
HAL Id: hal-00513210
https://hal.science/hal-00513210

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DL_MULTI - A molecular dynamics program to use
distributed multipole electrostatic models to simulate

the dynamics of organic crystals
Maurice Leslie

To cite this version:
Maurice Leslie. DL_MULTI - A molecular dynamics program to use distributed multipole electrostatic
models to simulate the dynamics of organic crystals. Molecular Physics, 2008, 106 (12-13), pp.1567-
1578. �10.1080/00268970802175308�. �hal-00513210�

https://hal.science/hal-00513210
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

DL_MULTI - A molecular dynamics program to use 
distributed multipole electrostatic models to simulate the 

dynamics of organic crystals 
 
 

Journal: Molecular Physics 

Manuscript ID: TMPH-2008-0086.R1 

Manuscript Type: Full Paper 

Date Submitted by the 
Author: 

29-Apr-2008 

Complete List of Authors: Leslie, Maurice; STFC Daresbury Laboratory 

Keywords: Ewald sum, multipoles, molecular dynamics, polymorphism 

  

Note: The following files were submitted by the author for peer review, but cannot be converted 
to PDF. You must view these files (e.g. movies) online. 

dlmultivec.tex 

 
 

 

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics



For Peer Review
 O

nly
DL MULTI — A molecular dynamics program to

use distributed multipole electrostatic models to

simulate the dynamics of organic crystals

M Leslie

STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD

Abstract

DL MULTI has been developed to extend the Molecular Dynamics simulation program DL POLY [1] to

model rigid molecules whose intermolecular interactions include a distributed multipole model for the

electrostatic interactions. The adaptations use anisotropic atom-atom potentials, corresponding to atomic

multipoles up to hexadecapole. The lattice sums of these multipoles are evaluated using the Ewald method,

using a technique using Stone’s S functions [2] which describes the multipoles in a molecule fixed reference

frame. An algorithm for determining suitable cutoffs is described and errors in the direct space part of

the Ewald summation discussed. Thus DL MULTI provides a general purpose MD program for studying

polar rigid organic molecules in their liquid and crystalline states with a realistic intermolecular potential

suitable for studying polymorphism. Example applications to uracil and 5-azauracil show that, with the

new summation method, a realistic electrostatic model can be used without excessive computer time being

used.
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1 Introduction

Most molecular and macromolecular simulations with long range electrostatic interactions are per-

formed in periodic boundary conditions, and there are many techniques for summing periodic

charge distributions. Methods based on the Ewald sum are widespread and have been reviewed by

Toukmaji [3]. All rely on dividing the slowly converging lattice sums into two rapidly converging

sums, one in direct space and one in reciprocal space. Particle-Mesh Ewald (PME) [4] uses Fast

Fourier Transforms (FFT) to accelerate the reciprocal space sum, but uses a monopole expansion

of the electrostatic charge density. The Fast Multipole Method (FMM) was originally developed

for a single non-periodic cell [5]. Schmidt and Lee [6] extended the method to periodic cells, and

have also combined the method with FFT techniques [7]. The FMM expands the charge density

of subcells of the simulation cell, containing many molecules in molecular systems. In contrast,

Smith [8], describes an Ewald simulation in which the charge density of a single molecule is ex-

panded as distributed multipoles up to quadrupole. Toukmaji [9] has combined PME methods

with electrostatic dipole interactions on individual molecules. Unlike the FMM expansions, Smith

uses Cartesian multipoles to expand the charge density. Challacombe et al. [10] compare a num-

ber of these multipole methods. The present work uses a distributed multipole analysis (DMA)

in spherical harmonics to expand the charge density of an isolated molecule. A unique feature

which sets it apart from all other earlier work is the definition of the spherical harmonics in an

axis system fixed with respect to the molecular axes. This removes the need to rotate the spherical

harmonics to the laboratory reference frame after each time step, a procedure which requires the

use of Wigner matrices. Stone [2] has used this technique to describe the interaction between two

isolated molecules, and derives S functions to describe the interaction. This paper will derive an

Ewald expansion of the distributed multipole analysis in terms of the S functions.
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Our primary interest is in the solid state and in particular polymorphism, although the program

has application to other systems. The pharmaceutical, pigment and energetic materials industries

produce polar organic molecules, usually in a crystalline form. Hence, polymorphism, the ability

of many of their products to crystallise in different crystal structures is a major concern of these

industries [11]. Polymorphs have different physical properties, and so an unexpected change to the

crystalline form during processing or storage is a disaster, but the controlled use of a metastable

polymorphic form can be advantageous. A specific polymorphic form has to be used in a drug

formulation, and so the regulatory and patent issues involved in polymorphism have led to con-

siderable activity in devising methods of finding all the polymorphs of a given molecule, either

experimentally or by computational means.

Computational methods of predicting which crystal structures will be observed for a given

molecule from the chemical diagram have evolved over the last decade [12]. There are still many

issues to be solved before polymorphism can be predicted [12]. Methods that have had some

success in the international blind tests of crystal structure prediction [13, 14] have been based on

searching for the global minimum in the static lattice energy. However, most such searches find

far more distinct crystal structures within the energy range of possible polymorphism than known

polymorphs [15]. Some of these hypothetical energetically feasible crystal structures may indeed

correspond to as yet undiscovered polymorphs, indeed, such predicted structures have been used to

characterise polymorphs discovered [16] after the predictions were published [17]. However, most of

the energetically feasible unobserved structures are probably not observed because the simple static

lattice energy search does not reflect the complex interplay of kinetic and thermodynamic factors

involved in the nucleation and growth of crystals under different conditions of solvent, temperature

and pressure. The phenomena of concomitant crystallisation [18], where more than one polymorph

crystallises in the same experiment, or disappearing polymorphs [19], where it proves extremely

difficult to produce new samples of a well characterised polymorph after a more stable form has

been produced, warn that understanding polymorphism sufficiently to produce a reliable predictive

model is a major scientific challenge.
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One key ingredient to understanding polymorphism will be a proper understanding of the

