

Theoretical study of molecular properties of low-lying electronic excited states of H2O and H2S

Jana Páleníková, Michal Kraus, Pavel Neogrády, Vladimir Kellö, Miroslav

Urban

► To cite this version:

Jana Páleníková, Michal Kraus, Pavel Neogrády, Vladimir Kellö, Miroslav Urban. Theoretical study of molecular properties of low-lying electronic excited states of H2O and H2S. Molecular Physics, 2008, 106 (20), pp.2333-2344. 10.1080/00268970802454786 . hal-00513229

HAL Id: hal-00513229 https://hal.science/hal-00513229

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Molecular Physics

Theoretical study of molecular properties of low-lying electronic excited states of H₂O and H₂S

Journal:	Molecular Physics						
Manuscript ID:	TMPH-2008-0225.R1						
Manuscript Type:	Full Paper						
Date Submitted by the Author:	03-Sep-2008						
Complete List of Authors:	Páleníková, Jana; Comenius University, Faculty of natural Sciences, Department of Physical and Theoretical Chemistry Kraus, Michal; Comenius University, Faculty of natural Sciences, Department of Physical and Theoretical Chemistry Neogrády, Pavel; Comenius University, Faculty of natural Sciences, Department of Physical and Theoretical Chemistry Kellö, Vladimir; Comenius University, Faculty of natural Sciences, Department of Physical and Theoretical Chemistry Urban, Miroslav; Comenius University, Faculty of natural Sciences, Department of Physical and Theoretical Chemistry						
Keywords:	excited states, Rydberg states, H *bsub* 2 *esub* 0; H *bsub* 2 *esub* S, dipole moment; dipole polarizability, CASPT2; CCSD(T)						
Note: The following files were to PDF. You must view these	Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.						
h2oh2s.tex							

<image>

Molecular Physics, Vol. 00, No. 00, DD Month 200x, 1-16

12:57

RESEARCH ARTICLE

Theoretical study of molecular properties of low-lying electronic excited states of

H_2O and H_2S

Jana Páleníková, Michal Kraus, Pavel Neogrády, Vladimir Kellö^{*} and Miroslav Urban

Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University

Mlynská dolina, SK–842 15 Bratislava, Slovakia

(Received 2008; final version received 2008)

Geometries, excitation energies, dipole moments and dipole polarizability tensor components of the ground and four lowest excited states ${}^{3}B_{1}$, ${}^{1}B_{1}$, ${}^{3}A_{2}$, ${}^{1}A_{2}$ of the H₂O and H₂S molecules were calculated at the CASSCF, CASPT2, CCSD and CCSD(T) level of approximation. Vertical excitation and equilibrium transition energies of these states, having the Rydberg character, are reported too. Properties of both molecules in the ground and in low lying excited states are compared and discussed from the point of view of their molecular electronic structure. Upon excitation we observe dramatic changes of dipole moments and polarizabilities with respect to the ground state. We stress the change of the polarity of H₂O in all excited states accompanied by the enhancement of the dipole polarizability by an order of magnitude. Large, even if less pronounced, are changes of electric properties of H₂S in its excited states. Dipole moments and dipole polarizabilities of ${}^{3}B_{1}$, ${}^{1}B_{1}$ states of H₂S and H₂O behave quite analogously in comparison to their respective ground state. General pattern of properties of both molecules in their ${}^{3}A_{2}$ and ${}^{1}A_{2}$ excited states is more different due to pronounced participation of the sulphur *d*-orbitals in these states of the H₂S molecule.

Keywords: excited states; Rydberg states; H₂O; H₂S; excitation energies; dipole moment; dipole polarizability; CASPT2; CCSD(T)

1 Introduction

Electric properties like dipole moments and dipole polarizabilities of molecules in their excited electronic states represent very important information about the character of these states. Nowadays, there are essentially two experimental techniques which provide us dipole moments and dipole polarizabilities of molecules in excited states. In the gas phase it is mainly Stark spectroscopy [1] and for the bulk it is time-resolved microwave-conductivity (TRMC) [2]. Accurate calculations of dipole moments and dipole

Molecular Physics ISSN 0026-8976 print/ ISSN 1362-3028 online ©2005 Taylor & Francis Ltd http://www.tandf.co.uk/journals DOI: 10.1080/002689700xxxxxxxxxx

^{*}Corresponding author. Email: kelloe@fns.uniba.sk

Molecular Physics

h2oh2s-ref1

J. Páleníková et al.

polarizabilities of small molecules in their ground electronic states represent for the present quantum chemical machinery tasks which are in many cases fulfilled at very high level. In this area theoretical data certainly can compete with experimental ones. Determination of these data for molecules in excited electronic states is a more complex task, both for theory and experiment.

The aim of this study is to compare behaviour of electric properties, namely dipole moments and dipole polarizabilities of two formally similar molecules H₂O and H₂S with an analogous electronic structure in the ground electronic state X^1A_1 . We studied four lowest excited states of the Rydberg character. These are the ${}^{3}B_1$ and ${}^{1}B_1$ states created by electron excitation from the b_1 orbital of dominantly p_x character to the a_1 orbital of dominantly s character, $b_1 \rightarrow a_1$, and ${}^{3}A_2$ and ${}^{1}A_2$ states resulting from the electron excitation from the b_1 orbital of dominantly p_x character to the b_2 orbital which is a combination of the p_y orbital of oxygen (sulphur) and s orbitals of hydrogens, $b_1 \rightarrow b_2$. We believe that our calculations will extend the knowledge about properties of H₂O and H₂S in low-lying excited states which are important in numerous photophysical and photochemical processes [3].

The ground and excited electronic states of H_2O and H_2S have been extensively studied both theoretically and experimentally [3–41]. However, most of these papers studied excitation energies only. In fact, information about non-energetic quantities, such as electric properties of excited states of these molecules [3,9,11–15,19] are rather scare. This applies particularly to H_2S .

The ${}^{1}B_{1}$ state of water is bent at spectroscopically accessible geometries and directly dissociative to $H({}^{2}S)$ and $OH(X^{2}\Pi)$ [4]. The next singlet electronic state of water ${}^{1}A_{2}$ is also bent dissociative [4]. This state is dipole forbidden (although quadrupole or vibronically allowed) and so far unobserved in VUV (vacuum ultraviolet) spectra [3]. While for water a single electronic state ${}^{1}B_{1}$ is involved, the dissociation of H₂S entails two strongly coupled electronic states, bound ${}^{1}B_{1}$ state and a dissociative ${}^{1}A_{2}$ state. They have two conical intersections [30, 35, 36]. The drastic differences between the photodissociations of H₂S and H₂O arise from participation of the 3*d* orbitals of the sulphur atom.

 H_2O and H_2S molecules have many similarities, however, there are many differences as well. The bonding of sulphur in H_2S is different from oxygen in H_2O . Sulphur has *d*-orbitals in the valence shell, which are unoccupied in the ground state. This is the reason of **larger** number of lower Rydberg states of the H_2S molecule in comparison to the H_2O molecule. The energy differences between Rydberg states of H_2S are considerably smaller than for H_2O , which is linked to differences between excited states of atomic oxygen and sulphur [42]. Therefore, we expect that our calculations using the same techniques for both H_2O and H_2S will contribute to the knowledge and better understanding of similarities and differences of molecular properties of these molecules in their low-lying excited states.

Electronic excited states of H_2O and H_2S

2 Computational methods

Effects of the electron correlation were accounted for by CASSCF [43] and CASPT2 methods [44], and by coupled cluster methods CCSD, CCSD(T) [45,46]. The open-shell singlets which cannot be described by a single-determinant reference wave function were in the coupled cluster approach treated by the twodeterminant CCSD method [47]. All calculations were performed using the MOLCAS suit of programs [48].

