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equilibrium phase diagram. A central question, therefore, concerns how to access these metastable phase diagrams and hence control the final INT morphologies. Such control is critical if potentially useful physical and electronic properties are to be fully exploited. For example, bulk semiconductors such as CdS and CdSe would be expected to form INTs in which the band gaps were morphology-dependent. A key property to be investigated, therefore, are the energetics of formation. The energetics of the single-walled carbon nanotubes (SWCNTs) appear to follow a relatively simple dependence (see ref. [START_REF] Saito | Physical Properties of Carbon Nanotubes[END_REF] and references therein). However, it is not clear that this simple diameter dependence should transfer to other nanotubular structures, in particular those in which coulombic interactions may be significant. An understanding of the factors which control these energetics is critical if the INTs are to be manufactured in a controlled fashion.

In this Paper we consider the energies of a range of nanotubular structures formed from both hexagonal sheets and square plain nets. Our goal is to understand the factors which control these energetics and, as a result, progress towards the formation of longer length-scale (mesoscopic) models. Two approaches are considered in order to augment the relatively welldeveloped atomistic models. Firstly, the INT energies are considered in terms of the energy required to fold the sheets into cylinders and compared to elastic continuum predictions.

Secondly, the atomistic energies are deconstructed in terms of the interactions of chains of percolating anion-cation linkages in a manner analogous to that described by Bichoutskaia and Pyper [START_REF] Bichoutskaia | [END_REF]. The Paper is arranged as follows. The folding of the square and hexagonal nets is described in section II. Section III describes the details of the atomistic potential models. In section IV the details of the continuum elastic model, and its comparison to the atomistic model results, are explored. In section V an analytic atomistic model is developed and the results compared to both the atomistic potential model and continuum elastic model results. In addition to the well-documented carbon nanotubes, in this paper we shall also consider the two classes of INT illustrated in figure 1. The structures of these two classes can be understood in terms of folding two dimensional sheets of percolating hexagons and squares respectively. In both cases the unit cells contain two atoms (corresponding to one MX stoichiometric unit). The folding of the hexagonal sheets are analogous to the folding of the graphene sheet to form the carbon nanotubes, with the exception that the two atoms in the unit cell have different chemical identities. In both cases INTs are generated by selecting a chiral vector, C h = (na 1 + ma 2 ), where a 1 and a 2 are the respective unit cell vectors. As a result, pairs of integers (n, m) can be used to define the final INT morphology. In order to distinguish between the INTs formed from the hexagonal and square plain sheets, we employ a nomenclature of the form (n, m) hex and (n, m) sq respectively.

III. POTENTIAL MODELS.

The carbon potential chosen for this study is a three-body (Tersoff II) model [38]. This model reproduces the basic bulk structural and energetic properties, whilst retaining a relatively simple functional form. The relatively simple form allows it to be readily incorporated with the ionic potentials to allow for the direct observation of C-NT filling in which the encasing carbon tube is treated as flexible [37].

The ion-ion interactions are accounted for using a rigid ion pair-wise additive Born-Mayer potential,

U(r ij ) = B ij e -a ij r ij + Q i Q j r ij - C ij 6 r 6 ij , (3.1) 
where B ij and a ij are parameters representing the contribution of the ion radii to the repulsive wall and the rate of decay of the repulsion respectively, C ij 6 are the dipole-dipole dispersion parameters and Q i(j) is the (formal) charge on ion i(j). The long-range electrostatic interactions are accounted for using an Ewald summation. In the present work two If the two-dimensional structures (figure 1) behave as simple macroscopic sheets then an elastic continuum model suggests a relationship between the INT energy and the radius of the form [39,40]

E σ = πET h 3 12R , (4.1) 
where E is the elastic modulus of the sheet, h is the thickness of the sheet being folded, T is the length of the final folded tube and R is the radius of the formed INT. T can be linked to the area of the folded tube by A = 2πRT and so, 