effects of temperature on the dynamics of organic crystal structures. The prediction of the relative

stability of different structures as a function of temperature requires free energies rather than

lattice energies, and a careful consideration of the most appropriate approximations [20]. Harmonic

approximation estimates of the relative free energies of different known polymorphs [21] show that

entropy differences were small compared with the lattice energy differences. Similarly, harmonic

approximation estimates of the intermolecular zero-point energy and entropy at the melting point of

pyridine [22] produced a different energetic ordering than the lattice energy for the many structures

predicted to be a few kJ/mol more stable than the known polymorphs. However, the use of the

harmonic approximation for the motions within such soft organic crystals is questionable, and

the motions for which there is significant anharmonicity will vary considerably between different

crystal structures. For example, the modes of hydrogen bonded chains of carboxylic acids will differ

considerably from the modes of crystal structures based on hydrogen bonded dimers, yet acetic

acid [23], formic acid and tetrolic acid [24] all have many energetically feasible crystal structures

based on both motifs, and indeed a dimer and chain based polymorph are known for tetrolic

acid. Relatively few comparisons [25] have been made of the phonon frequencies of molecular

solids as calculated from molecular dynamics simulations [26] and the use of various harmonic

and other approximations. Clearly, a deeper insight into the effect of temperature on the motions

within molecular crystals is required before their relative thermodynamic stability can be properly

assessed.

The kinetics as well as the thermodynamics of phase transitions between different polymorphs

of organic crystals are also important for polymorph prediction. Constant pressure molecular

dynamics methods [27], which allow the shape of the simulation cell to change, have been used to

study a few simple transformations in molecular solids. This method could be used more widely

to study known polymorphic phase transitions. Such studies will show how to diagnose when the

transformation between a hypothetical low energy structure and a known structure is so facile that

the hypothetical structure would never be observed. Obviously closely related crystal structures are
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already eliminated from crystal structure prediction searches, but when there is a relationship, e.g.

the same hydrogen bonded sheet, stacked in different translationally related ways, then determining

whether two polymorphs will be observed (as in the case of indigo [28]) or not, depends on the

kinetics.

Thus, there is a clear need for a program to be able to perform a wide range of molecular

dynamics simulations on organic crystal structures, which can be readily used for a wide range

of organic molecules, in the low symmetry space groups which they generally adopt. The major

barrier to providing a program that can simulate organic crystal structures to the required accuracy

is that it must be capable of using model intermolecular potentials that are sufficiently realistic

to reproduce the crystal structures. For polar and hydrogen bonded molecules, the potential has

to correctly model the balance between the hydrogen bonding interactions, the π—π interactions

involved between the aromatic rings and the van der Waals interactions of the hydrocarbon groups.

High accuracy in the intermolecular potential is required in crystal structure prediction, as the

lattice energy searches rely on the relative accuracy of the lattice energies of the thousands to

millions of hypothetical structures considered. This requirement is proving a major incentive for the

development of more accurate methods of modelling intra and intermolecular potentials for organic

molecules [12, 29, 30]. It is clear that accurate models for the electrostatic forces are required for all

organic molecules (with the possible exception of the saturated hydrocarbons) as this contribution

is very dependent on the relative orientation of the molecules in the different crystal structures.

The use of distributed multipole electrostatic models [31, 2], where the charge distribution of each

molecule is represented by sets of atomic multipoles derived from the ab initio charge density of the

molecule, has improved [32] the range of molecules where the lattice energy minimum reproduces

the experimental crystal structure to reasonable accuracy. Since the distributed multipole model

automatically represents the anisotropic electrostatic forces arising from lone pairs and π electron

density etc, such models predict the directionality of hydrogen bonding and other intermolecular

interactions [33, 34]. Thus a general method of modelling the intermolecular forces between organic

molecules, that is sufficiently realistic for simulating the organic solid state of a range of organic
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molecules, will require the use of anisotropic atom-atom multipolar electrostatic models.

Hence, we have extended the general purpose MD simulation package DL POLY [1] to simulate

rigid organic models whose intermolecular interactions are described by a distributed multipole

electrostatic model. The resulting program DL MULTI allows Molecular Dynamics calculations to

be performed with the same models that are used in simulating molecular clusters and surfaces in

the program ORIENT [35] and organic crystal structures and properties by static lattice energy

minimisation in the program DMAREL [36, 37]. The extension of DL POLY to use anisotropic

atom-atom interactions, of the form dictated by the multipole expansion of the electrostatic energy,

with their associated non-central forces and torques [2, 36, 38] essentially follows ORIENT and

DMAREL.

DL MULTI has already been used to study liquid water [39] at constant pressure and temper-

ature, using high rank atomic multipoles, and the liquid structure and self-diffusion coefficients

show significant sensitivity to the higher rank multipoles. The results of this paper show that, with

the new Ewald summation method, DL MULTI is capable of simulating organic crystal structures

at constant pressure and temperature. Future applications will use this simulation tool to anal-

yse the molecular motions and phase transitions within organic crystals, as a tool to understand

polymorphism.

The performance of DL MULTI, and particularly the problem with cutoffs and the Ewald

summation, are illustrated by example simulations on uracil and 5-azauracil. These were chosen as

similar rigid hydrogen bonding molecules, with a variety of hydrogen bonding donors and acceptors,

which adopt very different crystal structures. Uracil adopts a crystal structure with hydrogen

bonding in all three directions. Although the observed structure was predicted [40] to be the global

minimum in the lattice energy, there are other hypothetical structures involving different hydrogen

bonds within the energy range of possible polymorphism. In contrast, 5-azauracil adopts a crystal

structure of hydrogen bonded sheets, which was correctly predicted [41] as the global minimum in

the lattice energy without knowledge of the experimental structure. The competitive local minima

were all based on the same hydrogen bonded sheet motif.
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2 Force Field

Anisotropic atom-atom potentials have previously been used in MD simulations, but with specific

programming for the individual system [42]. In some cases, the electrostatic model has included

atomic dipoles. Other studies have emphasised the use of atom-atom anisotropy in the short

range interactions, such as the study of molecular chlorine [43, 44], bromine and iodine [45], or

the anisotropic carbon only potential model for butane [42]. The program DL MULTI provides

the facility to use an accurate distributed multipole electrostatic model, which in conjunction with

an isotropic repulsion-dispersion potential, should provide sufficiently realistic potentials for the

simulation of a range of C/H/N/O rigid organic molecules. It could be easily extended to use

anisotropic repulsion models, using the methodology within DMAREL [46] when needed to model

atoms such as Cl which have a non-spherical repulsion in organic molecules.

