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The Energetics of Inorganic Nanotubes.

Clare L. Bishop† and Mark Wilson∗.

†Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ,

U.K.

∗Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford,

South Parks Road, Oxford OX1 3QZ, U.K.

Abstract

The energetics of inorganic nanotubes (INTs) are investigated using both

atomistic and continuum models. A relatively simple (Tersoff-II) potential

model is used to study the energetics of carbon nanotube (C-NT) formation

for use as a well-understood reference system. INTs formed by folding sections

of MX stoichiometry constructed from both percolating hexagonal and square-

net sheets are modelled. The C-NTs and hexagonal INTs are found to display

folding energetics essentially consistent with a continuum elastic model. The

square net INTs are found to display folding energetics which are strongly

dependent upon the direction along which the originating sheet is folded (and

hence on the morphology of the formed INT). The difference in energies as a

function of INT morphology is exemplified by reference to the high symmetry

cases [the (n, 0)sq and (n, n)sq INTs] which are discussed in terms of the

detailed atomistic interactions.
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I. INTRODUCTION.

The discovery of carbon fullerenes [1] and the subsequent observation of related car-

bon nanotubes [2–4] indicates that the traditional views of phase diagrams may require

re-evaluation for even apparently simple elements. Since these observations, there has been

significant interest in the potential stability of analogous low-dimensional ordered (crys-

talline) structures. The experimental observation of these low dimensional structures can

be broadly split into two classes. Nanotubular (inorganic nanotube - INT) structures can

be isolated for systems such as MoS2, WS2 [5] and NiCl2 [6], generated both by physi-

cal (electron-beam irradiation, laser ablation and arc-discharge) and chemical methods (in

gas-phase reactors) [5]. The structure of these INTs can be related to the bulk “layered”

crystal structures in a direct analogue to the formation of carbon nanotubes from a single

graphene sheet. In addition, INTs have been produced for systems as diverse as BN and

BN/C [7], TiO2 [8] and CdS/CdSe [9] (see ref. [10] for a recent review and more exhaus-

tive list). Alternatively, high resolution transmission electron microscopy studies show how

low-dimensional structures may form by filling carbon nanotubes [11,12] from molten salts

(for example, NiO, PbO, Bi2O3, V2O5 and MoO3 [11,13–16], UCl4 [17], AgCl/AgBr [18,19],

KI [20,21], BaI2 [22], CoI2 [23] and Sb2O3 [24]). In addition, the existence of other INT

structures (i.e. GaN [25], GaSe [26] and elemental phosphorous [27]) has been predicted

theoretically.

For simple ionic salts such as KI, the stability of nanotubular structures can be under-

stood by reference to relatively simple ion-based simulation models [28–33] and by higher

level electronic structure calculations [34]. Furthermore, these models can then be used in

a predictive mode in order to identify possible new structures for experimental investiga-

tion. Recent work, for example, has demonstrated the stability of a novel classes of INTs

whose structures may be understood in terms of the folding of sheets of both square- and

hexagonal-nets [28–33]. The clear implication is that such nanotubular structures may be

ubiquitous, forming a metastable phase diagram which maps onto the (thermodynamic)
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equilibrium phase diagram. A central question, therefore, concerns how to access these

metastable phase diagrams and hence control the final INT morphologies. Such control is

critical if potentially useful physical and electronic properties are to be fully exploited. For

example, bulk semiconductors such as CdS and CdSe would be expected to form INTs in

which the band gaps were morphology-dependent. A key property to be investigated, there-

fore, are the energetics of formation. The energetics of the single-walled carbon nanotubes

(SWCNTs) appear to follow a relatively simple dependence (see ref. [35] and references

therein). However, it is not clear that this simple diameter dependence should transfer to

other nanotubular structures, in particular those in which coulombic interactions may be

significant. An understanding of the factors which control these energetics is critical if the

INTs are to be manufactured in a controlled fashion.

In this Paper we consider the energies of a range of nanotubular structures formed from

both hexagonal sheets and square plain nets. Our goal is to understand the factors which

control these energetics and, as a result, progress towards the formation of longer length-scale

(mesoscopic) models. Two approaches are considered in order to augment the relatively well-

developed atomistic models. Firstly, the INT energies are considered in terms of the energy

required to fold the sheets into cylinders and compared to elastic continuum predictions.