E σ = Eh 3 A 24R 2 . ( 4 
E σ N = √ 3Eh 3 a 2 48R 2 , (4.3) 
whilst for a square-based INT (where

A uc = a 2 ) E σ N = Eh 3 a 2 24R 2 . (4.4)
Alternatively, these may be expressed simply as, 5 

E σ N = F R 2 , (4.5) 
which allows for a more direct comparison between systems as a somewhat arbitrary value of the sheet thickness (h) does not have to be selected. Figure 2 These compare with DFT-derived values of between 2.0eV Å-2 for a range of (n, n) tubes and 2.15eV Å-2 and 2.16eV Å-2 for the (8,4) and (10, 0) nanotubes respectively [41]. We note that detailed high level DFT calculations indicate a subtle dependence of the folding energies on the C-NT morphology [42]. In order to understand the relative energetics of the (n, 0) sq and (n, n) sq INTs, it is clear that we need to go beyond an elastic continuum model and involve the atomistic detail of their structures. Our starting point for this analysis is the work of Bichoutskaia and Pyper [START_REF] Bichoutskaia | [END_REF]. These authors consider the energetics of pseudo-one-dimensional crystal structures which are directly related to an underlying bulk rocksalt structure. The natural starting point is to consider an infinite square-net plain (figure 1), for which the electrostatic (coulombic) energy may be expressed as

U coul (a, b) = - 2ln2 b + U ic (a, b), (5.1) 
where a and b are the nearest-neighbour anion-cation separations parallel to and perpendicular to a chosen vector linking a nearest-neighbour anion-cation pair and which is chosen to whilst the second term represents the inter-chain (ic) interaction of a given chain with all other chains. Following Bichoutskaia and Pyper, the inter-chain energy may be written as

U ic (a, b) = 2 ∞ i=1    (-1) i ia + 2 ∞ j=1 (-1) i+j (i 2 a 2 + j 2 b 2 ) 1/2    , (5.2) 
where i and j are indices labelling ions parallel and perpendicular to the major axis (the 'b' direction). Alternatively, taking x = a/b (the ratio of the nearest-neighbour anion-cation separations parallel to and perpendicular to the final INT major axis),

U ic (b, x) = 2 ∞ i=1    (-1) i ibx + 2 ∞ j=1 (-1) i+j b(i 2 x 2 + j 2 ) 1/2    , = 2 b ∞ i=1    (-1) i ix + 2 ∞ j=1 (-1) i+j (i 2 x 2 + j 2 ) 1/2    .
(5.

3)

The total energy of the planar structure is given by

U tot (b, x) = U ic (b, x) - 2ln2 b + U sr (b, x), (5.4) 
where U sr (b, x) is the short-range energy. Assuming only the nearest-neighbour anion-cation interactions to be significant, and neglecting dispersion terms, then the Born-Mayer potential gives U sr (b, x) = 2B +-e -αb + 2B +-e -αbx .

(5.5)

The above equations for the interaction energy can be readily modified to deal with an (n, n) sq INT. In these cases the interaction energy becomes

U ic (n,n) (b, x) = 1 b 2n i=1    (-1) i L i x + 2 ∞ j=1 (-1) i+j (K 2 i x 2 + j 2 ) 1/2    , (5.6) 
where

L i = sin iπ 2n sin π 2n , (5.7) 
is a geometric factor that accounts for the folding of the square plain (see Appendix I) .

The replacement of a sum to infinity with a sum to 2n reflects the change from considering an infinite sheet to a finite folded sheet. The 2n limit also reflects the presence of two anion-cation chains per unit cell (which run at an angle of 45 o to both a 1 and a 2 ). • b fixed at the infinite square plain values, with x allowed to relax at each n.

• Both b and x are allowed to fully relax at each n.