The ab initio charge distribution of the rigid molecular model has to be calculated relative to

a set of molecule-fixed axes. For uracil and 5-azauracil, the molecular structures and charge dis-

tribution were obtained by optimisation of the MP2(fc) 6-31G** wavefunction, using the program

Gaussian [47]. This charge density is then subjected to a distributed multipole analysis (DMA) [31]

performed using the program GDMA [48] to represent the charge distribution by a set of multipoles

Q̃A
l1κ1

up to hexadecapole (l1 ≤ 4), referred to the molecule fixed axes, on each atomic site A. The

electrostatic interaction energy of a periodic lattice of molecules can then be evaluated, up to total

multipole moment for the interaction of l = 4 (l = l1 + l2). Although a limited amount of work has

been carried out with higher values of total l, the contribution to the energy from terms of l = 4

is found to be small for the organic systems which are usually studied. The program DL MULTI

uses molecular fixed axes defined by the centre of mass and principal inertial axes. The input

multipoles, which are defined with respect to a user defined axis system, are transformed, using

Wigner matrices, to the molecular principal moment of inertia reference frame. Since this choice

of axes still reflects any molecular symmetry, there will be a number of zero multipole moment

components according to the molecular symmetry.

The repulsion-dispersion potential is assumed to be of an isotropic atom-atom form and the
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existing capabilities of DL POLY are used. For these examples, the repulsion-dispersion form used

was:

Erep−dis =
1

2

∑

A

∑

B

∑

N

((
ĀAĀB

) 1

2 exp

(
−1

2

(
B̄A + B̄B

)
rABN

)

−
(
C̄AC̄B

) 1

2

r6
ABN


 (1)

where atom A is in molecule 1 and atom B is in molecule 2 and A and B must be in different

molecules if N = 0. Ā B̄ and C̄ are the short range potential parameters. This interaction between

a pair must be summed over all sites A within a unit cell and over all sites B in the entire lattice,

translated by direct space lattice vectors N , to give the energy per unit cell. The parameters

used for C, N, O and hydrogens bonded to carbon (HC) were taken from the empirically fitted

parameters of Williams [49, 50], and the parameters for the polar hydrogen atoms (HN) from the

extension of this parameters set to hydrogen bonding molecules [32].

3 Description of the Ewald method

The equation for the interaction between two spherical harmonic point multipoles is first expanded

as an infinite series of irregular spherical harmonics equation (3.3.3) of [2]. This equation is derived

from an expansion of 1/rAB.

EAB =
1

4πǫ0

∑

l1,l2

∑

m1m2m

(−1)l2




l1 + l2

l1




× Q̂A
l1m1

Q̂B
l2m2

Il1+l2,m(r)




l1 l2 l1 + l2

m1 m2 m


 (2)
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where


l1 + l2

l1


 =

(
(2l1 + 2l2 + 1)!

(2l1)!(2l2)!

) 1

2

and Il1+l2,m(r) is an irregular spherical harmonic, Q̂A
l1m1

is a multipole moment operator, which is

a regular spherical harmonic of the charge distribution about the centre.




l1 l2 l1 + l2

m1 m2 m




is a Wigner 3j symbol [52]. The energy is summed over all atoms and over all unit cells as for the

repulsion dispersion energy (equation (1)) except that the interactions within a molecule for N = 0

are included and subtracted out later on. This is necessary in order to make an atom in a molecule

interact with a periodic array of other atoms so that an Ewald transformation can be carried out.

Ecoul =
1

2

∑

A

∑

B

∑

N

1

4πǫ0

∑

l1,l2

∑

m1m2m

(−1)l2




l1 + l2

l1




× Q̂A
l1m1

Q̂B
l2m2

Il1+l2,m(rABN )




l1 l2 l1 + l2

m1 m2 m


 (3)

The irregular spherical harmonics can be replaced by an expression involving a sum of terms which

are lth order differentials of 1/r. Using the notation of Tough and Stone equation (2) of [53]

Ilm(r
:

) = (−1)l
[
2l/(2l)!

]1/2 ∑

α1...αl

∇αl
. . .∇α1

(r−1) 〈α1 . . . αl|12 . . . l; m〉 (4)

where ∇α is the Cartesian component of the gradient operator ∇ and 〈α1 . . . αl|12 . . . l; m〉 is the

Cartesian-spherical transformation coefficient [53]. When the irregular spherical harmonics are

summed over a lattice we can replace the lattice sum of (r−1) by the Ewald function to give the

energy of interaction between a site multipole and a lattice of multipoles at the other sites. The

desired expression for the Ewald function denoted A(r
:

) is taken from Saunders et al. equation (44)

of [54]

A(r
:

) = −π/(γV ) + B(γ, r
:

) + C(γ, r
:

) (5)

B(γ, r
:

) =

′∑

N

1 − erf(γ1/2|r
:

− r
:

N
|)

|r
:

− r
:

N
| (6)
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C(γ, r
:

) =
4π

V

′∑

n

|K
::

n
|−2 exp


−

|K
::

n
|2

4γ
+ iK

::

n
· r




=
8π

V

′′∑

n

|K
::

n
|−2 exp



−|K

::

n
|2

4γ


 cos(K

::

n
· r

:

)

=
8π

V

′′∑

n

G(Kn) cos(K
::

n
· r

:

) (7)

where r
:

N
and K

::

n
are lattice vectors in direct and reciprocal space respectively and γ is a positive

constant which determines the convergence of the direct and reciprocal space sums. The term

−π/(γV ) cancels out for electroneutral cells if the same screening parameter γ is used for all

terms.
∑

′

N in equation (6) implies that the sum extends over all direct space lattice vectors except

that the |r
:

− r
:

N
|−1 term is omitted if r

:

− r
:

N
= 0.