Secondly, the atomistic energies are deconstructed in terms of the interactions of chains of

percolating anion-cation linkages in a manner analogous to that described by Bichoutskaia

and Pyper [36]. The Paper is arranged as follows. The folding of the square and hexagonal

nets is described in section II. Section III describes the details of the atomistic potential

models. In section IV the details of the continuum elastic model, and its comparison to the

atomistic model results, are explored. In section V an analytic atomistic model is developed

and the results compared to both the atomistic potential model and continuum elastic model

results.

3
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II. BACKGROUND.

In addition to the well-documented carbon nanotubes, in this paper we shall also consider

the two classes of INT illustrated in figure 1. The structures of these two classes can be

understood in terms of folding two dimensional sheets of percolating hexagons and squares

respectively. In both cases the unit cells contain two atoms (corresponding to one MX

stoichiometric unit). The folding of the hexagonal sheets are analogous to the folding of the

graphene sheet to form the carbon nanotubes, with the exception that the two atoms in the

unit cell have different chemical identities. In both cases INTs are generated by selecting a

chiral vector, Ch = (na1 + ma2), where a1 and a2 are the respective unit cell vectors. As

a result, pairs of integers (n, m) can be used to define the final INT morphology. In order

to distinguish between the INTs formed from the hexagonal and square plain sheets, we

employ a nomenclature of the form (n, m)hex and (n, m)sq respectively.

III. POTENTIAL MODELS.

The carbon potential chosen for this study is a three-body (Tersoff II) model [38]. This

model reproduces the basic bulk structural and energetic properties, whilst retaining a rela-

tively simple functional form. The relatively simple form allows it to be readily incorporated

with the ionic potentials to allow for the direct observation of C-NT filling in which the en-

casing carbon tube is treated as flexible [37].

The ion-ion interactions are accounted for using a rigid ion pair-wise additive Born-Mayer

potential,

U(rij) = Bije
−aijrij +

QiQj

rij
− Cij

6

r6
ij

, (3.1)

where Bij and aij are parameters representing the contribution of the ion radii to the re-

pulsive wall and the rate of decay of the repulsion respectively, Cij
6 are the dipole-dipole

dispersion parameters and Qi(j) is the (formal) charge on ion i(j). The long-range electro-

static interactions are accounted for using an Ewald summation. In the present work two

4
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basic potential models are considered which differ simply in terms of the short-range param-

eters (and hence favour different bulk crystal structures). The first parameter set (termed

potential I hereafter) thermodynamically favours the wurtzite (B4, four-coordinate ions)

over the rocksalt (B1, six-coordinate ions) whilst for the second parameter set (potential

II) the two crystal structures have equal energies (and different volumes) at their respective

minima. The potential parameters are listed in table I.

IV. FOLDING MODEL.

If the two-dimensional structures (figure 1) behave as simple macroscopic sheets then an

elastic continuum model suggests a relationship between the INT energy and the radius of

the form [39,40]

Eσ =
πETh3

12R
, (4.1)

where E is the elastic modulus of the sheet, h is the thickness of the sheet being folded, T

is the length of the final folded tube and R is the radius of the formed INT. T can be linked

to the area of the folded tube by A = 2πRT and so,

Eσ =
Eh3A

24R2
. (4.2)

For a INT generated from folded hexagons, the unit cell (which contains two atoms) has

area Auc =
√

3
2

a2, giving the total area of the INT as A = NAuc, where N is the number of

unit cells making up the INT. As a result, for a hexagon-based INT

Eσ

N
=

√
3Eh3a2

48R2
, (4.3)

whilst for a square-based INT (where Auc = a2)

Eσ

N
=

Eh3a2

24R2
. (4.4)