In all cases b and x are obtained by finding the energy minima numerically. Figure 5a highlights the effect of successive relaxations, with the relaxation of x appearing more energetically significant than the relaxation of b alone. Figure 5b 

M b (x) = -2ln2 + 2n i=1    (-1) i K i x + 2 ∞ j=1 (-1) i+j (K 2 i x 2 + j 2 ) 1/2    .
(5.8)

Figure 6 shows the value of the M b as a function of the index n. The Madelung constant highlights the effect of relaxing both b and x more dramatically than considering the bare energetics. The (n, n) sq Madelung constants rapidly tend to the two dimension square planar limit (M b = -1.618) as n increases. For comparison, the figure also shows the Madelung constants from reference [START_REF] Bichoutskaia | [END_REF] calculated for sections of the bulk rocksalt crystal structure.

Again, these values are plotted against the number of molecules in a square cross-section perpendicular to the crystallite major axis. As would be expected, the bulk-like structures

show Madelung constants which tend towards the bulk rocksalt limit (M b = -1.7476). As would be expected, the (3 × 3 × ∞) crystallite becomes energetically favourable with respect to a nanotube of comparable density (number of ions per unit length) reflecting the presence of fully coordinated ions in the former crystallite. However, these energies refer to the free (unenclosed by a C-NT) crystallites. In the confined (cylindrical) environments afforded by the C-NTs the INT-like structures would be expected to be energetically favoured, at least for relatively small diameter structures. We note that, for example, mass spectrometry experiments [43] coupled with potential model calculations [44] indicate the presence of (MgO) n clusters constructed from percolating (MgO) An analogous set of equations can be derived to account for the interactions in the (n, 0) sq

INTs. The anion-cation chain energy is modified to become, 

U chain (n,0) = - 2 b m=∞ m=1 (-1) m+1 (D m ⊥ ) 2 + (D m ) 2 1 2 , ( 5 
D m = m √ 2 2,
(5.10)

D m ⊥ = √ 2n π sin mπ 2n . (5.11)
Again, the INT is considered as constructed from n chains (labelled q [q = 1, 2, ...n -1, n]),

U ic (n,0) = - 1 b n q=2 (-1) q (D q-1 ⊥ ) 2 + (D q-1 ) 2 1 2 - 1 b n q=2 ∞ p=q (-1) p+1 (D p ⊥ ) 2 + (D r ) 2 1 2 + (-1) p+1 (D r ⊥ ) 2 + (D p ) 2 1 2 , (5.12) 
where r = |p + 2(1 -q)| The first term in equation 5.12 represents the interaction of an ion in chain q with the ions along a direction perpendicular to this chain (when the sheet is initially unfolded). The second and third terms represent the interactions with all other ions in the sheet. INTs), is simply the result of the effective "twisting" of the chain away from linear, the effect of which becomes more pronounced as n is reduced (and the twist becomes tighter). Figure 7b shows the inter-chain energies, U ic , for both the (n, 0) sq and (n, n) sq INTs. As a result, both the inter-chain interaction energies and the chain energies (figure 7) are relatively unfavorable for the (n, 0) sq INTs. both the coulombic and short-range anion-anion interactions as the square nets are folded.

Figure 8 shows both the Born-Mayer short-range anion-cation and anion-anion interaction energies for both the (n, 0) sq and (n, n) sq INTs. Although the anion-cation short-range energy dominates the anion-anion (as would be expected given the relative nearest-neighbour separations) the change in the anion-anion energy is much more significant for the (n, 0) sq folding. The difference can be understood by considering the two folding chiral vectors in terms of figure 1. For the (n, 0) sq fold pairs of nearest-neighbour anions are moved closer together whilst, for the (n, n) sq INTs, it is the next-nearest neighbour interactions which change most significantly.

VI. FILLING THE CARBON NANOTUBES.

The effect of the dependence of the square-net-based INTs on the direction of folding can be highlighted by performing a series of direct filling simulations as described previously [28].