∑
′

n in equation (7) indicates that the reciprocal

lattice vector K
::

n
= 0 is omitted and

∑
′′

n takes advantage of the symmetry of reciprocal space and

implies that the sum is over a hemisphere of reciprocal space omitting K
::

n
= 0. As will be shown

later, the K
::

n
= 0 term is either going to diverge (l < 2), be indeterminate or have a finite limit

(l = 2) or equal zero (l > 2). The justification of omitting it is that its value depends on the nature

of the macroscopic surface of the crystal being simulated. To evaluate the Ewald sum of the lattice

energy, A(r
:

) from equation (5) is substituted for the lattice sum of (r−1) in equation (3) using (4)

to expand the irregular spherical harmonic.

We will consider the term in reciprocal space first. The Cartesian differential gradient operator

will only operate on r
:

in equation (7). Now

∇α cos(K
::

n
· r

:

) = Knα
∂

∂(K
::

n
· r

:

)
cos(K

::

n
· r

:

) (8)

Hence

∇αl
. . .∇α1

cos(K
::

n
· r

:

) = Knα1 . . . Knαl
∂l

∂(K
::

n
· r

:

)l
cos(K

::

n
· r

:

)

= Knα1 . . . Knαl cos(l)(K
::

n
· r

:

) (9)
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where the notation cos(l)(K
::

n
· r

:

) is used for the lth differential of cos(K
::

n
· r

:

). Substituting into

equation (4) summed over lattice vectors gives

(∑

N

Ilm(r
:

)

)

rl

= (−1)l
[
2l/(2l)!

]1/2 8π

V

′′∑

n

G(Kn) cos(l)(K
::

n
· r

:

)

×
∑

α1...αl

Knα1 . . .Knαl 〈α1 . . . αl|12 . . . l; m〉 (10)

Tough and Stone equation (1) of [53] give a corresponding expression for the regular spherical

harmonics of r.

Rlm(r
:

) =
[
(2l)!/2l

]1/2
(l!)−1

∑

α1...αl

rαl
. . . rα1

〈α1 . . . αl|12 . . . l; m〉 (11)

This is of the same form as equation (10) with the distance r replaced with the reciprocal lattice

vector K
::

n
. This is the key transformation which allows the evaluation of the reciprocal space

terms. Making this substitution in (10) gives

(∑

N

Ilm(r
:

)

)

rl

= (−1)l
[
2l/(2l)!

]1/2 8π

V

′′∑

n

G(Kn) cos(l)(K
::

n
· r

:

)

×
[
2l/(2l)!

]1/2
l!Rlm(K

::

n
)

=
(−1)l

(2l − 1)!!

8π

V

′′∑

n

G(Kn) cos(l)(K
::

n
· r

:

)Rlm(K
::

n
) (12)

where

1/(2l − 1)!! = 2ll!/(2l)! = 1/1.3.5 . . . (2l − 1) (13)

Substituting the lattice summed irregular solid harmonics into equation (3) gives (From now on

the subscript coul will be dropped).

Erl =
1

2

∑

A

∑

B

1

4πǫ0

∑

l1,l2

∑

m1m2m

(−1)l2




l1 + l2

l1




× Q̂A
l1m1

Q̂B
l2m2




l1 l2 l1 + l2

m1 m2 m


 (−1)l

(2l − 1)!!

8π

V

11
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×
′′∑

n

G(Kn) cos(l)(K
::

n
· r

:

AB
)Rlm(K

::

n
) (14)

This equation is still not in a convenient form as the multipole moment operators Q̂A
l1m1

and Q̂B
l2m2

are still defined in the laboratory reference frame and we need them in the molecule-fixed reference

frame. However, the transformation used by Stone [51] may be used. The transformation of the

reference frames is given by

Q̂A
l1m1

=
∑

k

Q̃A
l1k1

Dl
mk(ΩA)∗ (15)

where Dl
mk(ΩA) is a Wigner rotation matrix [52] and ΩA describes the orientation of molecule A.

The transformation leads to an expression which contains Stone’s S functions defined by equation

(3.3.7) of [2]

S̄k1k2

l1l2j(ΩA, ΩB, K̂n) = il1−l2−j




l1 l2 j

0 0 0




−1

∑

m1m2m




l1 l2 j

m1 m2 m




× Dl1
m1k1

(ΩA)∗Dl2
m2k2

(ΩB)∗Cjm(θ, φ) (16)

where Cjm(θ, φ) is the modified spherical harmonic
√

4π/(2l + 1)Yjm, and

Rlm(K
::

n
) = K l

nClm(θ, φ), Ilm(Kn) = K−l−1
n Clm(θ, φ) (17)

Kn is the magnitude of K
::

n
. The angles θ and φ define the direction of the reciprocal lattice vector

K
::

n
in this case rather than the direction vector between two sites. Using this transformation in

equation (14) leads to an expression for the reciprocal lattice part of the energy

Erl =
1

2

∑

A

∑

B

1

4πǫ0

∑

l1,l2

∑

k1k2




l1 + l2

l1




× Q̃A
l1k1

Q̃B
l2k2

(−1)l

(2l − 1)!!

8π

V

′′∑

n

G(Kn) cos(l)(K
::

n
· r

:

AB
)K l

n

× S̄k1k2

l1l2l (ΩA, ΩB, K̂n) (18)
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Following Stone equation (12) of [51] we can remove the complex arithmetic by defining entirely

real multipoles and S functions. Let

Q̃lk =
∑

κ

Q̃lκXκk (19)

and

S̄κ1κ2

l1l2l =
∑

k1k2

Xκ1k1
Xκ2k2

S̄k1k2

l1l2l (20)

Equation (18) then becomes, with κ replacing k throughout,

Erl =
1

2

∑

A

∑

B

1

4πǫ0

∑

l1,l2

∑

κ1κ2




l1 + l2

l1




× Q̃A
l1κ1

Q̃B
l2κ2

(−1)l

(2l − 1)!!