Alternatively, these may be expressed simply as,

5
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Eσ

N
=

F

R2
, (4.5)

which allows for a more direct comparison between systems as a somewhat arbitrary value

of the sheet thickness (h) does not have to be selected. Figure 2 shows the energies of a

range of single-walled CNTs of differing morphologies displayed relative to the energy of

an infinite graphene sheet. Each successive curve in the main body of the figure

represents the energy of a nanotube of a specified morphology as a function of

the radius of that CNT. In each case an effective infinite CNT is modelled by

constructing a simulation cell so as to contain an integral number of unit cells and

employing periodic boundary conditions. The (n, n) and (n, 0) CNTs simulation

cells contain 20 and 12 unit cells respectively (corresponding to simulation cells

of the order to 50Å in length). The simulation cell length at each radius is

varied in order to determine the energy minimum at that radius. As a result,

reach minima represents the energy as a function of INT radius for a fully

relaxed nanotube of given morphology. The energies are shown plotted against

the radii of the fully relaxed carbon nanotubes. The figure inset also shows the fit of the

respective energy minima to a R−n polynomial, showing that, for this model, n ≃ 2 which

is consistent with an elastic continuum model. The carbon nanotubes energetics, modelled

with the Tersoff-II potential, appear to follow simple continuum behaviour and, as a result,

their energetics appears to depend most significantly on their radii and only subtlety their

detailed morphology. The limited number of nanotubes of morphology other then (n, 0)

and (n, n) studied (here the (3, 1), (3, 2), (4, 1) and (5, 3) C-NTs studied using repeating

simulation cells containing 4, 4 , 10 and 2 unit cells respectively ) further support

this observation. Use of equation 4.3 requires the definition of a sheet thickness (h) in

order to determine the elastic modulus (usually chosen as the nearest-neighbour layer-layer

separation in graphite, giving h = 3.4Å). However, as our focus here is on a range of

INTs, we shall quote values for the collection of parameters, F . The present work gives

values of F = 1.62eVÅ
−2

and F = 1.57eVÅ
−2

for the (n, 0) and (n, n) C-NTs respectively.

6
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These compare with DFT-derived values of between 2.0eVÅ
−2

for a range of (n, n) tubes

and 2.15eVÅ
−2

and 2.16eVÅ
−2

for the (8, 4) and (10, 0) nanotubes respectively [41]. We

note that detailed high level DFT calculations indicate a subtle dependence of the folding

energies on the C-NT morphology [42].

Figure 3 shows the energies of the hexagonal INT structures, constructed for both

(n, 0)hex and (n, n)hex morphologies, again as a function of the INT radii, displayed

relative to the energy of the infinite hexagonal sheet. As for figure 2, successive

curves show the energies of each INT (or specific morphology) as a function

of radius with the energy minimum representing the fully relaxed energy and

radius for that specific INT. Again, effectively infinite INTs are constructed

by applying periodic boundary conditions in which the central simulation cell

contains four and seven unit cells for the (n, 0)hex and (n, n)hex morphologies re-

spectively. The energies shown are obtained using both potentials I and II. Again, as

highlighted by the fit to a polynomial of the form R−n (shown in the inset to the figure), the

value of n ≃ 2 indicates that these systems appear to behave as an elastic continuum. The

F−values are 0.73 and 0.62eVÅ
−2

for the (n, 0)hex and (n, n)hex INTs with potential I, and

0.73 and 0.60eVÅ
−2

for the corresponding INTs using potential II. The relative invariance

of these values to the details of the atomistic potential model indicates that is may be the

coulombic interactions which are dominating these properties.

Figure 4a shows the energies of the square-based INT structures, over a range of mor-

phologies, as a function of their radii, displayed relative to the energy of an infinite square

plain sheet. As for figures 2 and 3 each curve represents the energy as a function

of the radius for a tube of specified morphology, in these cases calculated for

repeating simulation cells containing five unit cells. In contrast to either the carbon

(figure 2) and hexagonal INTs (figure 3) the energetics of these structures appear to show

a strong dependence on their morphology, coupled with the clear dependence on radius. In

order to understand these energies we shall initially focus on the (n, 0)sq and (n, n)sq INT

7
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morphologies. Figure 4b shows the energetics of these two INT morphologies as a ln-ln plot

in order to highlight any simple polynomial dependence on the INT radius. The (n, 0)sq

INTs appear to follow the R−2 dependence associated with the elastic continuum, whist the

(n, n)sq INTs appear to show a more complex radius-dependence, with best fit polynomial

orders of n ∼ 2.9 and n ∼ 3.4 for potentials I and II respectively. As a result, we are able to

determine an elastic modulus-related F -value for the (n, 0)sq INTs of 1.42 and 1.51eVÅ
−2

.