In present calculations, both molecules H_2O and H_2S lie in the *yz*-plane with the *z*-axis as the principal axes. Orbitals of the representation B_1 transform as *x*. We have correlated 8 electrons in both molecules H_2O and H_2S , which means the K-shell of oxygen and the K-, and L-shells of sulphur were left frozen. We employed the C_{2v} point group except calculations of perpendicular polarizabilities where we have been forced to use the C_s one.

Relativistic effects were neglected in this study. Tarczay *et al.* [49] reported the scalar relativistic effect on the inversion barrier of H_2S to be less than 250 cm⁻¹, which is about 0.03 eV. However, neglecting the spin-orbit (SO) contribution is not so obvious, particularly in the case of H_2S , where all four lowest excited states are rather close lying. Therefore, both SO and vibronic coupling cannot be excluded so safely as scalar relativistic effects.

The choice of the active space plays a crucial role in the CASSCF method. Based on a detailed analysis of effect of using different active spaces on dipole moment and dipole polarizability of water by Klein *et al.* [12] we decided to use in our study their largest (7341) active space (note that a different orientation of the molecular plane is in Ref. [12]). This notation means that there are 7 active orbitals in the first irreducible representation A_1 , 3 in the second one B_1 , 4 in the third one B_2 , and 1 in the fourth one A_2 . Inner shell orbitals (1000) for H₂O and (3110) for H₂S were inactive. In order to ensure the same number of correlated orbitals in different electronic states, which is important in calculation of excitation energies the corresponding active space for B_1 states resulting from the $b_1 \rightarrow a_1$ excitation was (8341). A_2 states arising from the $b_1 \rightarrow b_2$ excitation were calculated by the (7351) active space.

Using basis sets with diffuse exponents in calculation of Rydberg states of H_2O or H_2S is inevitable [3,15]. The smallest basis set which we used in our pilot calculations was aug-cc-pVQZ [50]. All calculations reported in this paper are carried out with the d-aug-cc-pVQZ basis set [51]. Adding the second set of "aug" functions affected vertical excitation energies up to 0.01 eV. Further extension to the t-aug-cc-pVQZ basis set [51] affected excitation energies very little. Dipole polarizabilities were affected by less than by 5%.

The evaluation of dipole moments and components of the dipole polarizability tensor was accomplished by using a numerical finite-field perturbation technique [52]. Numerical derivatives were obtained

h2oh2s-ref1

J. Páleníková et al.

using the Romberg scheme [53]. The external electric field strengths were set to 0.002, 0.004 and 0.008 au. In cases when we could not reach sufficiently converged energies needed for applied weaker external fields we were forced to use values 0.004, 0.008, and 0.016 au.

3 Results and discussion

3.1 Geometries

We carried out geometry optimization for the ground states and four lowest excited states of H_2O and H_2S . We restricted the optimization by enforcing the C_{2v} symmetry considering equal O-H or S-H bond lengths. Since the considered excited electronic states are of the dissociative character, these optimized C_{2v} geometries can at most characterize an appropriate saddle points on the energy hypersurface [3]. The geometry optimization was performed at the CASPT2 level using the active space (7341) for the X^1A_1 state, (8341) for B_1 states and (7351) for A_2 states. These data together with reference theoretical [3,20,25] and experimental [54] data for the ground states are collected in Table 1. A significant change of geometry is found for excited states, particularly B_1 states of H_2S which are almost linear. In the case of water we got similar geometries as Li and Paldus [3] by the GMS SU CCSD method. There is agreement also between our and Cai et al. [20] EOM CCSD and CCSD(T) data except the ${}^{1}A_{2}$ state of water. Their bond angle for this state is by 10 deg larger than ours. The literature data for geometries of the lowest excited states of H_2S are rather seldom. There are published figures [22, 23, 26, 30] with bond distance and angle dependence for the ${}^{1}B_{1}$ and ${}^{1}A_{2}$ states. They indicate an angle about 80 deg for the ${}^{1}A_{2}$ state and provide very flat curve with almost linear geometry for the ${}^{1}B_{1}$ state. The bond lengths are larger than for the ground state. Simah et al. [25] published geometries for H_2S excited singlets with angles fixed to the ground state value. Our calculations confirm their results. Our CASPT2 ground state geometries for both studied molecules coincide with experimental ones [54].

[Insert Table 1 about here]

3.2 Excitation energies

Calculated vertical excitation energies are presented in Table 2. We carried out CASSCF with 8 correlated electrons for both molecules in the (7341) active space for the X^1A_1 . In the case of the H₂O molecule we got vertical excitation energies in the same sequence of electronic states namely ${}^{3}B_1$, ${}^{1}B_1$, ${}^{3}A_2$, ${}^{1}A_2$ by all methods which we used. There are numerous papers in the literature dealing with calculations of excitation energies of water [3,9,11–20]. In Table 2 we presented just most recent ones [3,15–18]. All of these

2 3

4

5 6

7 8

9 10

11

12 13

14 15

16 17

18 19

20

21 22

23 24

25 26

27 28

29

30 31

32 33

34 35

36

37 38

39 40

41 42

43

44 45

46 47

48 49

50

51 52

53 54

55 56

57 58

59 60 12:57

h2oh2s-ref1 Molecular Physics

5

cited calculations have the same sequence of vertical excitation energies as is provided by our results. Our CASPT2 vertical excitation energies are consistently higher by 0.25–0.31 eV than our CASSCF values, indicating the importance of the dynamic electron correlation. The CCSD(T) values of triplet states differ from CASPT2 ones just by 0.01 eV. This clearly supports the credibility of obtained results. Our present coupled cluster program [48] can not calculate triple excitations for excited singlet states, however, we assume that effect of triple excitations will be for singlet states similar to triplet ones. The EOM CCSD data of Musial et al. [16] differ from our CASPT2 and CCSD(T) data by 0.01 eV. Li and Paldus GMS SU CCSD values [3] are by 0.09–0.12 eV lower than our CASPT2 ones. Their values utilizing the most sophisticated multi reference CC method are closer to experiment than our results. The cited CCSDR(3) [15] and CC3 [18] data were calculated in the same d-aug-cc-pVQZ basis set and are identical to our CASPT2 values. Very recent MS-CASPT2 [17] calculations in smaller basis set than ours gave excitation energies by 0.15–0.16 eV lower than our CASPT2 ones. It is interesting that the best agreement with the experiment [5] resulted from our CASSCF calculations. We note, that we did not consider the zero point vibrational energy which would lower the calculated excitation energies. What follows from the experimental data is the so-called 0-0 transiton energy.

The sequence of vertical excitation energies for the H₂S molecule obtained from our CASPT2 and CCSD calculations is ${}^{3}A_{2}$, ${}^{3}B_{1}$, ${}^{1}A_{2}$, ${}^{1}B_{1}$ and differs from the H₂O sequence. A striking contrast between excited states of H_2O and H_2S is that both triplet and singlet A_2 states of H_2O are lying much higher than the B_1 states, while excitation energies for both A_2 and B_1 states of H₂S differ very little, with the A_2 states lying slightly lower. The effect of triple excitations in CCSD(T) was for H_2S even smaller than for H_2O . CCSD(T) and CASPT2 values agree within 0.01 eV, similarly as for H₂O. There are only few papers in the literature dealing with excitation energies of the H_2S molecule [6, 7, 22–30]. We present few most recent relevant data [23, 26–28] in Table 2. The valence shell Hamiltonian calculations of Stevens et al. [26] correlate very well with our CASPT2 and CCSD data. The DFT QR excitation energies for triplets by Minaev et al. [28] and (SC)²-MR-SDCI (the size-consistent self-consistent dressing method [55]) values for singlets by Pitarch-Riuz et al. [27] fairly correlate with our data as well. MR-DCI results of Petsalakis and Theodorakopoulos [23] for the ${}^{1}B_{1}$ state agree with our results reasonably well while their excitation energy for the ${}^{1}A_{2}$ state is by 0.7 eV higher than are our CCSD and CASPT2 results in Table 2. We found no experimental data for the triplet ${}^{3}A_{2}$ and ${}^{3}B_{1}$ states of H₂S. Experimental value for the ${}^{1}A_{2}$ is rather uncertain [56]. Our vertical excitation energy for the ${}^{1}B_{1}$ state agrees with experimental value reasonably well, differing by less than 0.08 eV. Since spin-orbit and vibronic effects were neglected, comparison with experiment should be taken with some caution.

