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Abstract

We analyse demixing and ordering transitions in systems of hard cylindrical particles.
The second virial approximation of Onsager and a bifurcation analysis, as introduced by
Koda and Kimura, are used to evaluate the free energies, pressures, and density distri-
bution functions in mixtures of equally long but differently wide cylinders. The spatial
density distribution along the one relevant coordinate is of particular importance as it
provides a more detailed information about the nature of the phase transition than the
bare bifurcation diagnosis. Detailed results are given for the nematic-nematic spinodal
and the nematic-smectic transitions. Allowing for the absence of an isotropic phase, our
results are in good qualitative agreement with those for freely orienting rods reported pre-
viously, and indicate a complex sequence of phase diagrams as the diameter dissimilarity
of the two components is increased, with upper and lower critical points bounding nematic
and smectic demixing regions. However, experimental results on colloidal rods show that
nematic demixing occurs at a diameter ratio much smaller than ours or those for freely
rotating fluids, indicating that Onsager-type theories may be insufficient to reproduce
this phenomenon in a quantitative manner and, consequently, that more sophisticated
approaches, presumably incorporating particle flexibility and additional interactions, are
required.
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1 Introduction

Fluids of linearly extended particles display an extremely rich phase behavior. In
particular, a complex interplay of demixing and spatial ordering may be observed in
binary mixtures of rodlike particles. Recent experimental results [1, 2] on colloidal rodlike
particles which are in qualitative agreement with previous theoretical predictions [3],
but differ in quantitative detail, demand a new investigation of such systems. These
systems may in principle be modelled approximately by means of hard-core bodies, a
type of interaction that has played a crucial role in the theory of liquids and colloids.
Even in a system of a single species of hard spherocylinders, all the basic liquid-crystal
phases may be produced by simply varying the particle length. In a classic simulation
study, Bolhuis and Frenkel [4] scanned the entire phase surface of the one-component
hard spherocylinder system. Further simulation studies [5, 6, 7, 8] as well as theoretical
investigations [9, 10, 11, 12, 13, 14, 15] followed, leading to an even better understanding
of the phase behavior of linear particle systems. In particular, it is now well established
that pure hard-body interactions are sufficient to induce spatial ordering transitions in
one-component systems, and both demixing and ordering transitions in binary systems.

Numerous new facets arise when we proceed from one-component fluids to mixtures.
Koda and Kimura first applied Onsager’s second-virial approximation to binary systems
of hard spherocylinders of equal diameters but different lengths [16] and to mixtures of
spherocylinders and spheres [17]. Dogic et al. [18] introduced arbitrary diameters, and
Vesely [19] generalized Koda and Kimura’s method to mixtures of variously shaped hard
linear particles. Even earlier, Cui et al. [20] had studied a binary system of aligned
cylinders in a third-virial approximation. Extensive theoretical studies of freely rotating
linear particle mixtures were reported [21, 22, 3, 23, 24, 25, 26, 27, 28, 29]. A multitude of
simulation studies followed, both using strictly aligned [30, 31, 32, 18] or freely rotating
linear particles [33, 34, 5, 35].

Experience with strictly parallel linear particles has shown that — except for the
natural absence of an isotropic phase and the respective phase changes — the main features
of systems of freely rotating rods are qualitatively reproduced. Since the numerical
approach is generally much less expensive, and some elements of the theory may actually
be expressed in closed form, we will here concentrate the discussion to assemblies of
parallel rods, although we also present some new results on mixtures of fully rotating hard
spherocylinders in order to assess the reliability of the parallel-particle approximation.

We are not the first trying to simplify the molecular model and reproduce the main
character of the phase behavior of the system of rod-like particles. Using the Zwanzig
approximation for the molecular orientations, several bulk and interfacial properties of
the hard rods have been determined [36, 37, 38, 39]. Significant progress has also been
achieved in the development of the Onsager theory using the ideas of fundamental mea-
sure theory [40]. However the reliability of the new theories and the applicability of the
orientational restriction require further theoretical and simulation justification.