Table II compares the elastic moduli-related F−values (equation 4.5) for the systems

showing the R−2 continuum elastic model energetic dependence of the INT radius. Overall,

therefore, both the hexagonal- and square-net-based (n, 0)sq INTs are easier to fold (smaller

F ) than the C-NTs of corresponding radius. The square-net-based INTs are more difficult

to form than the corresponding hexagonal sheets.

V. CHAIN MODEL.

A. (n, n)sq INTs.

In order to understand the relative energetics of the (n, 0)sq and (n, n)sq INTs, it is

clear that we need to go beyond an elastic continuum model and involve the atomistic

detail of their structures. Our starting point for this analysis is the work of Bichoutskaia

and Pyper [36]. These authors consider the energetics of pseudo-one-dimensional crystal

structures which are directly related to an underlying bulk rocksalt structure. The natural

starting point is to consider an infinite square-net plain (figure 1), for which the electrostatic

(coulombic) energy may be expressed as

U coul(a, b) = −2ln2

b
+ U ic(a, b), (5.1)

where a and b are the nearest-neighbour anion-cation separations parallel to and perpendic-

ular to a chosen vector linking a nearest-neighbour anion-cation pair and which is chosen to

correspond to the final INT major axis. In equation 5.1 the first term represents the sum

of the ionic interactions in a single linear chain (for which the Madelung constant is 2ln2)

8
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whilst the second term represents the inter-chain (ic) interaction of a given chain with all

other chains. Following Bichoutskaia and Pyper, the inter-chain energy may be written as

U ic(a, b) = 2
∞
∑

i=1







(−1)i

ia
+ 2

∞
∑

j=1

[

(−1)i+j

(i2a2 + j2b2)1/2

]







, (5.2)

where i and j are indices labelling ions parallel and perpendicular to the major axis (the ‘b’

direction). Alternatively, taking x = a/b (the ratio of the nearest-neighbour anion-cation

separations parallel to and perpendicular to the final INT major axis),

U ic(b, x) = 2
∞
∑

i=1







(−1)i

ibx
+ 2

∞
∑

j=1

[

(−1)i+j

b(i2x2 + j2)1/2

]







,

=
2

b

∞
∑

i=1







(−1)i

ix
+ 2

∞
∑

j=1

[

(−1)i+j

(i2x2 + j2)1/2

]







. (5.3)

The total energy of the planar structure is given by

U tot(b, x) = U ic(b, x) − 2ln2

b
+ Usr(b, x), (5.4)

where Usr(b, x) is the short-range energy. Assuming only the nearest-neighbour anion-cation

interactions to be significant, and neglecting dispersion terms, then the Born-Mayer potential

gives

Usr(b, x) = 2B+−e−αb + 2B+−e−αbx. (5.5)

The above equations for the interaction energy can be readily modified to deal with an

(n, n)sq INT. In these cases the interaction energy becomes

U ic
(n,n)(b, x) =

1

b

2n
∑

i=1







(−1)i

Lix
+ 2

∞
∑

j=1

[

(−1)i+j

(K2
i x

2 + j2)1/2

]







, (5.6)

where

Li =
sin

(

iπ
2n

)

sin
(

π
2n

) , (5.7)

is a geometric factor that accounts for the folding of the square plain (see Appendix I) .

The replacement of a sum to infinity with a sum to 2n reflects the change from considering

9
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an infinite sheet to a finite folded sheet. The 2n limit also reflects the presence of two

anion-cation chains per unit cell (which run at an angle of 45o to both a1 and a2).

Figure 5a shows the (n, n)sq INT energy as a function of the parameter n for key

values of the INT dimensions b and x. Each point represents the optimal energy of an

INT (displayed with respect to the energy of the infinite unfolded sheet) with

the structure relaxed with respect to the constraints listed below. These are:

• b is fixed to the value obtained from the energy minimisation of the infinite square

plain (b = 4.070au for potential I and b = 4.620au for potential II and a = b (x = 1).