For example, here we apply a model for KI shown previously to reproduce both known bulk and enclosed crystallite structures [28]. The carbon nanotubes are treated as fixed atomistic entities with the ion-carbon interactions modelled via Lennard-Jones potentials with the parameters derived by reference to the isoelectronic noble gases. A filling simulation is performed by removing a cylindrical section from an equilibrated liquid configuration (for KI evolving at T = 900K compared with an estimated simulation melting point of T m ≃ 700K).

A fixed C-NT is placed in the cylindrical pore and the ends sealed with sections of graphene sheet or order to allow molecular dynamics to be performed in order to re-attain equilibrium.

Once the system has been re-equilibrated the graphene end-groups are removed which allows the ions to enter the tube.

Figure 9 shows the filling statistics using three different sized carbon nanotubes [the (10,10), (11,11) and (12,12) here are heavily biased towards the (n, m) sq where n = m or n ≃ m, reflecting the strong thermodynamic preference for these structures. These results are in contrast to the analogous filling simulations in which hexagonal structures are generated, which show a full range of morphologies [45].

VII. SUMMARY AND CONCLUSIONS.

In this paper we have considered the formation energetics of three basic nanotube structures. The carbon nanotubes and hexagonal INTs, both of whose structures can be rationalised in terms of folding a single sheet of percolating hexagons, when modelled with relatively simple potentials, appear to show folding energies consistent with an elastic continuum model. As a result, these systems behave essentially as a sheet of paper in the sense that the folding energies appear independent of the direction along which they are folded (and hence independent of the final INT morphology). For the INT structures which can be rationalised in terms of the folding of square nets, however, the folding energetics appear heavily morphology dependent.
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IX. APPENDIX I. 

K i = 2Rsin iπ 2n , (9.1) 
where R is the INT radius, defined as the distance from a point on the central INT axis vector which intersects a plain perpendicular to that vector which contains a group of ions, and an ion in this plain. The INT radius, R, can be expressed in terms of the anion-cation length-scale a as

R = a 2sin π 2n . (9.2) 
As a result, the distance K i is given by

K i = asin iπ 2n sin π 2n = aL i . (9.3) 
X. APPENDIX II.

Figure 10b shows the square net sheet which can be used to construct the (5, 0) sq INT by folding along the chiral vector, C h . The interactions are divided into those along an anion-cation chain (intra-chain) labelled q in equation 5.12 and those between these chains (inter-chain interactions). Considering the ion coloured yellow in figure 10b, which belongs to the q = 1 chain, then the red and blue lines correspond to the q = 3 chain. The first summation in equation 5.12 represents the interaction of the ion coloured yellow with all ions along a vector perpendicular to the q = 1 anion-cation chain vector (i.e. along the yellow line in the figure). The further two summations in equation 5.12 represent the interaction of this ion with the ions to the left and right of the yellow line respectively. The figure highlights the interaction with the q = 3 anion-cation chain, with a number of (p, r) indices for equation 5.12 highlighted. The presence of two summations reflects the difference in anion-cation separations parallel to and perpendicular to the major axis when the sheet is folded. In the absence of this difference then the double summation can be subsumed into a single term. The + points shows data from reference [START_REF] Bichoutskaia | [END_REF] for the (m × m × ∞) rocksalt crystallites. These data are plotted against the number of molecules in a plain perpendicular to the crystallite major axis.