The main part of this investigation is a thorough analysis of the phase behaviour of
parallel rod mixtures, extending beyond the usual bifurcation analysis. We obtain, at
each state point, the true equilibrium state of the system, in particular, the equilibrium
density distribution functions of the two particle species, by minimisation of the free
energy. In order to do so, we describe the densities of the two species along the z axis,
pi(2), in terms of a Fourier series, including many more terms than the single cosine term
needed in simple bifurcation analyses. In the case of aligned rods, this procedure is quite
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fast and may be extended to 20 or more Fourier terms if necessary. The information
gained in this manner permits us a more profound analysis of the phase transitions.
For example, at a given point in composition and pressure, the Onsager-Koda stability
criterion may indicate a nematic-smectic transition, while the free-energy minimisation
reveals that this point is actually lying in the midst of a coexistence region between a
nematic and a smectic of different compositions. Several instances of this will be discussed
in Section 3.

Two classes of binary systems are interesting candidates for studies of this sort. Rods
of equal diameter but different lengths display an intriguing interplay of macro- and mi-
croscopic smectic demixing, along with mere smectic layering without demixing. Results
on such systems will be reported in a future communication. Here we will discuss parti-
cles of equal length but different widths. Since we assume strict alignment along the z
axis, the length of the cylindrical particles is just a scaling parameter and does not enter
the physical results; the only relevant parameters are the diameter ratio and the number
fraction of the mixture. Preliminary reports on such mixtures have already appeared
[27, 28]. Our present results explore a wider range of diameter ratios, thus providing
a general picture of phase-equilibria phenomena in these mixtures. According to this
picture, as the particle diameters are made more dissimilar, smectic demixing occurs
at increasingly lower pressures, eventually interacting with the nematic-smectic phase
transition. The manner in which this interaction is realised is quite complex, and an
interesting multiphase diagram emerges. Further, nematic demixing may become stable
for still larger diameter ratios; this is in general agreement with the findings reported by
Van Roij and Mulder [3], but some detailed discrepancies, to be commented later, are
apparent. Finally, the scenario that emerges from our model is confirmed by additional
calculations in mixtures of rods where the approximation of considering strictly parallel
particles is lifted.

The paper is arranged as follows. In the following section we briefly present the
model and the approximations used to solve it. Section 3 is devoted to presenting the
results of the bifurcation analysis and the phase diagrams that result from the free-energy
minimizations. Finally, some conclusions are drawn in Section 4.

2 Theory

We consider a binary mixture of parallel thick and thin hard rods where particles are
represented as hard cylinders of equal lengths (L1 = Lo = L) but of different diameters
(D1 # Ds). Using Onsager theory, we examine the stability of nematic and smectic phases
with respect to nematic-nematic, nematic-smectic and smectic-smectic phase separations.
As usual, the free energy of the system can be written as a sum of ideal and excess
contributions, F' = Fjq + Fex, where the ideal contribution is given by

2
BFalpr ol =Y / drpi (r)[In pi(r) — 1], (1)
=1

while the excess contribution is approximated by the second virial contribution of the
virial series of the free energy:

2 ..
BFex[pr, p2] = —% > /drlpi(n)/dr2pj(r2)fﬁ(r12). (2)

ij=1
3
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In these equations 3 = 1/kT is the inverse thermal energy and p;(r) is the local number
density of the components. The Mayer function of the excess contribution is defined as

Ny —1 cylinders 7 and j overlap,
w(r) = (3)
0 otherwise

For the sake of clarity and simplicity, the local number densities are written as a product
of mean number density p; = N;/V, i = 1,2, and positional distribution function f;(2),
i.e.

pi(2) = pifi(2), i=1,2. (4)

In the nematic phase the probability distribution of the particles is the same everywhere
in space. Particles are arranged in a one-dimensional periodic layered structure in the
smectic phase, so that the local number densities and positional distribution functions
are periodic in the layer spacing g. Taking the direction of the density modulation along
the z axis, we can write that p;(z) = pi(z + g), and consequently f;(z) = fi(z + g). As
the average of the local densities for one period must be equal to the mean density,

1 [9
pi = 5/0 dzpi(z), (5)

it is easy to derive the normalisation constraint for the positional distribution function
of component %

1 9
; | ety = 1. (6)

Therefore the positional distribution functions are equal to unity in the nematic phase,
while they exhibit a peaked structure in the smectic phase, with a higher number density
on the layers. They are the key quantities in the problem and have to be determined by
minimization in order to obtain the equilibrium structure of the system.