8π

V

′′∑

n

G(Kn) cos(l)(K
::

n
· r

:

AB
)K l

n

× S̄κ1κ2

l1l2l (ΩA, ΩB, K̂n) (21)

Although we could use the equation in this form, a triple sum is involved, twice over the particles

in the cell and once over the reciprocal lattice vectors. In Ewald sums of charges the expression

will factorize into the product of two sums over particles in the cell. We have investigated the

factorisation of equation (20) for the terms in the multipole expansion up to l1 + l2 = 4 as given

by Price et al. [55] and by Stone [2] Appendix F. Such a factorisation is indeed possible for all of

these interactions. The factorisation of cos(l)(K
::

n
· r

:

AB
) is straightforward.

cos(l)(K
::

n
· r

:

AB
) =

2∑

σ=1

sσcsσ(K
::

n
· r

:

A
)csσ(K

::

n
· r

:

B
) sσ = ±1 (22)

where cs represents a cosine or sine function as appropriate. The factorisation of Stone’s S functions

will be written

∑

κ1κ2




l1 + l2

l1


 S̄κ1κ2

l1l2l (ΩA, ΩB, K̂n)Q̃A
l1κ1

Q̃B
l2κ2

=

∑

τ

Uτl1l2SFl1τ (ΩA, K̂n)SFl2τ (ΩB , K̂n) (23)
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where Uτl1l2 is a constant. Explicit forms of the SF terms in this expansion are given in Appendix

A. The substitution of these two factorisations into equation (20) leads to our final expression for

the reciprocal lattice contribution to the energy.

Erl =
1

2

1

4πǫ0

∑

l1,l2

(−1)l

(2l − 1)!!

8π

V

′′∑

n

G(Kn)

2∑

σ=1

∑

τ

Uτl1l2sσ

×
∑

A

csσ(K
::

n
· r

:

A
)SFl1τ (ΩA, K̂n)K l1

n

×
∑

B

csσ(K
::

n
· r

:

B
)SFl2τ (ΩB, K̂n)K l2

n (24)

We can simplify this expression further for the rigid molecule case. Here, a large number of

atoms will have the same local axes. The sum over all atoms in the unit cell A may be replaced

by a double sum over molecules M and atoms within a molecule MA. The functions SF as given

in Appendix A can be written

SA
Fl1τ (ΩA, K̂n) =

∑

κ

sA
Fl1τκ1

(ΩA, K̂n)Q̃A
l1κ1

(25)

Where the term sA
Fl1τκ1

(ΩA, K̂n) depends only on molecule orientation. Hence

∑

A

csσ(K
::

n
· r

:

A
)SFl1τ (ΩA, K̂n)K l1

n =

∑

M

∑

κ

∑

AM

{
csσ(K

::

n
· r

:

A
)Q̃A

l1κ1

}
sA

Fl1τκ1
(ΩA, K̂n)K l1

n (26)

We will now consider the direct space term arising from the substitution of equation (5) into

equation (4). We start from the lattice sum of irregular spherical harmonics equivalent to equation

(10).

(
∑

N

Ilm(r
:

))dl = (−1)l
[
2l/(2l)!

]1/2 ∑

α1...αl

∇αl
. . .∇α1

′∑

N

×
1 − erf(γ1/2|r

:

− r
:

N
|)

|r
:

− r
:

N
| 〈α1 . . . αl|12 . . . l; m〉 (27)
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It is convenient to redefine the error function in terms of the function F0 (Equation (51c)) of [54].

Fm(p) =

∫ 1

0

exp(−pu2)u2mdu (28)

F0(p) = 2−1(π/p)1/2erf(p1/2) (29)

We will also make use of the operator (s(−1)ŝ)n which is defined

(s(−1)ŝ)n =

(
1

s

d

ds

)n

(30)

and note the following relations.

d

dx
= ∇x = x(s−1ŝ) (31)

(s(−1)ŝ)ns−1 = (−1)n(2n − 1)!!s−2n−1 (32)

(s(−1)ŝ)nF0(αs2) = (−2α)nFn(αs2) (33)

Equation (27) then becomes

(
∑

N

Ilm(r
:

))dl = (−1)l
[
2l/(2l)!

]1/2
′∑

N

∑

α1...αl

(
r
:

− r
:

N

)

α1

. . .

(
r
:

− r
:

N

)

αl

× 〈α1 . . . αl|12 . . . l; m〉 (|r
:

− r
:

N
|(−1) ̂|r

:

− r
:

N
|)l

×


 1

|r
:

− r
:

N
| − 2

(γ

π

)1/2

F0

(
γ|r

:

− r
:

N
|2
)
 (34)

Substituting (11) and using (32), (33) and (13) in (34) gives

(
∑

N

Ilm(r
:

))dl =
(−1)l

(2l − 1)!!

′∑

N

Rlm(r
:

− r
:

N
)

{
(−1)l(2l − 1)!!|r

:

− r
:

N
|−2l−1

− 2
(γ

π

)1/2

(−2γ)
l
Fl

(
γ|r

:

− r
:

N
|2
)}

=
′∑

N

Rlm(r
:

− r
:

N
)

{
|r
:

− r
:

N
|−2l−1

− 1

(2l − 1)!!
2
(γ

π

)1/2

(2γ)l Fl

(
γ|r

:

− r
:

N
|2
)}

(35)
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Substituting into the equation for the direct space part of the lattice energy (3).

Edl =
1

2

∑

A

∑

B

1

4πǫ0

∑

l1,l2

∑

m1m2m

(−1)l2




l1 + l2

l1




× Q̂A
l1m1

Q̂B
l2m2

′∑

N

Rlm(r
:

− r
:

N
)

{
|r
:

− r
:

N
|−2l−1

− 1

(2l − 1)!!
2
(γ

π

)1/2

(2γ)
l
Fl

(
γ|r

:

− r
:

N
|2
)}




l1 l2 l1 + l2

m1 m2 m


 (36)

Now the equation for the S functions (16) is used in (36) where the S function now depends on

the direction of the intersite vector r
:

− r
:

N
. This gives the final expression for the direct space part

of the lattice energy.

