule to be in the j-th well if it initially was in the well i.

• Correlation functions, spectral density functions and T 1 spin-lattice relaxation times

According to formulae 4, 5, 7 and 11, the correlation functions are composed of the sum of the products: [START_REF] Beck | 2 H NMR study of dynamics, ordering, and phase transitions in ferroelectric pyridinium tetrafluoroborate[END_REF] and
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The spectral density function is calculated from the formulae given by BPP [START_REF] Bloembergen | Relaxation Effects in Nuclear Magnetic Resonance Absorption[END_REF]:
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As will be shown later, in selected models of reorientation through n walls, the diagonalization of matrix [A] gives n-1 eigenvalues λ i different from zero. The correlation times were calculated for the models of reorientation related to the molecular symmetries C 2 , 
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description of the jumps between two energy levels 1-lower and 2-higher (Fig. The energy difference between the levels is ∆ = E 12 -E 21 .

(
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According to the Boltzmann distribution :

W 12 = W 0 exp (-E 12 /RT), ( 21 
) W 21 = W 0 exp (-E 21 /RT), (22) a = 1 2 
P P (population of well 2 relative to that of well 1), so a= exp (-∆/RT).

(23) Change in the population of well 1 and well 2: Therefore, the set of differential equations can be presented in the matrix form (equation 10):
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.

The eigenvalues of the characteristic equation of matrix [A] can be presented in the column matrix
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or in the diagonal matrix [D]:
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The matrix of the eigenvectors (unitary) is:
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The inverse matrix is
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Now, we check if the matrix of eigenvectors transforms the matrix of the probabilities of transitions W 21 in the diagonal matrix D:
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which has to be proved. Differential equation ( 26) is solved according to eq.( 11) and the solution is:
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)
The conditional probabilities are calculated assuming P 1 (0)=1:

, ( 33 
)
and then P 2 (0)=1:

. ( 34 
)
After the calculations we get:

It can be substituted as follows: 
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Now, the calculation of the correlation function is simple, and should be performed according to scheme (16). 2 The correlation function is
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(39) 2 The above sum [START_REF] Beck | 2 H NMR study of dynamics, ordering, and phase transitions in ferroelectric pyridinium tetrafluoroborate[END_REF] can be showed as the matrix multiplicity

F1(t)=2⁄15 r -6 [P o ][G ij P ij ][K],
where elements of middle matrix become from the multiplying Gij by Pij, and matrix [K] is only one column matrix with amounts equaled to 1 [28, 3. 34]. (40)
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Therefore, the spectral densities calculated from equation ( 18) are:
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The T 1 spin-lattice relaxation in NMR provides information on the molecular jumps through the potential barriers and the type of the barrier is included in the spectral density function, eq. ( 1). For the reorientations through the inequivalent barrier of the C 2 type, with a single correlation time τ , substituting the spectral densities expressed by eq. ( 41) and (42) into eq. ( 1) we get the relaxation rate ( )
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Where r m,n is the distance between the nuclei m and n (n is not the multiplicity of the barrier) and 

• Multiple reorientation barriers

Following the analogous procedure for reorientation through multiple potential barriers it is possible to get the formulae describing the relaxation rate as a function of the parameter of inequivalence α but also as a function of the barrier multiplicity n. The terms G ij were calculated from eq. ( 7). Results are collected in Tables 1234. 

P 01 P 02 τ 1 τ 2 [G]
As follows from the table the terms A ij , P 01 , P 02 ,τ 1 and τ 2 can be expressed as functions of the multiplicity of the barrier. The elements of the matrix of the jump probability A ij are:

(45)

The steady-state probability of the population of the deeper potential well is: (49) For the sake of simplicity the elements P ij of the matrix of the conditional probabilities [P] can be expressed in the form of recurrent formulae:
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At this point we have all the expressions needed to calculate the correlation function according to eq. ( 16). We have derived the formulae describing the correlation function F 1, the spectral density and the T 1 spin-lattice relaxation rate as functions of the correlation time and the formulae are given in Tables 2a, b, c, for each multiplicity of the reorientation axis considered. The formulae given in Table 2c reveal that the relaxation rate is determined by two contributions related to proper correlation times. Fig. 2 presents the T 1 spin-lattice relaxation time as a function of temperature T for different multiplicities of the axis of reorientation when the ratio of ∆ to E 21 is ½. Analogous plots can be made for different values of this ratio.