The dashed horizontal lines show the two dimensional plain and bulk rocksalt limits. In all cases the lines are drawn between points as a guide to the eye. 
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 232 For a INT generated from folded hexagons, the unit cell (which contains two atoms) has area A uc = √ giving the total area of the INT as A = NA uc , where N is the number of unit cells making up the INT. As a result, for a hexagon-based INT
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 6 shows the energies of a range of single-walled CNTs of differing morphologies displayed relative to the energy of an infinite graphene sheet. Each successive curve in the main body of the figure represents the energy of a nanotube of a specified morphology as a function of the radius of that CNT. In each case an effective infinite CNT is modelled by constructing a simulation cell so as to contain an integral number of unit cells and employing periodic boundary conditions. The (n, n) and (n, 0) CNTs simulation cells contain 20 and 12 unit cells respectively (corresponding to simulation cells of the order to 50 Å in length). The simulation cell length at each radius is varied in order to determine the energy minimum at that radius. As a result, reach minima represents the energy as a function of INT radius for a fully relaxed nanotube of given morphology. The energies are shown plotted against the radii of the fully relaxed carbon nanotubes. The figure inset also shows the fit of the respective energy minima to a R -n polynomial, showing that, for this model, n ≃ 2 which is consistent with an elastic continuum model. The carbon nanotubes energetics, modelled with the Tersoff-II potential, appear to follow simple continuum behaviour and, as a result, their energetics appears to depend most significantly on their radii and only subtlety their detailed morphology. The limited number of nanotubes of morphology other then (n, 0) and (n, n) studied (here the (3, 1), (3, 2), (4, 1) and (5, 3) C-NTs studied using repeating simulation cells containing 4, 4 , 10 and 2 unit cells respectively ) further support this observation. Use of equation 4.3 requires the definition of a sheet thickness (h) in order to determine the elastic modulus (usually chosen as the nearest-neighbour layer-layer separation in graphite, giving h = 3.4 Å). However, as our focus here is on a range of INTs, we shall quote values for the collection of parameters, F . The present work gives values of F = 1.62eV Å-2 and F = 1.57eV Å-2 for the (n, 0) and (n, n) C-NTs respectively.

Figure 3

 3 Figure 3 shows the energies of the hexagonal INT structures, constructed for both (n, 0) hex and (n, n) hex morphologies, again as a function of the INT radii, displayed relative to the energy of the infinite hexagonal sheet. As for figure 2, successive curves show the energies of each INT (or specific morphology) as a function of radius with the energy minimum representing the fully relaxed energy and radius for that specific INT. Again, effectively infinite INTs are constructed by applying periodic boundary conditions in which the central simulation cell contains four and seven unit cells for the (n, 0) hex and (n, n) hex morphologies respectively. The energies shown are obtained using both potentials I and II. Again, as highlighted by the fit to a polynomial of the form R -n (shown in the inset to the figure), the value of n ≃ 2 indicates that these systems appear to behave as an elastic continuum. The F -values are 0.73 and 0.62eV Å-2 for the (n, 0) hex and (n, n) hex INTs with potential I, and 0.73 and 0.60eV Å-2 for the corresponding INTs using potential II. The relative invariance of these values to the details of the atomistic potential model indicates that is may be the coulombic interactions which are dominating these properties.

Figure 4a shows the 7 Page

 7 Figure4ashows the energies of the square-based INT structures, over a range of morphologies, as a function of their radii, displayed relative to the energy of an infinite square plain sheet. As for figures 2 and 3 each curve represents the energy as a function of the radius for a tube of specified morphology, in these cases calculated for repeating simulation cells containing five unit cells. In contrast to either the carbon (figure2) and hexagonal INTs (figure3) the energetics of these structures appear to show a strong dependence on their morphology, coupled with the clear dependence on radius. In order to understand these energies we shall initially focus on the (n, 0) sq and (n, n) sq INT
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 8 correspond to the final INT major axis. In equation 5.1 the first term represents the sum of the ionic interactions in a single linear chain (for which the Madelung constant is 2ln2)