Substitution of (4) into (1) and use of the periodic condition (5-6) allows us to obtain
the ideal free-energy density as

. 2
MLV EEER S @
where
1 /9
olfil = /0 dzfi(z)In fi(2) (8)

is proportional to the translational entropy. ¢ favours the nematic phase, since it becomes
zero for f; = 1, while ¢ > 0 for any positionally dependent f;. The excess part of the
free energy can be substantially simplified with the help of Eqns. (2-6), which gives the
following free-energy density term:

BFslfnfl _ L 5~ [
——— = =D piri | dafi(z)
4 29 52 " Jo
x / . d=afi(22) Al (212), 9)
212€ Ve
4
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where A% (212) is the excluded area between two particles of components i and j, having

a relative displacement 215 along the z axis. In the specific case of parallel hard cylinders

ij D; + Dj\?
Aelor) =7 (P 22) O(L [z, (10)
The integral of the excluded area gives the excluded volume,

Vil — /dz Al ( (11)

exc exc

in terms of which the excess free energy of the nematic can be expressed as % > ij PiPj V..
It turns out that the nematic excess free energy density can be considerably reduced in
the smectic phase because of the peaked density structure, so that Eqn. (10) favours
smectic ordering by maximizing the free volume available (packing entropy) for the hard
particles. As a result, competition between the translational entropy and the packing
entropy terms determines the equilibrium structure of the phase. Note that very similar
free-energy expressions can be derived for two-dimensional hard rods on the basis of
Onsager theory. The only difference between the two theories is that the smectic period
is also a free parameter of the smectic ordering and determined by minimization of the
free energy, while the angle that measures the orientation of a rod in a plane is always
between 0 and 27. If we fix the value of the smectic period g, a complete mathematical
correspondence can be made between the two theories.

In order to determine the equilibrium structure of the system, the free energy has to
be minimized with respect to the positional density distributions and the smectic period.
The simplest way to do this is to use a Fourier representation for these functions:

z) =Y _ fijcos(jqz), (12)

J=0

where f;; is the jth order Fourier amplitude of the distribution function of component
i, ¢ = 27/g is the smectic wavenumber, and n is a cut-off integer. Note that the zeroth-
order Fourier components are equal to unity because of the normalisation constraint (6).
Use of a Fourier representation is advantageous since the orthogonality property of the
cosine functions allows for a drastic simplification of the excess free energy. Using Eqns.
(10) and (12), and the orthogonality property of the cosine functions, it is possible to
derive an analytical expression for the excess free energy:

6Fex 13
i sin(kqL
(‘/O)zc + Z oncflkf]k ( qq )> ) (13)
where
. A 2
A = <w> . (14)

In the light of Egs. (7,8,12,13) and (14), one can see that the free-energy density has the
following dependencies

57F = h(p1, p2, ¢, f11, fo1,...), (15)

bt
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where h is the sum of (7) and (13). To get the equilibrium density profile and the free
energy the following partial derivatives have to be zero at given number densities (p; and

p2)

oh Oh )

afli—O, 8f2i—0, 1=1,....n

oh

a—q—O. (16)

Having obtained the Fourier components and wavenumber by solving numerically the set
of equations (16), the equilibrium free energy density can be determined by substitution of
fi; and ¢ into (15). Using the standard thermodynamic relations, the chemical potentials
and pressure can be obtained from the free energy as follows:

oh oh
_ o _on 17
B 91 Bus s (17)
oh oh
P=—h+p 4t 18
B p1 o P2 s (18)

The first non-vanishing results of the set of equations (16) for f;; and ¢ give the
nematic-smectic bifurcation density and wavenumber. From the result of this bifurcation
analysis, the curves of the second-order nematic-smectic phase transition can be drawn.
However there is no guarantee that the phase transition between nematic and smectic
phases is of second order. In addition, no information can be gained from the bifurcation
analysis as far as the stability of nematic-nematic and smectic-smectic demixing transi-
tions are concerned. To make a complete analysis it is necessary to search for demixing
phase transitions in the nematic and smectic phases and for first order phase transitions
between nematic and smectic phases. If a first-order transition between two phases does
occur, the coexisting densities can be obtained from the pressure and chemical potential
conditions. Denoting the coexisting phases as « and 3, the requirement is the equality of
the pressures and chemical potentials of each components in both phases, i.e. P, = Pg,

Hia = p1g, and poq = Hag.