Edl =
1

2

∑

A

∑

B

1

4πǫ0

∑

l1,l2

∑

k1k2




l1 + l2

l1




× Q̃A
l1k1

Q̃B
l2k2

′∑

N

S̄k1k2

l1l2l (ΩA, ΩB, ̂r
:

− r
:

N
)



|r

:

− r
:

N
|−l−1 −

|r
:

− r
:

N
|l

(2l − 1)!!
2
(γ

π

)1/2

(2γ)l Fl

(
γ|r

:

− r
:

N
|2
)
 (37)

We now need to consider a number of additional terms. Firstly, the Ewald method introduces

the interaction of a particle with itself, (A = B, N = 0), which must be explicitly subtracted out (a

self-interaction energy). This has been considered for the Cartesian tensor formulation by Smith [8],

where there is an interaction for all pole orders. In contrast for the spherical harmonic formalism

there is only a term for the charge-charge energy. Referring to [8] equation (48) the terms that

come into the self interaction energy are those in the direct space sum for which the G functions

defined in his equations (38) - (42) have a term which does not depend on r
:

jg
. For the spherical

multipole formalism all other terms for all higher multipoles depend on the interatomic separation

r
:

AB
, so there will be no equivalent self interaction term. The term for the charge-charge can be

calculated in the usual way by expanding the error function as a power series [8]. Secondly, where
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A and B are atoms in the same molecule the explicit form of the interaction energy between them

will need to be subtracted, for all multipole orders. This is because it was included to allow the

Ewald transformation to be carried out. A third additional term arises from the reciprocal space

terms which differ from the Cartesian case. From equation (21) it is clear that as G(Kn) varies as

|K
::

n
|−2, overall the terms in Erl vary as |K

::

n
|l−2. For total multipole moment l < 2 the K

::

n
= 0

terms will diverge. The justification for omitting the K
::

n
= 0 terms is that surface charges will

rearrange to eliminate any macroscopic field across the system. There has been recent discussion

in the literature about this and its application to polar organic molecules [56, 57, 58]. For l > 2

the K
::

n
= 0 term is zero. The situation for total multipole moment l = 2 is more interesting,

corresponding to dipole dipole and quadrupole charge interactions. For example, equation (24) for

dipole dipole interactions becomes

Erl =
1

4πǫ0

2π

3V

∑

τ

Uτ11(−1) ×
∑

A

SF1τ (ΩA, 0) ×
∑

B

SF1τ (ΩB , 0) (38)

(For K
::

n
= 0 the extra factor of 2 introduced in equation (7) must be left out). The terms

involving SF11 are indeterminate and have a limit which depends on the direction from which zero

is approached. However the second dipole dipole term has a finite limit

4∑

τ=2

∑

A

SF1τ (ΩA, 0) = µ (39)

where µ is the total dipole moment of the cell due to the dipoles (not including any dipole moment

of the cell due to the point charges). The present version of DL MULTI allows this term to

be included or excluded at the choice of the user. In any event the magnitude of the term is

small. Including the K
::

n
= 0 term will give an identical sum for dipole dipole interactions as is

obtained using the Cartesian formalism from [8]. It is interesting to note that the individual terms

in the direct and reciprocal space parts for the dipole dipole interaction are however completely

different. As has been noted above, for dipole dipole interactions there is no self interaction term

in the spherical harmonic case. The Cartesian direct space sum also contains a first order term in

equation (39) of [8] which is absent from the spherical harmonic formalism. The reciprocal space
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term in contrast has an additional term in the spherical harmonic case. This has a term with a

finite limit for K
::

n
= 0 which needs to be included. If this term is omitted, DL MULTI gives an

energy of zero for a unit cell with one particle consisting of a lattice of dipoles all pointing in the

same direction, in agreement with [59].

Calculation of the forces and torques for the lattice summed interactions from these equations is

straightforward and the formulae will not be given here. The torques are derived by calculating the

derivatives of the energy with respect to the quaternion parameters used to define the orientation

of the molecules, and calculating the torques from these using the equations of quaternion algebra.

This will directly calculate the torque about the centre of mass of the molecule without needing to

calculate any site-site torques. DL MULTI also calculates the virial to compute the pressure, and

the strain derivatives of the energy for constant pressure MD simulations.

4 Cutoffs

In practice all summations need to be truncated at some finite cutoff. Drawing on the experience

of Steinbach and Brooks [60] it was found necessary to pay particular attention to these. These

authors note that, in a system with fixed multipoles, there can be a drift in the total energy of the

system during a molecular dynamics simulation. Normally, convergent long range forces, which

decay as the inverse fourth or greater power of the interatomic separation would be evaluated by

direct summation to a given cutoff distance. The tiny error introduced by two atoms moving so

that their separation goes over the cutoff distance cancels when the atoms move to being within

the cutoff distance again if the potential only depends on the atomic separation. However, when

the atoms interact by an anisotropic potential, the changes in the relative orientation whilst the

atoms are separated by more than the cutoff distance, prevent this cancellation being exact. It

is important to note that this energy change is independent of the integration time step and is

not due to errors in the integration method. The energy drift will be exacerbated in the examples

we have been studying because it is in the solid state and the motions are periodic. Using the

Ewald method for higher order multipoles, where the sums are absolutely convergent, although not
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strictly necessary, is desirable in order to reduce the energy drift. Even then it was found necessary

to use large cutoffs for the higher multipole terms in direct space.