Table 2a. Correlation functions for different multiplicities of the reorientation axis

C n F 1 (t) C 2 C 3 C 4 C 6

Table 2b. Spectral densities for different multiplicities of the reorientation axis

C n J 1 (ω) C 2 C 3 C 4 C 6 [ ] [ ] . ) 1 ( ) 1 ( 1 1 , ) 1 )( 2 ( ) 2 ( ) 1 ( 1 1 , 1 ), 1 ( ), 1 ( ) 1 ( 1 1 2 2 1 2 2 1 1 1 / / / ,
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Their application is discussed in the following part of the paper. Fig. 3 illustrates the effect of the correlation times on the T 1 relaxation time, on the example of C 6 type reorientation. ]

T 1 = f(τ 2 ) T 1 = f(τ 1 ) T 1 = f(τ 1 ,τ 2 )
Fig. 3. T 1 relaxation time as a function of inverse temperature T for the reorientations about the C 6 axis ; E 21 = 3 kcal/mole; ∆= 1 kcal/mole; K= 1•10 13 s -1 ; ω 0 =2Π•60 MHz.

If ∆ > E 21 , the plot of the T1 relaxation time versus inverse temperature does not have a minimum but only an inflection point, see Fig. On the basis of the results presented in Table 1, the relation between the inverse correlation time 1/τ and the inequivalence parameter a , where a ∈ <0,1> and W 12 = a•W 21 has been analysed for the reorientations C n . For a→ 0 , the probability of jump from a deeper well is W 12 → 0 , while for a = 1 , the potential wells are equivalent. Since the functions g 1 (ω,τ i ) for i=1 and i=2 have different amplitudes, (fraction coefficients) A 1 and A 2 , their behaviour as a function of the inequivalence parameter a for different multiplicities of the reorientation axes has been analysed. Results are presented in Fig. 5. As follows from Fig. 5, with increasing a , the amplitudes A 1 very slowly decrease, except the C 2 reorientation, while the amplitudes A 2 grow. This means that with the process of the barrier equalisation the contribution of the relaxation time expressed by the formula τ 2 -1 = 1/(nW 21 ) related to the occupation of the wells of higher energy separated by the equivalent barriers, increases. The shape of the high-temperature side of the plot of the relaxation time versus the inverse temperature is determined by the contribution related to the correlation time τ 2 , while that of the high-temperature of this plot is determined by the contribution described by the correlation time τ 1 . The greater the multiplicity of the barrier, the higher A 2 and the lower A 1 . For a = 1 , the correlation times τ 1 = τ 2 , and the sum of the amplitudes multiplied by the relaxation constant gives the same relaxation time for all multiplicities of the reorientation axis, consistent with the result [START_REF] Stejskal | Proton Magnetic Resonance of CH 3 Group. IV. Calculation of the Tunneling Frequency and of T 1 in Solids[END_REF] for the three-spin groups reorienting about the C 3 axis.

Therefore, it is interesting to look at the relation between the increase in the relaxation time at the T 1 time minimum relative to T 1min of reorientation through inequivalent barriers [START_REF] Tsutsumi | Nuclear magnetic spin relaxation of a spin pair undergoing reorientations by jumping among unequivalent sites[END_REF] and the parameter x=∆/E 21 , see Fig. 6. Interestingly, for x> 0.3 the T 1 at its minimum become well discernible for different types of reorientations. If we knew the energy E 21 and ∆, we could be able to conclude about the multiplicity of the reorientation axis from the increase in T 1 . The low-temperature side of the plot of T 1 as a function of 1000/T (Fig. 2.) is characterised by a steeper slope so a higher activation energy E l than the high-temperature side corresponding to the activation energy E h .

To find ∆ and E 21, the slopes of the two sides of the plot minimum for the multiplicity of reorientation considered were analysed (taking into regard the relaxation times > 10•T 1 at minimum). For the high-and low-temperature sides the following expressions were obtained:

E h = (0,020n +1,140)∆ -(0,037n+1,223)E 21 (51) E l = (0,019n +0,916)∆ -(0,024n -1,040)E 21 .
In the first approximation it can be assumed that in the above equations the dependence on the multiplicity of reorientations n is neglected, E 21 and ∆ can be found from the above equations, and then n is found from the increase in T 1 versus ∆/E 21 . In the second approximation we use the equations containing n and for a given n we find E 21 and ∆. When the activation energies E h and E l are determined to an accuracy of 5 % , determination of the multiplicity of the reorientation axis n is ambiguous. Only knowing n, E 21 , ∆ it is reliable to fit the T 1 relaxation time dependence on the inverse temperature. However, in experiment it is very rare that on both sides of the T 1 relaxation time minimum the increase in the relaxation time is sufficiently high. If it is not, then the course of the T 1 relaxation time dependence on the inverse temperature should be found for each model of the reorientation and the model ensuring the best fit to the experimental data is assumed. This procedure was applied to choose the model of reorientation about the C 6 axis for the pyridinium ring in thiourea pyridinium nitrate inclusion compound [START_REF] Grottel | 1 H NMR Study of Molecular Motion In Thiourea Pyridinium Nitrate Inclusion Compound[END_REF]. The study of proton relaxation in bromo-and iodopentamethylbenzene reported in [START_REF] Sato | A 1 H NMR study of molecular motion in bromo-and iodopentamethylbenzene[END_REF] was undertaken to show that the temperature dependence of the T 1 relaxation time could be explained by their jumps about the C 6 axis between the potential wells of different depth.