3 Results

In this section we present our bifurcation and Fourier-expansion results for the phase
diagrams of binary mixtures of parallel thin and thick hard cylinders. In addition, to
check the effect of orientational freedom, the Parsons-Lee density functional theory (PL-
DFT) has also been applied to a mixture of freely rotating hard spherocylinders. The
reason for using a different particle shape in the freely rotating case is that the deter-
mination of the overlap region for a cylinder capped with a hemisphere in both ends is
much easier than for cylinders, and in any case the hemispheric ends do not significantly
affect the ordering behaviour of the system (we do not include the PL-DFT equations
here as the theory has been fully presented in earlier publications; see e.g. [28]).

Since all particles have identical lengths, and the properties of systems of parallel
particles are invariant under length scaling along the director, the only free parameter of
the Onsager theory is the diameter ratio between the particles of the two components.
In the following the thin cylinders will be labelled by 1, while the thick ones have label

6
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2. We define the diameter ratio as d = Dy/D;, which therefore is larger than one always.
We present our results in terms of dimensionless quantities, such as reduced pressure
P* = Puvy, packing fraction n = Nyv1/V + Novy/V, and reduced wave number ¢* = gL
and smectic period g* = g/L, where v; is the particle volume of the i-th species.

The bifurcation analysis from the nematic phase allows for a quick overview of how
the nematic-smectic bifurcation line evolves with composition and diameter ratio. Thus,
we first determined the bifurcation packing fraction, pressure and wave number of the
nematic-smectic bifurcation line as a function of composition z = N;/N and d. The
resulting surfaces are presented in Fig. 1. Since both components have the same length,
the resulting wave number (hence smectic period) does not depend on either of the
above parameters, and universal values ¢* = 4.4934 and ¢g* = 1.3983 are obtained at
the bifurcation point. However, Fig. 1 shows that the packing fraction and the pressure
strongly depend on the actual values of composition and diameter ratio (note that the
Onsager theory predicts in some cases unphysical values of the packing fraction; this
shortcoming may be cured by using density scaling, e.g. along the lines of Parsons
and Lee, but it does not qualitatively change the predictions of the Onsager theory).
Starting from the pure phase of either thick or thin rods, the bifurcation packing fraction
decreases as particles of the other species are added to the monodisperse system, i.e.
enhanced stability of the smectic phase can be achieved by mixing thin and thick rods.
This effect can be seen very clearly in the case of a sea of thin rods, where addition of
only a tiny amount of thick rods can substantially decrease the bifurcation density. In
the other end of the bifurcation diagram, addition of thin rods to the fluid of thick rods
has just a slightly decreasing effect on the packing fraction. The reason for this is that
thick rods give rise to a much higher excluded-volume cost in the sea of thin rods than
the other way round. To maximize the free volume available, particles have to arrange
themselves in layers, and this occurs at a much lower packing fraction in the first case.

The enhanced stability of the smectic with respect to the nematic is more pronounced
as the volume difference between the thin and thick cylinders is increased. Since the
bifurcation analysis is only reliable for second-order phase transitions, the determination
of the bulk properties of the smectic phase is crucial to take into account the possible first-
order transitions between nematic and smectic phases and demixing transitions between
two smectic phases. Solving the set of equations for the Fourier components and wave
number, Eqn. (16), and equating the pressure and chemical potentials to obtain the
coexisting phases, we have found that the bifurcation analysis gives the right transition
densities up to d = 2.67. For higher diameter ratios, it is found that the nematic-
smectic transition becomes first order. Also, in the high-pressure regime, a smectic-
smectic demixing transition occurs, as we presently show.

Fig. 2(a) shows a typical phase diagram of a mixture of thin and thick rods where
both first order nematic-smectic transitions and smectic-smectic demixing transitions can
be seen. Interestingly, two smectic demixing transitions are observed; one is closed down
by a lower critical point, while the other is bounded by an upper critical point. In the
inset of Fig. 2(a), we show how the nematic-smectic two-phase region becomes larger
in composition and pressure as the diameter ratio is increased from d = 2.67 to 2.70.
The nematic-smectic transition becomes first order in the thin-rod rich part of the phase
diagram, where the unfavourable thin-thick hard-body interaction is dominant. It can
also be seen that a small region of smectic-smectic demixing, closed by a upper critical
point, develops from the nematic-smectic biphasic region for d = 2.7. As a result, a
smectic-smectic-nematic triple point appears in the phase diagram (note that, at the
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Figure 1: Nematic-smectic bifurcation packing fraction (a), and pressure (b) of binary mixtures of
parallel thin and thick hard rods as a function of composition x and diameter ratio d. The surfaces
are the boundary between nematic and smectic phases. x corresponds to the mole fraction of the