• b fixed at the infinite square plain values, with x allowed to relax at each n.

• Both b and x are allowed to fully relax at each n.

In all cases b and x are obtained by finding the energy minima numerically. Figure 5a

highlights the effect of successive relaxations, with the relaxation of x appearing more en-

ergetically significant than the relaxation of b alone. Figure 5b shows the relaxed geometric

factor, x, as a function of the n-index for the (n, n)sq INTs. For the small INTs x is greater

than one, as observed experimentally [20]. The corresponding geometric parameters ob-

tained by Bichoutskaia and Pyper are shown for comparison. The sections considered are

(2× 2×∞), (3× 3×∞) and (4× 4×∞), where (m×m×∞), refers to the number of ions

along each side of the square cross-section perpendicular to the major crystallite axis. To

allow for a direct comparison with the present work, these values are plotted with the num-

ber of molecules per square plain along the x−axis. The multiple values for each crystallite

reflect changes in the repulsive wall hardness expressed in terms of polynomial A/rm, where

m = {6, 9, 10.5, 12} which acts to control the INT geometry. The use of an exponential

potential in the current work has an analogous effect. For example, further increasing the

short-range parameter BMX (i.e. effectively increasing the cation radius) has the effect of

further damping the relaxed a/b ratio.

Equation 5.6 can be used to define an effective Madelung constant,

10
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Mb(x) = −2ln2 +
2n
∑

i=1







(−1)i

Kix
+ 2

∞
∑

j=1

[

(−1)i+j

(K2
i x

2 + j2)1/2

]







. (5.8)

Figure 6 shows the value of the Mb as a function of the index n. The Madelung constant

highlights the effect of relaxing both b and x more dramatically than considering the bare

energetics. The (n, n)sq Madelung constants rapidly tend to the two dimension square planar

limit (Mb = −1.618) as n increases. For comparison, the figure also shows the Madelung

constants from reference [36] calculated for sections of the bulk rocksalt crystal structure.

Again, these values are plotted against the number of molecules in a square cross-section

perpendicular to the crystallite major axis. As would be expected, the bulk-like structures

show Madelung constants which tend towards the bulk rocksalt limit (Mb = −1.7476). As

would be expected, the (3×3×∞) crystallite becomes energetically favourable with respect

to a nanotube of comparable density (number of ions per unit length) reflecting the presence

of fully coordinated ions in the former crystallite. However, these energies refer to the free

(unenclosed by a C-NT) crystallites. In the confined (cylindrical) environments afforded

by the C-NTs the INT-like structures would be expected to be energetically favoured, at

least for relatively small diameter structures. We note that, for example, mass spectrometry

experiments [43] coupled with potential model calculations [44] indicate the presence of

(MgO)n clusters constructed from percolating (MgO)3 hexagons [or (3, 3)sq INTs in the

present notation].

B. (n, 0)sq INTs.

An analogous set of equations can be derived to account for the interactions in the (n, 0)sq

INTs. The anion-cation chain energy is modified to become,

U chain
(n,0) = −2

b

m=∞
∑

m=1

(−1)m+1

[

(Dm
⊥ )2 + (Dm

‖ )2
]

1

2

, (5.9)

where Dm
‖ and Dm

⊥ are the components parallel and perpendicular to the final formed INT

major axis, that is,
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Dm
‖ =

m
√

2

2,
(5.10)

Dm
⊥ =

√
2n

π
sin

(mπ

2n

)

. (5.11)

Again, the INT is considered as constructed from n chains (labelled q [q = 1, 2, ...n− 1, n]),

U ic
(n,0) = −1

b

n
∑

q=2

(−1)q

[

(Dq−1
⊥ )

2
+ (Dq−1

‖ )
2]

1

2

− 1

b

n
∑

q=2

∞
∑

p=q

(−1)p+1

[

(Dp
⊥)2 + (Dr

‖)
2
]

1

2

+
(−1)p+1

[

(Dr
⊥)2 + (Dp

‖)
2
]

1

2

, (5.12)

where r = |p + 2(1 − q)| The first term in equation 5.12 represents the interaction of an

ion in chain q with the ions along a direction perpendicular to this chain (when the sheet

is initially unfolded). The second and third terms represent the interactions with all other

ions in the sheet.