9 Page

 9 

Figure

  Figure 5a shows the (n, n) sq INT energy as a function of the parameter n for key values of the INT dimensions b and x. Each point represents the optimal energy of an INT (displayed with respect to the energy of the infinite unfolded sheet) with the structure relaxed with respect to the constraints listed below. These are:
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 1037 shows the relaxed geometric factor, x, as a function of the n-index for the (n, n) sq INTs. For the small INTs x is greater than one, as observed experimentally [20]. The corresponding geometric parameters obtained by Bichoutskaia and Pyper are shown for comparison. The sections considered are (2 × 2 × ∞), (3 × 3 × ∞) and (4 × 4 × ∞), where (m × m × ∞), refers to the number of ions along each side of the square cross-section perpendicular to the major crystallite axis. To allow for a direct comparison with the present work, these values are plotted with the number of molecules per square plain along the x-axis. The multiple values for each crystallite reflect changes in the repulsive wall hardness expressed in terms of polynomial A/r m , where m = {6, 9, 10.5, 12} which acts to control the INT geometry. The use of an exponential potential in the current work has an analogous effect. For example, further increasing the short-range parameter B M X (i.e. effectively increasing the cation radius) has the effect of further damping the relaxed a/b ratio. Equation 5.6 can be used to define an effective Madelung constant,

  3 hexagons [or (3, 3) sq INTs in the present notation]. B. (n, 0) sq INTs.
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 91137 where D m and D m ⊥ are the components parallel and perpendicular to the final formed INT major axis, that is,

Figure 7a shows the

  Figure 7a shows the energies of an anion-cation chain making up part of a (n, 0) sq INT, as a function of the INT radius (displayed relative to the anion-cation length-scale b). As would be expected, as n increases the energy of the chain approaches the linear chain limit of -2ln2/b. The observation of a less negative energy for the chains comprising the (n, 0) sq INTs, compared with the linear chains (and hence the chains comprising the (n, n) sq
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 41237 Figure4shows the results of the chain model calculations compared with the original atomistic results. The chain model successfully reproduces the trend obtained for the original atomistic calculations. Both the differences between the (n, 0) sq and (n, n) sq INT energetics, and the difference between the results obtained from the full Born-Mayer potential and the chain model, can be attributed to the relative magnitudes of the changes in

Figure 10a shows a schematic 14 Page 14 of 37 URL

 1437 Figure10ashows a schematic diagram of the anions and cations in a single plain perpendicular to the major INT axis for a (n, n) sq nanotube. Looking along the major INT axis then angle between neighbouring atoms with respect to the origin (the centre of the INT) is given by π/n. The distance from a given ion 0 to another ion labelled i in this plain, K i , is given by
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 1637123173746 FIGURES FIG. 1. The (a) square-and (b) hexagonal-net-based INT structures constructed from the two atom unit cells highlighted in the dashed boxes and described by the unit cell vectors a 1 and a 2 respectively. Both sheets can be folded along a chiral vector C h to give a general (n, m) X (X={sq,hex}) INT structure whose major axis points along the vector T. The construction of the (2, 2) sq and (3, 2) hex INTs are highlighted.
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 18377891937 FIG. 7. The breakdown of the system energies for the (n, n) sq (+ and dashed lines) and (n, 0) sq (× and solid lines) INTs. The upper panel (a) shows the energy of a single anion-cation chain, U chain X

15 Page 15 of 37 URL

  

		Molecular Physics		
		TABLES		
	Potential	ij	a ij	B ij	C 6
	I	MX	1.50	8.68	2.09
		XX	1.50	61.66	115.987
	II	MX	1.50	12.94	2.09
		XX	1.50	61.66	115.987
		TABLE I. Potential parameters for the Born-Mayer potential.	
		F System o r C (n, 0)			F /eV Å-2 1.62
	C (n, n) Hexagonal INTs, potential I, (n, 0) hex P e Hexagonal INTs, potential I, (n, n) hex e r Hexagonal INTs, potential II, (n, 0) hex			1.57 0.73 0.62 0.73
	Hexagonal INTs, potential II, (n, n) hex Square INTs, potential I, (n, 0) sq Square INTs, potential II, (n, 0) sq TABLE II. Fit parameters assuming an R -2 (continuum elastic model) dependence of the 0.60 R 1.42 e 1.51 v i e w folding energy.
				O n	
				l y	

: http://mc.manuscriptcentral.com/tandf/tmph