 eptember 3, 2008

 Page 7 of 20

12:57 Molecular Physics

Molecular Physics

h2oh2s-ref1

J. Páleníková et al.

Equilibrium transition energies (T_e) which we define as differences between energy of the given excited state and the ground electronic state calculated in their respective optimized geometries are presented in Table 3. The discussion presented in the previous paragraph for vertical excitation energies of the H₂O molecule can be repeated here as well. The order of T_e is the same as it was for vertical excitation energies, however, they are consistently lower by about 0.5 eV. The CASPT2 values are by 0.22–0.23 eV higher than CASSCF ones. There is a very good agreement between CCSD and CASPT2 data and the effect of triples is rather small. In Table 3 are presented other theoretical data [3, 12–14, 20]. The H₂O data cited in Table 3 retain our order of T_e . The EOM CCSD values of Cai *et al.* [20] differ by 0.01–0.04 eV and GMS SU CCSD of Li and Paldus [3] by 0.1 eV from our data.

In the case of equilibrium transition energies of the H₂S molecule, the T_e sequence is ${}^{3}B_{1}$, ${}^{1}B_{1}$, ${}^{3}A_{2}$, ${}^{1}A_{2}$ and, in contrast to excitation energies in H₂O, this sequence differs from vertical excitation energies. This change is due to much larger differences in optimized geometries than we observe for H₂O, particularly for B_1 states. This leads to large differences between T_e and vertical excitation energies, up to 1.5 eV and 0.6 eV for B_1 and A_2 states, respectively. We also note that the T_e sequence is the same for both H₂O and H₂S molecules (with vertical excitation energies it was different). Theoretical excitation energies are quite stable with our highly correlated methods. The calculated CCSD T_e values of H₂S differ marginally from CASPT2 ones, similarly as it was for the H₂O molecule. The same holds for vertical excitation energies as well. In the literature we did not find any relevant H₂S data, which can be pointed out in this context.

[Insert Table 2 about here]

[Insert Table 3 about here]

3.3 Dipole moments

Dipole moments of H_2O and H_2S for the five lowest electronic states are collected in Table 4. Dipole moments of excited states calculated in the experimental geometry of the ground state X^1A_1 will be called 'vertical' dipole moments. Those calculated in optimized geometries of individual excited states, as specified in Table 1 will be named 'adiabatic' dipole moments.

Let us discuss firstly 'vertical' dipole moments. In the case of the water molecule, our CASPT2 data for all excited states have opposite polarity with respect to the polarity of the ground state. Absolute values are smaller by about 4% for ${}^{1}B_{1}$ up to 23% for the ${}^{3}B_{1}$ state. The hydrogen sulphide, due to **lower** electronegativity of sulphur than oxygen, has the ground state dipole moment by about 50% smaller than that of water in the ground state. Our CASPT2 'vertical' dipole moments of H₂S have opposite sign for both B_{1} states, like it is for H₂O, with absolute values larger by 20% for triplet and 75% for singlet when

h2oh2s-ref1 Molecular Physics

compared to the ground state. The water molecule in its singlet and triplet A_2 states also have reversed sign of the dipole moment with respect to the ground state (like it was for ${}^{3}B_{1}$ and ${}^{1}B_{1}$ states) and similar absolute values. Note that A_2 states of H₂S behave rather differently. Their absolute values are smaller by 48% for triplet and 35% for the singlet state than is the dipole moment in the ground $X^{1}A_{1}$ state, however, the sign remains the same.

Large change of the dipole moment upon the excitation leading to B_1 states of H₂O has been attributed [9] to the reorganization of the electron distribution resulting from the $1b_1 \rightarrow 4a_1$ excitation. Main change undergoes the oxygen $b_1(p_x)$ lone pair orbital, localized almost exclusively on the oxygen atom, perpendicularly to the molecular plane. Upon excitation increases the importance of the diffuse $a_1(s)$ orbital, which is essentially the Rydberg 3s orbital. A slight contribution to the $4a_1$ orbital comes also from the diffuse oxygen atomic p_z function. Due to its diffuseness the change of the orbital picture affects not only dipole moments of B_1 states of H₂O, but it also contributes to large increase of their dipole polarizability, as it will be seen in the next chapter (see also Ref. [9]). When discussing dipole moments for the ground and the excited states we should perhaps stress that all characteristics of the dipole moments are well represented by the CASSCF wave function. Actually even HF dipole moments of H₂O and H₂S, as presented in Table 3 for optimized geometries, agree qualitatively with final CASPT2 or CC results.

The ${}^{3}A_{2}$ and ${}^{1}A_{2}$ states of H₂O and H₂S are characterized by the $b_{1}\rightarrow b_{2}$ electron excitation. Singly occupied $2b_{2}$ orbital of H₂O has the character of the diffuse oxygen Rydberg $3p_{y}$ orbital lying in the molecular plane and oriented perpendicularly to the main C_{2v} axis of the molecule. We were initially puzzled by the observation that for the A_{2} states the dipole moment undergoes similar changes as B_{1} states with respect to the ground state, including the reversed sign. The analysis of CASSCF orbitals shows that upon the $b_{1}\rightarrow b_{2}$ electron excitation the participation of not only the *s* hydrogen orbitals but also participation of their p_{y} orbitals in the singly occupied $2b_{2}$ orbital is significantly enhanced. The participation of the oxygen *d* orbitals is negligible in the ${}^{3}A_{2}$ state. This is reflected in the Mulliken population analysis, which shows higher electron H(*s*) density for A_{2} states than for the ground state and for B_{1} excited states and also quite significant electron population corresponding to H(p_{y}) orbitals (*e.g.*, 0.18 electrons for the ${}^{3}A_{2}$ state). For the ground state is such population by an order of magnitude smaller. Therefore, the change of the dipole moment in A_{2} states can be interpreted by moving the electron density toward the hydrogen side of the molecule upon the $b_{1}\rightarrow b_{2}$ electron excitation.

General features of changes which undergo molecular orbitals of H_2S upon excitation to the ${}^{3}B_1$ and ${}^{1}B_1$ excited states are similar as were found for H_2O . Accordingly, also the change of the dipole moment in B_1 excited states in the geometry of the ground state are similar for both molecules, as is clearly seen

12:57 Molecular Physics

Molecular Physics

h2oh2s-ref1

J. Páleníková et al.

in Table 4. More complicated is the discussion of dipole moments of ${}^{3}A_{2}$ and ${}^{1}A_{2}$ states of H₂S. The singly occupied $3b_{2}$ orbital of H₂S in, *e.g.* the ${}^{3}A_{2}$ state, is characterized not only by a significant contribution of the sulphur $4p_{y}$ orbital along with s and p_{y} hydrogen orbitals, like it was for H₂O. This time, there is also a quite large contribution from the diffuse d_{yz} orbitals (larger *d*-coefficients belong to basis functions with smaller exponents) which are located in the molecular plane. The CASSCF electron population due to the sulphur *d*-orbitals in the ${}^{3}A_{2}$ state is as large as 0.42 electrons while it is negligible in the analogous excited state of the water molecule. The hydrogen s- and p- populations are much lower than they were for H₂O. Under these circumstances the charge transfer toward the hydrogen side is less effective for H₂S than it was for H₂O. Finally, we note that the ${}^{1}A_{2}$ state of H₂S has been characterized by Petsalakis and Theodorakopoulos [23] as $2b_{1} \rightarrow Vp + Rd$ (valence p and Rydberg d). This is in line with our interpretation.