In this paper the simplest possible model of one well deeper than the other five equivalent wells was chosen in order to obtain the analytical expressions for the rate of relaxation that can be applied by any experimenter. This model of reorientation about the C 6 axis with only one well deeper than the others has been recently applied for description of the reorientation of the pyridine ring in pyridinium nitrate and in its inclusion compound with thiourea [START_REF] Pajzderska | Cation Dynamics In pyridinium nitrate and bis-thiourea pyridinium nitrate inclusion compound studied by 2 H NMR spectroscopy[END_REF].

The confirmation of this model obtained in the deuterium experiment [START_REF] Wąsicki | Temperature Dependence of Spontaneous POlarization In Order-Disorder Pyridinium Periodate Extracted from 2 H NMR Data[END_REF] in pyridinium periodate in low temperature phase suggests that it could also be applied for interpretation of the earlier T 1 time relaxation results in pyridinium nitrate reported in [START_REF] Kozak | Temperature Variation Asymmetry in Potential Barriers In Pyridium Nitrate[END_REF]. 2. The recurrent form of the formulae for the matrix elements containing the conditional probabilities of jumps between the wells permits the calculation of the elements for an arbitrary number of wells, if only one of them is deeper than the others.

3. The T 1 spin-lattice relaxation time minimum is expected to occur if the difference in the energy levels of the wells is lower than the potential barrier for the jump from the higher well to the other wells. Otherwise, not a minimum in T 1 relaxation time but an inflection point is expected.

4. The higher the barrier multiplicity, the shorter the relaxation time at the T 1 minimum.

5.

If the experiments permits observation of both sides of the asymmetric relaxation time T 1 minimum as a function of 1000/T, it is possible to determine the multiplicity of the axis of reorientation on the basis of the activation energies of the jumps corresponding to the low-and high-temperature sides of the minimum and the relative increase of T 1 min.

with respect to the T 1 minimum expected for the equivalent barriers. . 6. If temperature T → ∞ or if the energy level difference between the wells tends to zero all the potentials become the same and the multiplicity of the reorientation axis is impossible to be found from the T 1 experiment data. The relaxation time takes the same value for all n ≥ 3. Table 1. Model description of the reorientation about the C n , axis when one potential well is deeper than the others Fig. 6. The increase in T 1 at its minimum versus the ratio of ∆ to the activation energy E 21.

  spin-lattice relaxation time T1 calculation for molecular reorientation through inequivalent potential barriers in the case of n-fold (n=2,3,4,6) symmetry axis

  to a given type of reorientation and the physical value that could be measured in experiment, e.g. the spin-lattice correlation time measured in NMR.

  [K]. The differential equation for dP/dt can be generalised on n wells and then [dP/dt] and [P] are the column matrices of n rows, and [A] is the square matrix of the size n•n containing all probabilities of transitions. The number of wells is n, and the height of the barrier is involved in the matrix [A].

  the matrix formulation:

  C 4 and C 6 , assuming the presence of one deeper potential well and the possibility of jumps from each well to each of the other wells. This means that matrix [A] does not have zero elements. Then, biexponential solutions are obtained as one of the exponents includes the multiple root of the characteristic equation of the matrix of the jump probability [A].• Potential well models; an example of C 2For the two inequivalent potential wells the reorientation takes place about the twofold axis C 2 . The position of the wells and the probabilities of transitions between them are shown in Fig.1. if the vector r performs reorientation from the position defined by the angle Θ o to Θ, so performs the angular jump α , we obtain the following matrix G:

21 Fig. 1

 211 Fig.1 Two-well potential.

  given substance there is more than one pair of interacting atomic nuclei, the summation should be performed over all possible N pairs[START_REF] Woessner | Spin Relaxation Processes In a Two-Proton System Undergoing Anisotropic Reorientation[END_REF], so in eq. (43) the term

)

  And the probabilities of population of the other wells are: There are exactly two correlation times (inverse eigenvalues of matrix [A] ): one corresponding the population of the deeper well: And the other corresponding to the population of the other equivalent wells:

Fig. 2 .

 2 Fig. 2. Temperature dependence of the T 1 relaxation time for different multiplicities of the axis of reorientation; the calculations are performed for E 21 = 3 kcal/mole; ∆= 1,5 kcal/mole; K= 1•10 13 s -1 ; ω 0 =2Π•60 MHz.

4

 4 

  .

3 ∆ = 2 E 21 Fig. 4 .