Figure 7a shows the energies of an anion-cation chain making up part of a (n, 0)sq INT,

as a function of the INT radius (displayed relative to the anion-cation length-scale

b). As would be expected, as n increases the energy of the chain approaches the linear chain

limit of −2ln2/b. The observation of a less negative energy for the chains comprising the

(n, 0)sq INTs, compared with the linear chains (and hence the chains comprising the (n, n)sq

INTs), is simply the result of the effective “twisting” of the chain away from linear, the effect

of which becomes more pronounced as n is reduced (and the twist becomes tighter). Figure

7b shows the inter-chain energies, U ic, for both the (n, 0)sq and (n, n)sq INTs. As a result,

both the inter-chain interaction energies and the chain energies (figure 7) are relatively

unfavorable for the (n, 0)sq INTs.

Figure 4 shows the results of the chain model calculations compared with the origi-

nal atomistic results. The chain model successfully reproduces the trend obtained for the

original atomistic calculations. Both the differences between the (n, 0)sq and (n, n)sq INT

energetics, and the difference between the results obtained from the full Born-Mayer poten-

tial and the chain model, can be attributed to the relative magnitudes of the changes in
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both the coulombic and short-range anion-anion interactions as the square nets are folded.

Figure 8 shows both the Born-Mayer short-range anion-cation and anion-anion interaction

energies for both the (n, 0)sq and (n, n)sq INTs. Although the anion-cation short-range en-

ergy dominates the anion-anion (as would be expected given the relative nearest-neighbour

separations) the change in the anion-anion energy is much more significant for the (n, 0)sq

folding. The difference can be understood by considering the two folding chiral vectors in

terms of figure 1. For the (n, 0)sq fold pairs of nearest-neighbour anions are moved closer

together whilst, for the (n, n)sq INTs, it is the next-nearest neighbour interactions which

change most significantly.

VI. FILLING THE CARBON NANOTUBES.

The effect of the dependence of the square-net-based INTs on the direction of folding can

be highlighted by performing a series of direct filling simulations as described previously [28].

For example, here we apply a model for KI shown previously to reproduce both known bulk

and enclosed crystallite structures [28]. The carbon nanotubes are treated as fixed atomistic

entities with the ion-carbon interactions modelled via Lennard-Jones potentials with the

parameters derived by reference to the isoelectronic noble gases. A filling simulation is

performed by removing a cylindrical section from an equilibrated liquid configuration (for KI

evolving at T = 900K compared with an estimated simulation melting point of Tm ≃ 700K).

A fixed C-NT is placed in the cylindrical pore and the ends sealed with sections of graphene

sheet or order to allow molecular dynamics to be performed in order to re-attain equilibrium.

Once the system has been re-equilibrated the graphene end-groups are removed which allows

the ions to enter the tube.

Figure 9 shows the filling statistics using three different sized carbon nanotubes [the

(10,10), (11,11) and (12,12) respectively]. For each C-NT six initial starting configurations

are generated by extracting liquid configurations from dynamic simulations at different times

such that the configurations can be considered as independent. The INT structures obtained
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here are heavily biased towards the (n, m)sq where n = m or n ≃ m, reflecting the strong

thermodynamic preference for these structures. These results are in contrast to the analogous

filling simulations in which hexagonal structures are generated, which show a full range of

morphologies [45].

VII. SUMMARY AND CONCLUSIONS.

In this paper we have considered the formation energetics of three basic nanotube struc-

tures. The carbon nanotubes and hexagonal INTs, both of whose structures can be ra-

tionalised in terms of folding a single sheet of percolating hexagons, when modelled with

relatively simple potentials, appear to show folding energies consistent with an elastic con-

tinuum model. As a result, these systems behave essentially as a sheet of paper in the sense

that the folding energies appear independent of the direction along which they are folded

(and hence independent of the final INT morphology). For the INT structures which can

be rationalised in terms of the folding of square nets, however, the folding energetics appear

heavily morphology dependent.
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IX. APPENDIX I.