All our CASPT2 'vertical' dipole moment absolute values are slightly smaller then CASSCF data. We do not present coupled cluster data for 'vertical' dipole moments because of relatively large amplitudes of the single excitation operator T_1 which we got in calculations of excited states when the ground state geometry was used. In literature we found 'vertical' dipole moment calculations just for water by Vaval and Pal [13] and by Christiansen *et al.* [15]. These results more or less correlate with our data. We did not find any literature dipole moment data for H_2S excited states.

In Table 4 we present 'adiabatic' dipole moments obtained with CASSCF, CASPT2, CCSD and CCSD(T) methods. For H₂O and H₂S is the agreement between CASPT2 and CCSD(T) 'adiabatic' dipole moment values uniformly very good. This corresponds to good agreement of excitation energies obtained by the two methods. Influence of triple excitations is rather small, up to 5% of the total dipole moment values. In Table 4 we also present 'adiabatic' theoretical dipole moments from the literature [9–12, 14]. Only data for the ground state of both molecules and the ${}^{3}B_{1}$ and ${}^{1}B_{1}$ excited states of H₂O are available for comparison. Our results provide a similar picture of the dipole moment of H₂O excited states as the cited reference data. For both molecules in the ground states our CASPT2 and CCSD(T) dipole moments are in very good agreement with experiment [57, 58].

Calculations in optimized geometries of a specific excited state instead of the X^1A_1 geometry obviously lead to dipole moment values which are significantly different. Let us base our analysis on CASPT2 data. 'Adiabatic' dipole moments of water are by 0.3 and 0.4 au less negative than 'vertical' ones for the B_1 and A_2 states respectively. The valence angle plays a dominant role in affecting the dipole moment of H_2O and H_2S . However, in present calculations the bond length varies significantly as well (see Table 1) and therefore the z-coordinate of hydrogen atoms appears to be a better indicator of the geometry change. These z-coordinates for water are larger by 10% and 40% for B_1 and A_2 states, respectively than are the z-coordinates of the X^1A_1 state. This qualitatively agrees with Electronic excited states of H_2O and H_2S

observed shifts in dipole moment values.

With the hydrogen sulphide is the discussion more complicated. 'Adiabatic' dipole moment values of H_2S are close to zero for all excited states studied in this paper. Shifts from 'vertical' to 'adiabatic' dipole moments are +0.5 au and +0.8 au for the ${}^{3}B_{1}$ and ${}^{1}B_{1}$ state and -0.2 au for ${}^{3}A_{2}$ and ${}^{1}A_{2}$ states, respectively. The z-coordinates of the B_1 states are by 70% smaller than the ground X^1A_1 state ones, so that the molecule is almost linear. The non-polar character of the ${}^{3}B_{1}$ and ${}^{1}B_{1}$ excited states is in line with their quasi-linear geometries. However, dipole moments of both triplet and singlet A_2 states are close to zero as well. Clearly, this can not be attributed to the molecular geometry. The bond angle is close to 80 deg, *i.e.* smaller than for the ground state and the bond length is longer, see Table 1. The z-coordinates of A_2 states are by 30% larger than X^1A_1 ones. The reduced magnitude of the 'adiabatic' dipole moments of the ${}^{3}A_{2}$ and ${}^{1}A_{2}$ states with respect to the ground state can be partly discussed in similar lines as we did for the 'vertical' dipole moment. The general features of the participation of the sulphur and hydrogen differ from the situation commented for the experimental ground state X^1A_1 geometries. $4p_y$ sulphur orbitals contribute similarly in the two geometries but the role of hydrogen p_y orbitals is diminished. Mulliken population analysis of the CASSCF wave function shows little contribution of these orbitals. Similarly, the role of the sulphur d_{yz} orbitals is suppressed. To use these findings in a reasonable rationalization of behaviour of dipole moments in the ${}^{3}A_{2}$ and ${}^{1}A_{2}$ states of H₂S would be too speculative.

[Insert Table 4 about here]

3.4 Polarizabilities

Dipole polarizability data of the five lowest electronic states of H_2O and H_2S are collected in Table 5. As dipole moments, also dipole polarizabilities were calculated in the experimental geometry of the ground state X^1A_1 , ('vertical' ones), and also in optimized geometries of individual excited states, Table 1, which are specified in as 'adiabatic'.

Finite field calculations of perpendicular polarizability components have to be carried out in the C_s symmetry. This has an unpleasant computational consequence for the α_{xx} component of the B_1 states and α_{yy} component of the A_2 states, namely, they are second derivatives of energies represented by the second root in CASSCF. We were unable to converge properly the energy of the second root, especially for both triplet and singlet A_2 states and thus some data are missing in Table 5. Similarly, the α_{yy} component of the 1A_2 state of water in the paper by Jonsson *et al.* [19] is also missing.

Dipole polarizabilities of both molecules in their ground electronic X^1A_1 states are almost isotropic. Similarly to excitation and transition energies and dipole moments, CASPT2 and CCSD(T) provide very September 3, 2008 12:57

Page 11 of 20

7 Molecular Physics

Molecular Physics

h2oh2s-ref1

J. Páleníková et al.

similar polarizability values. As expected, differences between individual dipole polarizability components for the ground state obtained at the experimental X^1A_1 geometry and at the theoretically optimized geometries are marginal. The electron correlation contributions to polarizabilities arising from the triple excitations in CCSD(T) are rather small, 0.2–0.3 au. We present in Table 5 also representative literature data (along with experimental polarizability for the ground state only correlated theoretical data are presented). We can see good agreement between our ground state CCSD(T) values and recent CCSD(T) calculations by Avila [41] for H₂O and SOPPA calculation of Nielsen *et al.* [39] for H₂S. Our CCSD(T) polarizability components for water differ by less than 0.1 au from experiment [57]. For H₂S we found only experimental average polarizability $\overline{\alpha}$ which differs from our CCSD(T) average polarizability 24.4 au, by 0.3 au.

Upon the excitation of one of the lone pair electrons to the antibonding orbital $b_1 \rightarrow a_1$ (leading to B_1 states) or $b_1 \rightarrow b_2$ (leading to A_2 states) the polarizability tensor becomes highly anisotropic with components by more than order of magnitude larger than in the ground state. Particularly large are the α_{yy} polarizability components of the ${}^{3}B_{1}$ and ${}^{1}B_{1}$ states for both H₂O and H₂S. For H₂S in the ground state geometry are α_{yy} from CASPT2 larger by a factor of 36 and 47 for the ${}^{3}B_{1}$ and ${}^{1}B_{1}$ states, respectively, than α_{zz} for the ground state. For H₂O are analogous factors 17 and 22, respectively. For both ${}^{3}A_{2}$ and ${}^{1}A_{2}$ states of H₂O at the experimental ground state geometry α_{xx} and α_{zz} components, which are available, are much larger than are these components for the ground state. In fact these components are even larger than those calculated for both ${}^{3}B_{1}$ and ${}^{1}B_{1}$ states. Completely different situation is for H₂S. The α_{zz} component remains significantly larger than it is for the ground state, but the enhancement is not as large as it was for B_{1} states. We remind that A_{2} states of H₂S are characterized by significant contribution of the sulphur $4p_{y}$ orbital along with s and p_{y} hydrogen orbitals, and also by quite large contribution from the diffuse d_{yz} orbitals. Large enhancement of the polarizability due to the excitation to A_{2} states could be expected for the α_{yy} component, which, unfortunately, is not available.

It is obvious that due to large differences in geometries there are also large differences between 'vertical' and 'adiabatic' polarizabilities. The most striking difference is that polarizabilities in optimized geometries (see Table 1) are much smaller than those for the experimental ground state geometry. Polarizability components for ${}^{3}B_{1}$ and ${}^{1}B_{1}$ states of H₂O still remain relatively high and polarizability remains highly anisotropic. The two α_{xx} and α_{zz} components available for ${}^{3}A_{2}$ and ${}^{1}A_{2}$ states are similar, being still larger than corresponding components for the ground state, but increase only by a factor 2 - 3.