The following method is used to calculate the cutoffs in direct and reciprocal space. User

supplied accuracy values ǫd
l and ǫr

l are provided for both direct and reciprocal space, for each total

pole order l. Normally these will be set to be all equal, however in some cases it may be necessary

to increase the accuracy for higher order poles in direct space to improve energy stability. It is also

important to define the accuracy carefully. Usually we are interested in the cutoff needed so that

the final term in the summation is less than a user defined proportion of a characteristic interaction

energy of the whole system, rather than less than the total energy for this pole order summed to

infinity. This means that the cutoffs for high order poles can be reduced if there are terms giving

large energies from the monopoles. A characteristic energy of the system Echar is defined as the

largest interaction energy for any two pole orders separated by the mean interatomic separation in

the system. From equation (37)

ǫd
l Echar =

1

4πǫ0
×
(
Q̃AQ̃B

)
max{

r−l−1
cut,l −

rl
cut,l

(2l − 1)!!
2
(γ

π

)1/2

(2γ)
l
Fl

(
γr2

cut,l

)
}

(40)

where




l1 + l2

l1


 S̄k1k2

l1l2l (ΩA, ΩB, ̂r
:

− r
:

N
) from equation (37) is taken to be of order unity.

A user supplied value for rcut,0 is used in this equation with ǫd
0 to calculate a value for γ. The

same value of γ is then used for all pole orders. Using this value of γ and ǫd
l for l > 0 values of

rcut,l are calculated. A check is made that these values are all less than rcut,0. This will usually be

the case as the expansion of the charge distribution as a DMA in spherical harmonics gives values

of
(
Q̃AQ̃B

)
max

which decrease with increasing l. If the value of one of the rcut,l is greater than

rcut,0 the value of γ is reset and the process repeated until a rcut,l less than the user supplied value

is obtained.
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Turning now to reciprocal space, from (21)

ǫr
l Echar =

1

2

1

4πǫ0

(
Q̃AQ̃B

)
max

(−1)l

(2l − 1)!!

8π

V

K−2
n,cut,l exp

(
−K2

n,cut,l

4γ

)
K l

n,cut,l (41)

where




l1 + l2

l1


 S̄κ1κ2

l1l2l (ΩA, ΩB, K̂n) from equation (21) is taken to be of order unity.

These equations are solved for each total pole order l to determine Kn,cut,l. Overall ǫr
l Echar

depends on K l−2
n,cut,l. This means that for l < 2 the equations will always have a solution for Kn,cut,l.

However for l ≥ 2 there may not be a solution. This is because the terms in the energy for l > 2

have a maximum for a certain Kn, and the maximum may be less than the required accuracy. For

l = 2 there is a finite limit for Kn = 0 which may be less than the desired accuracy. In these cases

the reciprocal space sum for these pole orders is omitted entirely.

5 Results for example structures 5-azauracil and uracil

As examples to illustrate the method, simulations were performed on 5-azauracil and uracil. These

examples are presented in this paper as an illustration of the capabilities of DL MULTI and de-

tailed analysis of the simulations will not be presented here. Table (1) compares with experiment

the relaxed static lattice structures from DMAREL [40, 41] and the results from a DL MULTI

simulation.

This was carried out using the NST constant temperature, constant isotropic stress ensemble

[1] using a Berendsen thermostat and barostat to equilibrate the sample. Other simulation details

for both simulations were time step 3 fs, temperature 310 K, equilibration steps 2500, simulation

steps 2500. For 5-azauracil a cutoff of 13.5 Åwas used and for uracil 9.0 Å. The test cases had,

for uracil, 96 molecules (1152 atoms) in a 2 x 2 x 6 supercell, for 5-azauracil, 192 molecules (2112

atoms) in a 4 x 2 x 3 supercell. The final lattice parameters were averaged over the 2500 steps after

equilibration. For uracil, there is a slight expansion of the lattice in the c direction compared with
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the DMAREL simulation and the cell angle β changes to be much closer to the experimental value.

For 5-azauracil there is a more isotropic expansion of the lattice compared with DMAREL. Lattice

expansion is expected in the DL MULTI simulations because of thermal effects. Also, the isotropic

short range parameters were fitted to reproduce room temperature crystal structures using static

lattice simulations, so dynamic simulations might be expected to give slightly too high values for

the cell parameters.

As a further test of the cutoff criteria, additional NVE simulations [1] were carried out using

the relaxed structure of 5-azauracil as a starting point. The NST simulations had used values in

equations (40), (41) ǫd
l = 0.0000001 for l > 0 and ǫr

l and ǫd
0 = 0.0001, NVE simulations were carried

out using these values for the ǫ and also using lower precision for ǫd
l for l > 0. Values of 0.00001

and 0.0001 were used. The results for the total cell energy are presented in figure (1).

As can be seen, when the thermostat is switched off after 2500 time steps there is an energy

drift for the two lower precision calculations, but the high precision simulation is stable.

These simulations are both small in terms of system size and simulation time, but they do

illustrate how DL MULTI performs. The simulations were carried out using 4 processors of an

IBM SP2 parallel processor. The 5-azauracil simulation takes 3 s per time step on this machine.

Preliminary calculations on larger systems suggest that scaling to a larger number of processors on

a parallel machine will be limited by the global summations needed for the reciprocal space sums.

However, the number of reciprocal lattice points needed to achieve a given accuracy decreases with

system size, so large simulations on multiprocessor machines will be feasible using DL MULTI.
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Appendix A

In this appendix we derive the factorizations of the explicit expressions for the S functions as

defined by equation (23). The expressions for the functions SF are given first, followed by the

equations for the interactions. α
:

w
refers to one of the three molecule-fixed axes. First we define β

and η which will be used in the following expressions. (jkl are the indices 1,2,3 used cyclically).

βw = K
::

n
· x

:

1
, y

:

1

, z
:

1

The vector η
:

depends on the outer vector product of two molecule-fixed axes.