thin component.
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47 Figure 2: Pressure-composition (P*-z) phase diagrams for mixtures of parallel thin and thick hard
48 rods with diameter ratios d = 2.7 (a), 2.75 (b), 3.5 (¢) and 7 (d). The labels N, Ny, No, S, S, So
49 denote the nematic and smectic phases, respectively. x corresponds to the mole fraction of the thin
50 rods. The horizontal short-dashed line indicates the three-phase coexistence pressures in (a), (b)
and (d), while the dashed curve shows the unstable nematic-nematic demixing transition in (¢) and
53 (d). The inset in (a) shows the effect of varying diameter ratio on the stability of nematic-smectic
54 and smectic-smectic phase separations. The values of the diameter ratios in the inset from inside to
55 outside are: d = 2.67, 2.68, 2.69 and 2.70.
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point, two of the phases are critical, so that the point should more properly be called a
critical end point).

As d is increased, a sudden change in the topology of the phase diagram appears.
Both critical points collapse and the segregation regions coalesce. This can be seen in
Fig. 2(b), where no upper and lower critical exist, but a single nematic-smectic-smectic
three-phase line (again two of the phases are critical) divides the nematic-smectic and the
smectic-smectic phase transitions for the system with d = 2.75. Our estimates indicate
that the lower smectic-smectic critical point, which exists whenever these two coexistence
regions occur as separate phenomena, does so for d < 2.705, whereas the upper critical
point appears only in the small interval 2.695 < d < 2.705.

Similar phenomenon has been found in the nematic region of the phase diagram of
the mixture of freely rotating thin and thick rods using Onsager type theories [27]. Dis-
appearance of the lower critical point has been observed experimentally [1], too. Sudden
change of the phase topology can be observed in other types of systems such as the binary
mixture of platelets [41].

At this point it is worthwhile mentioning that the topology of the phase diagram of
two-dimensional binary mixtures of freely rotating hard rectangles [42] can be identical
and show the same trends with increasing size ratio as the three-dimensional mixtures
studied here. Making the change of variable ¢ = 2wz in the integral over the z variable,
the free energy density (15) can be rewritten as a function of ¢, with 0 < ¢ < 27. Since
the orientation of a two-dimensional object can be characterized by the orientational dis-
tribution function h(¢), where the angle ¢ range in the interval 0-27, one could say that
our positional distribution function f(z) may be identified with an orientational distribu-
tion function. The nematic phase of our three-dimensional particles corresponds to the
isotropic phase of two-dimensional particles, while the smectic phase can be associated
with the nematic phase.

The topology of the phase diagram does not change too much with increasing size
difference. The two-phase regions become wider and the smectic phase is more and
more stable with respect to the nematic phase. These trends are shown in Fig. 2(c)
for d = 3.5. For this diameter ratio, experiments demonstrate that a (purely repulsive)
binary mixture of colloidal particles consisting of fd- and PEG-coated fd-viruses shows
a stable first-order nematic-nematic demixing transition [1]. In an earlier study [27] it
was pointed out that this nematic demixing transition can be explained at the level of
Onsager theory using the perfect alignment approximation. However, the possibility of
smectic ordering and, therefore, of transitions from nematic to smectic phases, were not
included in those calculations. Results from the present study show that the nematic-
nematic transition [dashed curve in Fig. 2(c)] is preempted by the transition between
nematic and smectic phases for this value of the diameter ratio. In order to find a
stable nematic-nematic demixing transition, it is necessary to extend our analysis to
larger diameter ratios, which are certainly beyond the range of experimentally feasible
diameter ratios in the above colloidal mixture. We found that the first binary mixture
exhibiting a stable nematic-nematic demixing transition is given by d ~ 7 [see Fig. 2(d)].
The transition becomes stable for mixtures rich in the thin component, for which the
unlike excluded-volume interaction is the strongest.