Very different situation is observed for H₂S. For all four ${}^{3}B_{1}$, ${}^{1}B_{1}$, ${}^{3}A_{2}$ and ${}^{1}A_{2}$ excited states α_{xx} components, calculated at the optimized geometry, are very similar to the ground state values. Anisotropy remains high for both B_{1} states thanks to large α_{yy} component. This is clearly related to the geometry

h2oh2s-ref1 Molecular Physics

Electronic excited states of H_2O and H_2S

of these states which are nearly linear and oriented in the direction of the y axis (see Table 1). The α_{zz} component is much smaller, which can be attributed, again, to the geometry of the ${}^{3}B_{1}$ and ${}^{1}B_{1}$ states. The C_{2v} geometry of H₂S in ${}^{3}A_{2}$ and ${}^{1}A_{2}$ excited states is bent, like for the ground state. The α_{zz} component is larger than for the ground state by a factor 1.7–1.8. Like with dipole moments, any detailed discussion of polarizabilities at optimized geometries and their comparison to the values in the ground state, based on the analysis of the orbital participation, appears to be too speculative.

There are few reference dipole polarizability data for H_2O in excited states [9, 11, 12] which generally agree with our results. Jonsson *et al.* [19] published CASSCF and linear response calculations of the dipole polarizability of the six lowest singlets of H_2O . Their results for 1B_1 and 1A_2 states dramatically differ from our results. The reason of this discrepancy is insufficiency of their basis set, namely the lack of very diffuse exponents, which are vital in description of Rydberg states, particularly for polarizabilities. We carried out test calculations with our basis set chopped to match exponents of their set and we got similar results. As with the dipole moment, we did not find any dipole polarizability data for excited states of H_2S .

[Insert Table 5 about here]

4 Conclusions

Results in Tables 2–5 clearly show that CASPT2 and CC calculations lead to very similar excitation energies as well as dipole moments and dipole polarizabilities, when the state under consideration is tractable by both types of methods. CASSCF with our large active space gives us qualitatively reasonable dipole moments and dipole polarizabilities, although for accurate properties more sophisticated treatment of the dynamic correlation at the level of CASPT2 or CCSD(T) is inevitable. Good agreement of CASPT2 and CCSD(T) results indicates that using our large active space in CASPT2 we are considering sufficient amount of the dynamic electron correlation. This is important since CASPT2 can treat cases which show significant amount of quasidegeneracy when the single determinant reference CCSD(T) method is not applicable. We note, however, that when the wave function of the state under consideration can be well represented by a single determinant reference, obtaining highly accurate results by CCSD(T) method is more straightforward than by the CASPT2 method for the same number of explicitly correlated electrons. The accuracy of CCSD(T) can be kept under control by inspecting the largest amplitudes arising from the CCSD treatment [60]. From the CASSCF/CASPT2 side a good indicator for the applicability of a single determinant reference approach is the weight of the dominant configuration in the CAS wave function. Considering good agreement of highly sophisticated CASPT2 and CCSD(T) results and using large diffuse

Molecular Physics

h2oh2s-ref1

J. Páleníková et al.

After examining the basis set convergence and a systematic consideration of the selection of the active space in CASPT2 our results may serve as benchmark data for selected geometries of H_2O and H_2S . This, however, was not primary goal of our study. It was rather the comparison of molecular properties, particularly dipole moments and dipole polarizabilities for the same electronic states of both molecules. Most significant are large changes of dipole moments and dipole polarizabilities in all ${}^{3}B_{1}$, ${}^{1}B_{1}$, ${}^{3}A_{2}$ and ${}^{1}A_{2}$ excited states with respect to the ground state properties. Considering properties of the ${}^{3}B_{1}$ and ${}^{1}B_{1}$ excited states, the dipole moment of both H_2O and H_2S in the ground state geometry change the polarity. When the geometry is optimized for a specific electronic state, the polarity is changed for H_2O , while for H_2S the polarity is approximately zero. This is mainly related to almost linear geometry of H_2S in the triplet and singlet B_1 excited states. Polarizabilities of both molecules calculated in their ground state geometries increase by more than order of magnitude in B_1 states. In contrast to very low anisotropy in the ground state of H_2O and H_2S , the anisotropy in 3B_1 and 1B_1 excited states is very high. The enhancement of polarizabilities is much smaller when both molecules are calculated in their ground state geometries. Both molecules, particularly H_2O , are highly anisotropic in geometries optimized for 3B_1 and ${}^{1}B_{1}$ excited states. While we observe quite similar pattern for properties of H₂O and H₂S in ${}^{3}B_{1}$ and ${}^{1}B_{1}$ excited states and their changes with respect to the ground state properties, similarities of both molecules in their ${}^{3}A_{2}$ and ${}^{1}A_{2}$ excited states are much less obvious. The dipole moment of H₂S calculated in the ground state geometry is just reduced, but the sign remains the same as it is for the ground state. For the water molecule the direction of the dipole moment is reversed for ${}^{3}A_{2}$ and ${}^{1}A_{2}$ states, like it was for the triplet and singlet B_1 states. Only the α_{zz} component of H_2S in A_2 states increases in comparison with the ground state polarizability, while both α_{xx} and α_{zz} components are enhanced for H₂O.

Our attempt for rationalizing these changes is based on the change of the orbital picture in the CASSCF wave function which H₂O and H₂S molecules undergo upon excitation. Large change of the dipole moment upon the excitation leading to B_1 states of H_2O has been attributed [9] to the reorganization of the electron distribution resulting from the $1b_1 \rightarrow 4a_1$ excitation. The $4a_1$ orbital of H₂O, being essentially the Rydberg 3s orbital, is very diffuse. Due to its diffuseness the change of the orbital picture affects dipole moments and contributes to large increase of the dipole polarizabilities of B_1 states of H_2O . The diffuseness of the singly occupied $6a_1$ orbital of H_2S is less manifested than in H_2O , but the character remains the same.

Differences in the behaviour of dipole moments and dipole polarizabilities of H_2O and H_2S in their 3A_2 and ${}^{1}A_{2}$ excited states are assigned to a significant contribution of the sulphur $4p_{y}$ orbital along with s

h2oh2s-ref1 Molecular Physics

Electronic excited states of H_2O and H_2S

and p_y hydrogen orbitals. In H₂S there is also quite large contribution from the diffuse d_{yz} orbitals which are located in the molecular plane. Discussion of dipole moments and dipole polarizabilities in geometries optimized for any specific excited state is more difficult than is discussion and comparison of properties calculated in the geometry of the ground state of H₂O and H₂S. The effect of the geometry change combined with the change of the orbital picture for any specific excited state makes the pattern of properties for the two molecules less transparent.

Acknowledgements

12:57

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-20–018405 and the Slovak Grant Agency VEGA under the contract No. 1/3560/06. The support is gratefully acknowledged. This work has also benefited from the Centre of Excellence program of the Slovak Academy of Sciences (COMCHEM, Contract no. II/1/2007).

a VEGA ι. Intract no. II/1/200.

September 3, 2008

1

2

3 4

5

6

7

8

9

19

21

22

23

26

27

28

29

30 31

32

33

34

35 36

37

38

39

40

41 42

43

44

45

46 47

48

49

50

51 52

53

54

55

56 57

Page 15 of 20

- References
 - [1] G.U. Bublitz and S.G. Boxer, Annu. Rev. Phys. Chem. 48, 213 (1997).
- [2] W. Schuddeboom, S.A. Jonker, J.M. Warman, U. Leinhos, W. Kuhnle, and K.A. Zachariasse, J. Phys. Chem. 96, 10809 (1992).
- [3] X.Z. Li and J. Paldus, Mol. Phys. **104**, 661 (2006).
- [4] M.S. Child, Mol. Phys. 105, 1505 (2007).
- [5] A. Chutjian, R.I. Hall, and S. Trajmar, J. Chem. Phys. 63, 892 (1975).
- [6] G.H.F. Diercksen and P.W. Langhoff, Chem. Phys. 112, 227 (1987).
- 10
 [7] V. Galasso, J. Phys. B–At. Mol. Opt. Phys. 22, 2241 (1989).