η1j = zjzj η1j+3 =
√

2zkzl

j=1,3 j=1,3

η2j = xjxj − yjyj η2j+3 =
√

2(xkxl − ykyl)

j=1,3 j=1,3

η3j = 2yjzj η3j+3 =
√

2(ykzl + ylzk)

j=1,3 j=1,3

η4j = 2zjxj η4j+3 =
√

2(zkxl + zlxk)

j=1,3 j=1,3

η5j = 2xjyj η5j+3 =
√

2(xkyl + xlyk)

j=1,3 j=1,3

Charge

SF01 = Q̃00

Dipole

SF11Kn =
√

3
3∑

w=1

Q̃1wβw

S
:

F1,j+1
Kn = Kn

3∑

w=1

Q̃1wα
:

w
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Quadrupole

SF21K
2
n = −

√
3/2K2

nQ̃21

SF22K
2
n = 5

√
3/2β2

zQ̃21 + 5
(
βxβzQ̃22 + βyβzQ̃23

)
+ 2.5

(
2βxβyQ̃25 +

(
β2

x − β2
y

)
Q̃24

)

S
:

F2,j+2
K2

n =
√

3Kn ×
{[√

3βzQ̃21 + βxQ̃22 + βyQ̃23

]
z
:

+
[
βzQ̃22 + βxQ̃24 + βyQ̃25

]
x
:

+
[
βzQ̃23 + βxQ̃25 − βyQ̃24

]
y
:

}

S
:

F2,j+5
K2

n = K2
n ×

{√
3

2
Q̃21η

:

1

+
1√
2

(
Q̃24η

:

2

+ Q̃23η
:

3

+ Q̃22η
:

4

+ Q̃25η
:

5

)}

Octopole

SF31K
3
n =

35

2
√

3
β3

zQ̃31 +

√
2.35

4
β2

z

[
βxQ̃32 + βyQ̃33

]

+

√
5.7

2
βz

[(
β2

x − β2
y

)
Q̃34 + 2βxβyQ̃35

]

+

√
10.7

4.
√

3

[
βx

(
β2

x − 3β2
y

)
Q̃36 − βy

(
β2

y − 3β2
x

)
Q̃37

]

SF32K
3
n = − 15

2
√

3
K2

nβzQ̃31 −
√

2.5

4
K2

n

(
βxQ̃32 + βyQ̃33

)

S
:

F3,j+2
K3

n = Kn ×
{[

3

2

(
5β2

z − K2
n

)
Q̃31 +

√
6.5

2

(
βxβzQ̃32 + βyβzQ̃33

)
+

√
15

2

((
β2

x − β2
y

)
Q̃34 + 2βxβyQ̃35

)]
z
:

+

[√
6

4

(
5β2

z − K2
n

)
Q̃32 +

√
15
(
βxβzQ̃34 + βyβzQ̃35

)
+

√
10.3

4

((
β2

x − β2
y

)
Q̃36 + 2βxβyQ̃37

)]
x
:
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+

[√
6

4

(
5β2

z − K2
n

)
Q̃33 +

√
15
(
βxβzQ̃35 − βyβzQ̃34

)
+

√
10.3

4

(
−2βxβyQ̃36 +

(
β2

x − β2
y

)
Q̃37

)]
y
:

}

Hexadecapole

SF41K
4
n =

1

8

[(
7β2

z − 3K2
n

) (
5β2

z − K2
n

)
− 8β2

zK2
n

]
Q̃41

+

√
10

4

[(
7β2

z − 3K2
n

) (
βxβzQ̃42 + βyβzQ̃43

)]

+

√
5

4

[(
7β2

z − K2
n

) (
β2

x − β2
y

)
Q̃44 + 2βxβyQ̃45

]

+

√
70

4

[
βxβz

(
β2

x − 3β2
y

)
Q̃46 − βyβz

(
β2

y − 3β2
x

)
Q̃47

]

+

√
35

8

{[(
β2

x − 3β2
y

)
β2

x +
(
β2

y − 3β2
x

)
β2

y

]
Q̃48 + 2

(
β2

x − β2
y

)
2βxβyQ̃49

}

The equations for the factorization of S (equation (23)) are given by

Charge-Charge SA
F01S

B
F01

Charge-Dipole −1/
√

3SA
F01S

B
F11

Dipole-Charge +1/
√

3SA
F11S

B
F01

Dipole-Dipole −SA
F11S

B
F11 +

3∑

j=1

SA
F1j+1S

B
F1j+1

Charge-Quadrupole SA
F01

(
(1/

√
3)SB

F21 + (
√

3/5)SB
F22

)

Quadrupole-Charge SB
F01

(
(1/

√
3)SA

F21 + (
√

3/5)SA
F22

)

Dipole-Quadrupole −SA
F11

(
SB

F21 + SB
F22

)
−

3∑

j=1

SA
F1j+1S

B
F2j+2

Quadrupole-Dipole +SB
F11

(
SA

F21 − SA
F22

)
−

3∑

j=1

SB
F1j+1S

A
F2j+2
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Quadrupole-Quadrupole SA
F21S

B
F21 + SA

F21S
B
F22 + SA

F22S
B
F21 + (7/5)SA

F22S
B
F22−

(5/3)

3∑

j=1

SA
F2,j+2S

B
F2,j+2 +

6∑

j=1

SA
F2,j+5S

B
F2,j+5

Charge-Octopole +SA
F01

(
(
√

3/7)SB
F31 + (

√
3/5)SB

F32

)

Octopole-Charge −SB
F01

(
(
√

3/7)SA
F31 + (

√
3/5)SA

F32

)

Dipole-Octopole −SA
F11

(
SB

F31 + SB
F32

)
+

3∑

j=1

SA
F1,j+1S

B
F3,j+2

Octopole-Dipole −SB
F11

(
SA

F31 + SA
F32

)
+

3∑

j=1

SB
F1,j+1S

A
F3,j+2

Charge-Hexadecapole SA
F01S

B
F41

Hexadecapole-Charge SB
F01S

A
F41
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Table 1: Experimental and theoretical cell constants for uracil and 5-azauracil

Experiment Simulation
DMAREL DL MULTI

uracil a/ Å 11.938 12.17 12.11
b/ Å 12.376 12.66 12.65
c/ Å 3.655 3.70 3.81
β/ deg 120.9 124.0 121.8

5-azauracil a/ Å 6.5135 6.814 6.927
b/ Å 13.5217 13.781 13.98
c/ Å 9.5824 9.197 9.356
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