 32214 Fig. 4.T 1 relaxation time versus inverse temperature for different multiplicities of the axis of reorientation, for E 21 = 3 kcal/mole; ∆= 6 kcal/mole; K= 1•10 13 s -1 ; ω 0 =2Π•60 MHz

3 Fig. 5 .

 35 Fig. 5. The behaviour of amplitudes A 1 and A 2 as a function of the inequivalence parameter a for different multiplicities of the reorientation axis C n .

Fig. 6 .

 6 Fig.6. The increase in T 1 at its minimum versus the ratio of ∆ to the activation energy E 21.

1 .

 1 The analytical formulae have been derived in the matrix formulation for the T 1 spinlattice relaxation rate of the nuclear spins undergoing reorientation through inequivalent potential barriers between n wells of which only one is deeper than the others (n=2,[START_REF] Nagaoka | An NMR relaxation study on the proton transfer in the hydrogen bobded carboxylic acid dimmers[END_REF][START_REF] Horsewill | The dynamic of hydrogen atoms in the hydrogen bonds of carboxylic acid dimmers[END_REF][START_REF] Anderson | The Effect of an Asymmetric Local Environment upon NMR Relaxation[END_REF].

7 .

 7 If a reorientation through inequivalent potential barriers is supposed on the basis of some data, measurements of the spin-lattice relaxation time can be important argument for or against confirmation of this supposition by other methods.

Fig. 1

 1 Fig.1 Two-well potential Fig. 2. Temperature dependence of the T 1 relaxation time for different multiplicities of the axis of reorientation; the calculations are performed for E 21 = 3 kcal/mole; ∆= 1,5 kcal/mole; K= 1•10 13 s -1 ; ω 0 =2Π•60 MHz.

Fig. 3 .

 3 Fig. 3. T 1 relaxation time as a function of inverse temperature T for the reorientations about the C 6 axis ; E 21 = 3 kcal/mole; ∆= 1 kcal/mole; K= 1•10 13 s -1 ; ω 0 =2Π•60 MHz.

Fig. 4 .

 4 Fig. 4.T 1 relaxation time versus inverse temperature for different multiplicities of the axis of reorientation, for E 21 = 3 kcal/mole; ∆= 6 kcal/mole; K= 1•10 13 s -1 ; ω 0 =2Π•60 MHz.

Fig. 5 .

 5 Fig. 5. The behaviour of amplitudes A 1 and A 2 as a function of the inequivalence parameter a for different multiplicities of the reorientation axis C n .

  Therefore, P ij is the probability of finding the molecule in the jth well after the time t, if the molecule was initially in the ith well.

	P 11 = P 1 (P 1 (0)=1), P 12 = P 2 (P 1 (0)=1), P 21 = P 2 (P 2 (0)=1), P 22 = P 2 (P 2 (0)=1).
	Assuming the notation	1 τ	=	21 W	⋅	(	a	+	) 1	and setting the P ij in one matrix [P] we get the
	matrix of the conditional probabilities:
	. The first index in [P] defines the initial situation, that is informs in which well the molecule (36) F o r
										P	
												e
													e r
																R
	the sum We have	2 1 o P o P	a + o = P	1 o P 1 and 2 ⋅ = .					e v i e
	1 P o	=	a	1 +	1	and		P o	2	=	a	+ a	1	.	w	(37)
	Therefore															l n O
																y
																a	e	( 21 a W	) 1 t
																2 P 1 P	2 2 P P	a	a	a e	( 21 a W	t
																a
																13

was at t=0. The above matrix is exactly [P(Θ 0 │Θ,τ)] , however, for the sake of simplicity it is denoted as

[P]

. The matrix [P(Θ 0 )] (row matrix) is for the sake of simplicity denoted as [P o ] and has elements P oi defined as the probability of population of the wells in thermodynamic equilibrium (steady state) for the whole ensemble of particles. Since, according to

[START_REF] Tsutsumi | Nuclear magnetic spin relaxation of a spin pair undergoing reorientations by jumping among unequivalent sites[END_REF]

, the probability of population of individual wells in the steady-state is:

Table 1 .

 1 Model description of the reorientation about the C n , axis when one potential well is deeper than the others

	C 2	C 3	C 4	C 6
	[A]			
	F o r			
	P			
	e			
	e r		
		R		
		e		
		v i e	
			w	
			O n l
				y
		15		
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Table 2c .

 2c Relaxation rates for different multiplicities of the reorientation axis C n

	C 2
	C 3
	C 4
	C 6

Table 2a .

 2a Correlation functions for different multiplicities of the reorientation axis C n

Table 2b .

 2b Spectral densities for different multiplicities of the reorientation axis C n

Table 2c .

 2c Relaxation rates for different multiplicities of the reorientation axis C n
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