 11
 [6] M.N.D. A. I.S. H. W.C. H. & A.V. G. L. & D. T. & I.
 - [8] M.N.R. Ashfold, W.S. Hartree, A.V. Salvato, B. Tutcher, and A. Walker, J. Chem. Soc.-Faraday Trans. 86, 2027 (1990).
- 12
 [6] M. Urban and A.J. Sadlej, Theor. Chim. Acta 78, 189 (1990).

 13
 [9] M. Urban and A.J. Sadlej, Theor. Chim. Acta 78, 189 (1990).
- 14 [10] A.J. Sadlej, Theor. Chim. Acta 79, 123 (1991).
- 15 [11] A. Balková and R.J. Bartlett, J. Chem. Phys. 99, 7907 (1993).
- [12] S. Klein, E. Kochanski, A. Strich, and A.J. Sadlej, Theor. Chim. Acta 94, 75 (1996).
- [13] N. Vaval and S. Pal, Chem. Phys. Lett. **300**, 125 (1999).
 - [14] D. Ajitha and S. Pal, J. Chem. Phys. **114**, 3380 (2001).
- 20 [15] O. Christiansen, T.M. Nymand, and K.V. Mikkelsen, J. Chem. Phys. 113, 8101 (2000).
 - [16] M. Musial, L. Meissner, S.A. Kucharski, and R.J. Bartlett, J. Chem. Phys. 122, 224110 (2005).
 - [17] M. Rubio, L. Serrano–Andrés, and M. Merchán, J. Chem. Phys. 128, 104305 (2008).
- [18] M.J. Paterson, O. Christiansen, F. Pawlowski, P. Jørgensen, C. Hättig, T. Helgaker, and P. Salek, J. Chem. Phys. 124, 054322 (2006).
 - [19] D. Jonsson, P. Norman, and H. Ågren, Chem. Phys. 224, 201 (1997).
 - [20] Z.L. Cai, D.J. Tozer, and J.R. Reimers, J. Chem. Phys. 113, 7084 (2000).
 - [21] K. Weide, V. Staemmler, and R. Schinke, J. Chem. Phys. 93, 861 (1990).
 - [22] G. Theodorakopoulos and I.D. Petsalakis, Chem. Phys. Lett. 178, 475 (1991).
 - [23] I.D. Petsalakis and G. Theodorakopoulos, Chem. Phys. Lett. 200, 387 (1992).
 - [24] M. Pericou–Cayere, M. Gelize, and A. Dargelos, Chem. Phys. 214, 81 (1997).
 - [25] D. Simah, B. Hartke, and H.J. Werner, J. Chem. Phys. 111, 4523 (1999).
 - [26] J.E. Stevens, R.K. Chaudhuri, and K.F. Freed, J. Chem. Phys. 105, 8754 (1996).
 - [27] J. Pitarch–Ruiz, J. Sánchez–Marín, I. Martín, and A.M. Velasco, J. Phys. Chem. A 106, 6508 (2002).
 - [28] B. Minaev, I. Tunell, P. Salek, O. Loboda, O. Vahtras, and H. Ågren, Mol. Phys. 102, 1391 (2004).
 - [29] A.A. Velasco, I. Martín, J. Pitarch–Ruiz, and J. Sánchez–Marín, J. Phys. Chem. A 108, 6724 (2004).
 - [30] B. Heumann, R. Düren, and R. Schinke, Chem. Phys. Lett. 180, 583 (1991).
 - [31] M.R.F. Siggel, C. Field, L.J. Saethre, K.J. Borve, and T.D. Thomas, J. Chem. Phys. 105, 9035 (1996).
 - [32] E. Hudson, D.A. Shirley, M. Domke, G. Remmers, and G. Kaindl, Phys. Rev. A 49, 161 (1994).
 - [33] B. Datta, P. Sen, and D. Mukherjee, J. Phys. Chem. 99, 6441 (1995).
 - [34] G. Theodorakopoulos, I.D. Petsalakis, and C.A. Nicolaides, Chem. Phys. Lett. 207, 321 (1993).
 - [35] B. Heumann, K. Weide, R. Düren, and R. Schinke, J. Chem. Phys. 98, 5508 (1993).
 - [36] B. Heumann and R. Schinke, J. Chem. Phys. **101**, 7488 (1994).
 - [37] A.J. Russell and M.A. Spackman, Mol. Phys. 90, 251 (1997).
 - [38] R. van Harrevelt and M.C. van Hemert, J. Chem. Phys. 112, 5777 (2000).
 - [39] C.B. Nielsen, S.P.A. Sauer, and K.V. Mikkelsen, J. Chem. Phys. 119, 3849 (2003).
 - [40] E. Henon, T. Cours, and V.G. Tyuterev, Chem. Phys. Lett. 367, 284 (2003).
 - [41] G. Avila, J. Chem. Phys. **122**, 144310 (2005).
 - [42] Y. Ralchenko, A.E. Kramida, J. Reader, and NIST ASD team, NIST Atomic Spectra Database (version 3.1.5), http://physics.nist.gov/asd3, Gaithersburg, MD, (2008).
 - [43] B.O. Roos, P.R. Taylor, and P.E.M. Siegbahn, Chem. Phys. 48, 157 (1980).
 - [44] K. Andersson, P.-Å. Malmqvist, B.O. Roos, A.J. Sadlej, and K. Wolinski, J. Phys. Chem. 94, 5483 (1990); K. Andersson, P.-Å.

58 59 60

Molecular Physics

Electronic excited states of H_2O and H_2S

Malmqvist, and B.O. Roos, J. Chem. Phys. 96, 1218 (1992).

- [45] M. Urban, I. Černušák, J. Noga, and V. Kellö, in *Methods in Computational Chemistry*, Vol. 1, edited by S. Wilson, (Plenum Press, New York, 1987), p. 117.
- [46] R.J. Bartlett, in Advanced Series in Physical Chemistry, Vol. 2, edited by D.R. Yarkony, (World Scientific, Singapore, 1995), p. 1047.
- [47] P. Neogrády, P.G. Szalay, W.P. Kraemer, and M. Urban, Collect. Czech. Chem. Commun. 70, 951 (2005).

h2oh2s-ref1

- [48] K. Andersson, M. Barysz, A. Bernhardsson, M.R.A. Blomberg, Y. Carissan, D.L. Cooper, M. Cossi, A. Devararajan, M.P. Fülscher, A. Gaenko, L. Gagliardi, C. de Graaf, D. Hagberg, B.A. Hess, G. Karlström, J.W. Krogh, R. Lindh, P.–Å. Malmqvist, T. Nakajima, P. Neogrády, J. Olsen, T.B. Pedersen, J. Raab, B.O. Roos, U. Ryde, B. Schimmelpfennig, M. Schütz, L. Seijo, L. Serrano–Andrés, P.E.M. Siegbahn, J. Stålring, T. Thorsteinsson, V. Veryazov, and P.–O. Widmark, MOLCAS, version 6.4, (Lund University, Sweden, 2006); G. Karlström, R. Lindh, P.–Å. Malmqvist, B.O. Roos, U. Ryde, V. Veryazov, P.O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrády, and L. Seijo, Comput. Mater. Sci. 28, 222 (2003).
- [49] G. Tarczay, A.G. Császár, M.L. Leininger, and W. Klopper, Chem. Phys. Lett. 322, 119 (2000).
- [50] R.A. Kendall, T.H. Dunning, and R.J. Harrison, J. Chem. Phys. 96, 6796 (1992).
- [51] D.E. Woon and T.H. Dunning, J. Chem. Phys. **100**, 2975 (1994).
- [52] H.D. Cohen and C.C. Roothaan, J. Chem. Phys. 43, S34 (1965); A.D. McLean and M. Yoshimine, J. Chem. Phys. 46, 3682 (1967);
 I. Černušák, G.H.F. Diercksen, and A.J. Sadlej, Phys. Rev. A 33, 814 (1986).
- [53] D. Jacquemin, B. Champagne, and J.M. Andre, Int. J. Quantum Chem. 65, 679 (1997); G. Maroulis, J. Chem. Phys. 108, 5432 (1998).