Figure 10a shows a schematic diagram of the anions and cations in a single

plain perpendicular to the major INT axis for a (n, n)sq nanotube. Looking along

the major INT axis then angle between neighbouring atoms with respect to the

origin (the centre of the INT) is given by π/n. The distance from a given ion 0

to another ion labelled i in this plain, Ki, is given by
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Ki = 2Rsin
{

iπ

2n

}

, (9.1)

where R is the INT radius, defined as the distance from a point on the central

INT axis vector which intersects a plain perpendicular to that vector which

contains a group of ions, and an ion in this plain. The INT radius, R, can be

expressed in terms of the anion-cation length-scale a as

R =
a

2sin
{

π
2n

} . (9.2)

As a result, the distance Ki is given by

Ki =
asin

{

iπ
2n

}

sin
{

π
2n

} = aLi. (9.3)

X. APPENDIX II.

Figure 10b shows the square net sheet which can be used to construct the

(5, 0)sq INT by folding along the chiral vector, Ch. The interactions are divided

into those along an anion-cation chain (intra-chain) labelled q in equation 5.12

and those between these chains (inter-chain interactions). Considering the ion

coloured yellow in figure 10b, which belongs to the q = 1 chain, then the red

and blue lines correspond to the q = 3 chain. The first summation in equation

5.12 represents the interaction of the ion coloured yellow with all ions along a

vector perpendicular to the q = 1 anion-cation chain vector (i.e. along the yellow

line in the figure). The further two summations in equation 5.12 represent the

interaction of this ion with the ions to the left and right of the yellow line

respectively. The figure highlights the interaction with the q = 3 anion-cation

chain, with a number of (p, r) indices for equation 5.12 highlighted. The presence

of two summations reflects the difference in anion-cation separations parallel to

and perpendicular to the major axis when the sheet is folded. In the absence of

this difference then the double summation can be subsumed into a single term.

15

Page 15 of 37

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

TABLES

Potential ij aij Bij C6

I MX 1.50 8.68 2.09

XX 1.50 61.66 115.987

II MX 1.50 12.94 2.09

XX 1.50 61.66 115.987

TABLE I. Potential parameters for the Born-Mayer potential.

System F/eVÅ
−2

C (n, 0) 1.62

C (n, n) 1.57

Hexagonal INTs, potential I, (n, 0)hex 0.73

Hexagonal INTs, potential I, (n, n)hex 0.62

Hexagonal INTs, potential II, (n, 0)hex 0.73

Hexagonal INTs, potential II, (n, n)hex 0.60

Square INTs, potential I, (n, 0)sq 1.42

Square INTs, potential II, (n, 0)sq 1.51

TABLE II. Fit parameters assuming an R−2 (continuum elastic model) dependence of the

folding energy.
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FIGURES

FIG. 1. The (a) square- and (b) hexagonal-net-based INT structures constructed from the two

atom unit cells highlighted in the dashed boxes and described by the unit cell vectors a1 and

a2 respectively. Both sheets can be folded along a chiral vector Ch to give a general (n,m)X

(X={sq,hex}) INT structure whose major axis points along the vector T. The construction of the

(2, 2)sq and (3, 2)hex INTs are highlighted.

FIG. 2. Energies of carbon nanotubes of morphology (n, 0) (red lines) and (n, n) (black lines)

as a function of their respective radii and shown relative to the energy of an infinite graphene sheet.

Each successive curve shows the energy of a CNT of a given morphology as a function of the radius

of that CNT. As a result, the minimum represents the relaxed radii of the fixed geometries. In

addition, the energy curves for a number of alternative morphologies (green lines - the (3, 1), (3, 2),

(4, 1) and (5, 3) C-NTs) are shown to highlight the absence of significant morphology-dependence

in the C-NT formation energy. The inset shows the ln − ln plot of the respective energy minima

for the (n, 0) and (n, n) C-NTs along with the respective linear regression fits.