As we have seen, as the diameter ratio d is increased, smectic demixing at high
pressure becomes stable at decreasing values of pressure; this demixing region is bounded
below by a lower critical point [Fig. 2(a)]. At the same time, as d increases the first-
order nematic-smectic transition becomes wider in composition and eventually develops
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32 Figure 3: Pressure-composition (P*—z) phase diagram for a mixture of freely rotating thin and thick
hard spherocylinders with diameter ratio d = 2.38 and total length L;+D; = 6 (for both components).
The horizontal dashed line indicates the three-phase coexistence pressures. x corresponds to the mole
36 fraction of the thin rods.

a region of smectic demixing bounded by an upper critical point. The two critical points
eventually collapse into a single one to give an increasingly wider segregation region [Fig.
42 2(b—d)]. This mechanism does also occur when the orientational degrees of freedom of
43 the rods are not frozen. Fig. 3 shows a phase diagram pertaining to freely-rotating
44 hard spherocylinders for the case d = 2.38. The inclusion of orientational entropy in
45 these mixtures is therefore essentially irrelevant in the demixing mechanism involving
nematic and smectic phases, save the change of order from second to first in the bulk
nematic-smectic phase transition of the pure components (which persists as a first-order
49 transition for the mixture in the whole composition interval). The reason behind this
50 is the relatively high value of the nematic order parameter at the pressure range where
51 demixing phenomena are occurring.

52 The above results show that the interplay between nematic-smectic and nematic-
nematic phase separations in mixtures of parallel thick and thin rods is indeed very
important. However, a very high size ratio is required to stabilize the nematic-nematic
56 demixing transition, which causes a highly fractionated nematic-smectic transition; this
57 latter feature is missing in the experimentally observed phase diagrams of the fd + fd-
58 PEG colloidal system. The discrepancy between theory and experiment cannot be traced
59 to the most obvious simplifications of the theoretical models; in particular, as we have
seen, similar phase diagrams are obtained irrespective of the inclusion of orientational
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degrees of freedom in the model. This may imply that mixtures of fd and fd-PEG viruses
cannot be modelled as hard bodies. Additional interactions that discourage the formation
of smectic order are needed in the model. We believe such interactions may come from
the chiral character of interactions in fd viruses and from their flexibility.

4 Conclusions

The phase behaviour of a binary mixture of thin and thick rods has been examined
using Onsager and rescaled Onsager theories. Using the restriction of perfect orientational
alignment, i.e. frozen orientational degrees of freedom, both a bifurcation analysis from
the nematic phase and the parametric minimization of the free energy show that the
mixture undergoes a continuous phase transition between nematic and smectic phases
for d < 2.67, irrespective of the composition. For larger diameter ratios, the nematic-
smectic transition becomes of first order when the mixture is rich in thin rods. The
coexisting smectic phase is richer in thick rods than the nematic phase, which reflects the
incompatible hard-body interactions between thick and thin rods, and also that sufficient
entropy can be gained by arranging thick rods in a layered structure. The unfavourable
thin-thick interaction becomes more pronounced for higher diameter ratios, where the
biphasic region of nematic-smectic coexistence gets wider and, in addition, gives rise to
smectic demixing, with one phase rich in thick rods and the other in thin rods. Smectic
segregation becomes more pronounced as pressure (density) is increased, because in this
way packing effects are optimized, even at the cost of decreasing the mixing entropy.

The topology of the phase diagram is identical to that of freely rotating two dimen-
sional binary mixture of hard rods since in both two- and three-dimensional systems
lower and upper critical points terminate the demixing transitions for low values of d,
and three-phase coexistence takes place for high d. The only differences between the two-
and three-dimensional systems is that, in the latter case, nematic and smectic phases cor-
respond, respectively, to isotropic and nematic phases in two dimensions, and that all
transitions are of first order in two dimensions.

Inclusion of the orientational freedom in the theory shows that the orientational en-
tropy does not affect qualitatively either the properties of smectic phases or the smectic
demixing transition. However orientational entropy broadens the biphasic regions, makes
the nematic-smectic phase transition be of first order, and gives rise to the isotropic-
nematic phase transition. To justify the usefulness of the perfect-alignment approxima-
tion and the simple Onsager theory, we plan to extend our calculations to mixtures of
short and long rods. The experimentally observed nematic-nematic demixing transition
has been observed only for very high diameter ratios (d > 7) in the perfect alignment
approximation or in the full model with freely orienting particles. To obtain nematic-
nematic demixing at lower diameter ratios, close to the experimental values d ~ 3, we
believe that flexibility effects and Coulomb interactions have to be explicitely included
in the model. We think that further steps can be achieved along this way on the basis
of earlier studies of the system of slightly flexible hard rods [43], and that of charged
colloidal rods [44].
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