[54] M.D. Harmony, V.W. Laurie, R.L. Kuczkowski, R.H. Schwendeman, D.A. Ramsey, F.J. Lovas, W.J. Lafferty, and A.G. Maki, J. Phys. Chem. Ref. Data 8, 619 (1979).

- [55] J.P. Daudey, J.L. Heully, and J.P. Malrieu, J. Chem. Phys. 99, 1240 (1993).
- [56] H. Masuko, Y. Morioka, M. Nakamura, E. Ishiguro, and M. Sasanuma, Can. J. Phys. 57, 745 (1979).
- [57] I.G. John, G.B. Bacskay, and N.S. Hush, Chem. Phys. 51, 49 (1980).
- [58] C. Huiszoon and A. Dymanus, **31**, 1049 (1965).
- [59] R.J. Pazur, A. Kumar, R.A. Thuraisingham, and W.J. Meath, Can. J. Chem. 66, 615 (1988).
- [60] V. Parasuk, P. Neogrády, H. Lischka, and M. Urban, J. Phys. Chem. 100, 6325 (1996).

12:57

Molecular Physics h2oh2s-ref1

Molecular Physics

J. Páleníková et al.

Table 1. Geometries (Å, deg) of the H_2O and H_2S molecule, imposing the C_{2v} symmetry.^a

State	X^1	A_1	³ E	B_1	^{1}E	B_{1}	37	l_2	1	A_2
Method	r	θ	r	θ	r	θ	r	θ	r	θ
H_2O CASPT2 others	0.959	104.3	1.107	108.5	1.083	105.6	1.234	94.4	1.222	92.6
SUCC ^b EOM CCSD ^c			$\begin{array}{c} 1.091 \\ 1.090 \end{array}$	$\begin{array}{c} 106.7 \\ 106.3 \end{array}$	$1.077 \\ 1.068$	$105.5 \\ 104.3$	$1.153 \\ 1.167$	$96.6 \\ 97.2$	$1.127 \\ 1.094$	$94.4 \\ 102.1$
$CCSD(T)^{c}$ exp. ^d	$0.962 \\ 0.958$	$\begin{array}{c} 104.2 \\ 104.5 \end{array}$	1.109	108.2			1.230	94.5		
H_2S CASPT2 others	1.340	92.2	1.521	157.5	1.589	162.4	1.511	79.5	1.519	78.3
$MRCI+Q^{e}$ exp. ^d	1.336	92.1			1.529	92.2			1.504	92.2

^a If not specified differently, geometry optimized with the d-aug-cc-pVQZ basis set at the CASPT2 level. The (1000) frozen and (1000) inactive space for H₂O, (3110) frozen and (3110) inactive space for H₂S. 8 correlated electrons for both molecules in the (7341) active space for the X^1A_1 state, (8341) for B_1 states and (7351) for A_2 states.

^b GMS SU CCSD cc–pVTZ+diff results from [3].

^c aug–cc–pVTZ results from [20].

^d Experiment [54].

^e Angle is kept at the value of the ground state, bond length optimized by the MRCI+Q method [25].

12:57

h2oh2s-ref1

Molecular Physics

Table 2. Vertical excitation energies (in eV) of the $\rm H_2O$ and $\rm H_2S$ molecule. $^{\rm a}$

Excitation State	$b_1 \rightarrow a_1$ 3B_1	$b_1 \rightarrow a_1$ 1B_1	$b_1 \rightarrow b_2$ 3A_2	$\substack{b_1 \to b_2 \\ {}^1A_2}$
HaO				
CASSCE	7.04	7.40	8.96	9.09
CASPT2	7.29	7.66	9.27	9.42
CCSD	7.24	7.59	9.20	9.35
CCSD(T)	7.30		9.28	0.00
others				
$EOM CCSD^{b}$	7.29	7.68	9.27	9.44
GMS SU CCSD ^c	7.20	7.54	9.18	9.32
$CCSDR(3)^d$		7.66		9.42
CC3 ^e		7.66		9.42
MS–CASPT2 ^f	7.13	7.50	9.12	9.27
expt. ^g	7.0	7.4	8.9	9.1
-				
H_2S				
CASSCF	5.75	6.09	5.79	6.11
CASPT2	5.92	6.27	5.78	6.12
CCSD	5.92	6.25	5.76	6.10
CCSD(T)	5.93		5.79	
others				
$H^{V \ h}$	5.90	6.35	5.50	5.89
MR–DCI ⁱ		6.16		6.80
$(SC)^2$ –MR–SDCI ^j		6.47		6.33
DFT QR ^k	5.73		5.36	
expt. ¹		6.33		4.6 - 7.5
-				

^a If not specified differently, calculations performed in the d-augcc-pVQZ basis. The CASSCF active space of the ground state is (7341), the corresponding B_1 space is (8341) and A_2 is (7351).

^b aug–cc–pVQZ results from [16].

^c aug–cc–pVTZ results from [3].

^d d–aug–cc–pVQZ results from [15].

^e d–aug–cc–pVQZ results from [18].

 $^{\rm f}$ The ANO–L type basis set ${\rm O}[5s4p2d1f]/{\rm H}[3s2p1d]+(2s2p2d)$ results from [17].

^g From [5].

^h Effective valence shell Hamiltonian H^V calculations from [26].

ⁱ The basis set S[8s6p2d]/H[3s1p] results from [23].

 $^{\rm j}$ The ANO–L type basis set S[4s3p2d1f]/H[2s1p] + (4s4p4d2f) results from [27].

^k DFT QR results from [28].

 1 From [56].

12:57

Molecular Physics

J. Páleníková et al.

Table 3. Equilibrium (T_e) transition energies (in eV) of the H₂O and H₂S molecule.^a

Excitation State	$b_1 \rightarrow a_1$ 3B_1	$b_1 \rightarrow a_1$ 1B_1	$b_1 \rightarrow b_2$ 3A_2	$b_1 \rightarrow b_2$ 1A_2
H ₂ O				
CASSCF	6.59	7.06	8.37	8.74
CASPT2	6.81	7.29	8.59	8.97
CCSD	6.81	7.26	8.66	9.00
CCSD(T)	6.83		8.63	
others				
CASPT2 ^b	6.80	7.25		
FSMRCC ^c	7.21	7.52	9.32	9.42
FSMRCC ^d	6.88	7.29		
EOM CCSD ^e	6.77	7.27	8.68	9.04
$CCSD(T)^{e}$	6.76		8.56	
GMS SU CCSD ^f	6.71	7.15	8.62	8.89
H_2S				
CASSCF	4.33	4.87	5.15	5.45
CASPT2	4.42	5.00	5.18	5.52
CCSD	4.45	5.07	5.21	5.54
CCSD(T)	4.45		5.21	

^a If not specified differently, calculations performed in the daug-cc-pVQZ basis. The CASSCF active space of the ground state is (7341), the corresponding B_1 space is (8341) and A_2 is (7351).

^b R–ANO basis set O[9s7p4d2f]/H[4s3p2d], the active space (7341) for the ground state and (8341) for the B_1 state [12].

^c Sadlej's POL basis set results from [13].

^d R–ANO basis set O[9s7p4d2f]/H[4s3p2d] results from [14].