FIG. 3. Energies of the hexagonal INT calculated using potential I (black lines) and potential

II (red), shown relative to the energy of an infinite hexagonal net, and plotted as a function of

the radii. The solid and dashed lines correspond to (n, n)hex and (n, 0)hex INTs respectively. The

inset shows the corresponding ln − ln plot of the respective energy minima along with the best

polynomial fits.
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FIG. 4. (a) Energies of the square-net-based INTs in the (n, n)sq (red lines) and (n, 0)sq (black

lines) morphologies as a function of their respective relaxed radii and plotted relative to the energy

of the respective infinite square-net sheets. The lower and upper panels show the curves calculated

for potentials I and II respectively. In both panels the green and blue crosses show the results of

the chain model calculations discussed in section V. The these cases the lines joining the points are

shown as a guide to the eye. (b) A ln − ln plot of the respective energy minima from both panels

(potentials I and II) from part (a). The black points are for potential I and the red for potential

II respectively. The × symbols correspond to the (n, 0)sq INTs and the + symbols to the (n, 0)sq

INTs. The solid and dashed lines highlight the best polynomial fits.

FIG. 5. (a) (n, n)sq energies from the chain model discussed in section V. Key: black + - both

b and x fully relaxed, green + - x relaxed at fixed b, ◦ - both x and b fixed. Lines are drawn

between the points as a guide to the eye. (b) The ratio of the length-scales a and b (x = a/b) as a

function of the n index. The × symbols show the calculations of Bichoutskaia and Pyper [36] for

(m × m × ∞) rocksalt crystallites. These points are plotted against the number of molecules in

a plain perpendicular to the crystallite major axis. The four points at each such value represent

the results of four different short-range repulsive potentials. The lines show the results from the

present work. Key: black + - potential I, green + - potential II. The ◦ symbols shows the effect

of raising the short-range parameter BMX to 23.0au to highlight its continued effect of increasing

the effective cation radius on the geometric parameter x. Again, lines are drawn as a guide to the

eye.

FIG. 6. Effective Madelung constants, Mb(x), from the present work for the (n, n)sq INTs

compared with the values from the work of Bichoutskaia and Pyper [36] on rocksalt crystallites.

Key (present work): black crosses - fully relaxed x and b, △ - b only relaxed, ◦ - x only relaxed.

The + points shows data from reference [36] for the (m×m×∞) rocksalt crystallites. These data

are plotted against the number of molecules in a plain perpendicular to the crystallite major axis.

The dashed horizontal lines show the two dimensional plain and bulk rocksalt limits. In all cases

the lines are drawn between points as a guide to the eye.
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FIG. 7. The breakdown of the system energies for the (n, n)sq (+ and dashed lines) and (n, 0)sq

(× and solid lines) INTs. The upper panel (a) shows the energy of a single anion-cation chain,

U chain
X [X = (n, n)sq, (n, n)sq] which is constant for the (n, n)sq INT. The lower panel (b) shows

the inter-chain energy, U ic
X . The lines are drawn between points as a guide to the eye.

FIG. 8. The short-range repulsive energies for the (n, n)sq (+ and green lines) and (n, 0)sq

(× and black lines) INTs for the anion-cation (upper panel) and anion-anion (lower panel) pairs

respectively. Note the difference in y-scale in the two cases. The lines are drawn between points

as a guide to the eye.

FIG. 9. Filling statistics for filling the (10,10), (11,11) and (12,12) carbon nanotubes by molten

KI. Six different liquid structures are used to generate the initial configurations. The different

coloured blocks indicate the final INT structure.

FIG. 10. (a) Schematic diagram to explain the origin of the geometric factor Li

(5.7) to account for the (n, n)sq nanotube folding as described in Appendix I. The red

and blue circles represent the anions and cations respectively. The length-scale a is

the nearest-neighbour anion-cation separation. R is the radius of the INT, defined

as the distance between the origin, O (which is a point on the central axis vector

which intersects with the plain of anions and cations shown) and an ion on the edge

of this plain. Ki is defined as the distance from the ion labelled 0 to an ion labelled

i. (b) Schematic diagram to show the formation of a (5, 0)sq INT from a square plain

as described in Appendix II. The interaction of the ion coloured yellow (on the chain

labelled by q = 1) can be divided into three sets of interactions. The first summation

in equation 5.12 covers the interactions between this ion and the ions perpendicular

to the q = 1 chain (i.e. along the yellow line. The second and third summations cover

the interactions with ions to the left and right of the yellow line. For example, a

number of the (p, r) indices for equation 5.12 for the interaction between the yellow

ion and the q = 3 chain are highlighted.
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