^e aug–cc–pVTZ results from [20].

f aug-cc-pVTZ results from [3].

h2oh2s-ref1

Molecular Physics

Table 4. Dipole moments of H_2O and H_2S (in au) calculated in the experimental X^1A_1 geometry and in optimized C_{2v} geometries of the specific state^a.

Method	X^1A_1	${}^{3}B_{1}$	${}^{1}B_{1}$	${}^{3}A_{2}$	${}^{1}A_{2}$
H ₂ O					
experimental X^1A_1 geometry					
CASSCF	0.740	-0.651	-0.823	-0.646	-0.667
CASPT2	0.729	-0.563	-0.703	-0.631	-0.662
$\rm FSMRCC^{b}$	0.728	-0.567	-0.670	-0.437	-0.754
$\mathrm{CCSD^{c}}$			-0.725		-0.668
optimized specific state geometry					
HF	0.781	-0.339	-0.625	-0.199	-0.296
CASSCF	0.741	-0.297	-0.488	-0.236	-0.308
CASPT2	0.730	-0.245	-0.414	-0.214	-0.269
CCSD	0.737	-0.247	-0.429	-0.203	-0.265
CCSD(T)	0.728	-0.238		-0.214	
$CASSCF^{d}$	0.725	-0.416	-0.640		
CC^{e}	0.724	-0.275	-0.448		
$CASPT2^{f}$	0.726	-0.325	-0.488		
FSMRCC ^g		-0.520	-0.636		
expt. ^h	0.7296				
це					
Π_{25}					
CASSCE	0 404	-0.567	-0.832	0.216	0 303
CASPT2	0.389	-0.467	-0.682	0.210 0.204	0.257
	0.000	01101	0.002	0.201	0.201
optimized specific state geometry					
HF	0.424	0.098	0.079	-0.014	0.034
CASSCF	0.404	0.086	0.071	-0.001	0.075
CASPT2	0.389	0.084	0.071	-0.016	0.041
CCSD CCSD	0.394	0.086	0.070	-0.015	0.052
CCSD(T)	0.390	0.086		-0.020	
MP4 ⁱ	0.390				
MP2 ^j	0.392				
CASPT2 ^k	0.382				
expt. ¹	0.383				

^a If not specified differently, calculations performed in the d-aug-cc-pVQZ basis. The CASSCF active space of the ground state is (7341), the corresponding B_1 space is (8341) and A_2 is (7351).

^b Sadlej's POL basis set results from [13].

^c d–aug–cc–pVQZ results from [15].

^d R–ANO basis set O[9s7p4d2f]/H[4s3p2d] in the 6330 active space results from [9].

^e CCSD(T) calculation for the ${}^{1}A_{1}$ and ${}^{3}B_{1}$ states and CCSD for ${}^{1}B_{1}$ state in optimized geometries, slightly different from ours [11].

^f CASPT2 (7341) calculation in optimized geometry, slightly different from ours [12].

 $^{\rm g}$ R–ANO basis set O[9s7p4d2f]/H[4s3p2d] results from [14].

^h From [57].

ⁱ Sadlej's POL basis set results from [10].

 $^{\rm j}$ TZP1 basis set S[7s6p2d1f]/H[4s3p] results from [37].

 $^{\rm k}$ ANO–L basis set S[7s7p5d4f]/H[6s4p3d] results from [40].

¹ From [58].

h2oh2s-ref1 Molecular Physics

J. Páleníková et al.

Table 5. Dipole polarizabilities of H₂O and H₂S (in au) calculated in the experimental X^1A_1 geometry and in optimized C_{2v} geometries of the specific state^a.

State		H_2O			H_2S	
Method	α_{xx}	α_{yy}	α_{zz}	α_{xx}	α_{yy}	α_{zz}
X^1A_1						
experimental X^1A_1 geometry						
CASSCF	9.0	9.7	9.3	25.1	24.3	24.2
CASE 12 CASECE ^b	9.2	9.0	9.5	24.0	24.2	24.1
CASSCF	9.4 8.9	9.6	9.0			
$CCSD(T)^d$	9.2	9.9	9.5			
$MP4^{e}$	0	0.0		25.1	24.2	24.2
$CC-LRT^{f}$				25.2	24.4	24.5
MP2 ^g				25.0	24.3	24.3
SOPPAh				24.9	24.3	24.2
expt. ¹	9.3	10.0	9.6		$\overline{\alpha}$:	= 24.71
CASSCE	0.0	0.7	03	25.1	94.4	24.3
CASPT2	9.2	9.9	9.5	24.5	24.4 24.3	24.3 24.2
CCSD	9.0	9.8	9.3	24.5	24.2	24.0
CCSD(T)	9.3	9.9	9.6	24.7	24.3	24.2
3.0						
$^{3}B_{1}$						
CASSCE	106.5	202.4	93.2	157.5	572.8	217.1
CASPT2	90.5	167.9	81.9	112.0	1132.1	168.3
optimized specific state geometry						
CASSCF	50.9	149.7	51.2	21.8	53.0	25.4
CASPT2	45.4	129.1	46.5	23.1	50.1	26.2
CCSD CCSD(T)	46.7 45.9	138.0 128.7	47.6	21.5 21.6	51.9 52.0	24.9 25.2
$CASSCF^{b}$	40.9 64.3	188.8	62.4	21.0	52.0	20.2
CASPT2 ^j	48.7	132	50.3			
$CCSD(T)^k$	46.8	132.1	48.4			
$^{1}B_{1}$						
experimental $X^{+}A_{1}$ geometry	116.6	261.5	190.1	915 9	620.0	215 9
CASPT2	99.1	201.5	120.1	210.5 155.8	884.7	515.2 236.3
CASSCF ^c	61.6	205.3	65.0	100.0	001.1	200.0
optimized specific state geometry						
CASSCF	66.5	198.4	76.2	22.9	54.8	26.2
CASPT2	58.6	167.7	67.4	25.9	49.1	29.8
CUSD	60.2	184.5	70.6		47.7	25.6
CASPT2j	63.4 59.4	205.0	91.7 70.2			
$CCSD^k$	55.6	174.0	68.0			
$^{3}A_{2}$						
experimental X^1A_1 geometry	101 5		150.0	24.0		0.4 F
CASSCF CASPT2	181.5		159.6 191.3	24.9		64.5 56.0
optimized specific state geometry	141.0		121.0	24.4		50.0
CASSCF	22.7		23.4	22.7		42.9
CASPT2	21.2		21.9	22.4		43.2
CCSD	21.6		22.2	22.1		41.3
CCSD(T)	21.5		22.3	22.2		41.6
$^{1}A_{2}$						
experimental $X^1 A_1$ geometry						
CASSCF	222.4		202.1	26.7		80.4
CASPT2 CASSCE ^c	176.5		157.3	23.6		68.6
ontimized specific state geometry	30.2		41.1			
CASSCF	26.7		27.8	22.9		45.5
CASPT2	24.6		22.2	22.8		44.4
CCSD	25.1		26.0	22.7		44.4

^a If not specified differently, calculations performed in the d-aug-cc-pVQZ basis. The CASSCF active space of the ground state is (7341), the corresponding B_1 space is (8341) and A_2 is (7351).

^b R–ANO basis set O[9s7p4d2f]/H[4s3p2d] in the 6330 active space results from [9].

^c ANO basis set O[6s5p3d2f]/H[4s3p2d] results in the 6331 active space, from [19].

^d d-aug-cc-pV5Z results from [41]; ^e Sadlej's POL basis set results from [10].

^f Coupled–cluster linear response theory with basis set S[7s5p2d]/H[3s2p], results from [33].

^g From [37]; ^h aug–cc–pVTZ results from [39].

 $^{\rm i}$ H_2O taken from [57], H_2S static DOSD estimate from [59].

^j CASPT2 (734) calculation in ontimized geometry slightly different from nurs [12].

^k CC calculation in optimized geometry, slightly different from ours [11].