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-INTRODUCTION

The liquid state is the most difficult to study among the classical states of matter.

Powerful methods to predict thermodynamic and transport properties of liquids have been proposed during the second half of the past century but most of these methods are reliable only for simple fluids [1]. However, most liquids are formed by polyatomic molecules where in addition to translational degrees of freedom, one must also consider rotation and the internal vibrations of the molecule [2]. The inclusion of rotational degrees of freedom, even in rigid models (where vibrations are not considered), requires some additional information about the mass distribution in the molecule or the molecular shape. Classical rotation movement is described using the inertia tensor which can be written as a 3x3 square matrix. This matrix can be diagonalized and the three eigenvalues define the so-called principal moments of inertia (PMIs) and the eigenvectors define the principal axes of the molecule with origin at the centre of mass of the molecule. Molecules with low symmetry have three different PMIs and are called asymmetric tops [2]. The decay time of several properties of asymmetric tops depends on three diffusion coefficients and five relaxation times [3]. However, experiments can determine only three coefficients or times. In this case, it is very usual to consider that two of the three moments are equal and the third one is a revolution axis for the molecule [3]. This is equivalent to approximate the asymmetric top as a symmetric top [2]. If the principal moment of inertia with respect to the revolution axis is the largest we have an oblate molecule, if it is the smallest, the molecule is called prolate. Whether a molecule is prolate or oblate can be inferred from the experiment. Many real-world molecules can be considered prolate or oblate. Liquids composed by prolate molecules have received a lot of theoretical attention and thermodynamic properties have been qualitatively and quantitatively reported for molecules of this geometry. For prolate molecules a number of studies describing liquid crystal transitions [4], vapour-liquid equilibrium [5] and glassy behaviour [6] have been reported. However, relatively little effort has been directed to obtaining properties of oblate-like fluids [7][8][9]. In some cases, oblate molecules are not described by pure oblate models but rather by related models [10][11][12][13]. A new phenomenology appears in oblate molecules, such as discotic liquid crystal phases with short axes parallel to the director, formation of fragile glasses like in o-terphenyl, peculiar surface properties like in asphaltenes [14], … Oblate-like molecules are candidates for specific molecular architectures, and some of themmainly aromatic carboxylic acids such as 3-hydroxypicolinic or gentisic acid-have absorption, stability and solubility properties suitable for MALDI matrices [14]. In biology, red blood cells are the most common cells with oblate shape. Important gasliquid interchange takes place in the quaternary structure of hemoproteins contained in these cells, where hemo groups embed gas molecules in a reversible way [15]. Even a prolate-oblate transition has been observed in natural systems such as bilayer membranes [16]. Moreover, an oblate molecule, 2,5-dimethylfuran, has been recently proposed as biofuel [17] and we dedicate some of our work to this molecule. From a chemical point of view, it is well-known that the π-electronic cloud in common oblate systems is often delocalized, yielding chemical reactivity which is so different from that of prolate molecules that they are considered as different functional groups, so called aromatics. Swimming in the very diverse behaviour of oblate-like molecules, our goals in this paper are to answer the following unsolved questions: i) Does molecular shape affect the vapour-liquid equilibrium?; ii) Is it possible to find a symmetry in the phase diagram of oblate and prolate Kihara spherocylinders as found in hard ellipsoids? [18].

In order to solve these questions, this paper is scheduled as follows: section 2 is devoted The Kihara potential describes the interaction between two molecules of any shape as:
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where σ and ε are length and energy parameters and ρ is the shortest distance between molecular hard cores, depending not only on centre-to-centre distance but on mutual molecular orientations. As usual, the core of a spherical molecule is considered to be a dot, for a prolate molecule the core is considered to be a segment and for an oblate molecule the core is an infinitely thin disk, as considered in convex geometry. For more clarity see figure 1. Hard convex bodies and thermodynamic properties have been widely studied and many equations of state have been established [19]. All these equations of state relate thermodynamic quantities with three geometrical descriptors:

(1/4π) times the mean intrinsic curvature (R), surface (S) and volume (V ). Moreover, an analytical equation relates the second virial coefficient of hard convex bodies, B 2 , to the non sphericity parameter 3V R S = α in the form: 
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where f(ρ)=exp(-βu)-1 is the Mayer function and the geometrical quantities V c+c and S c+ρ+c depends on surface, volume and (1/4π) times the mean curvature of the hard convex nucleus. As it has been mentioned, we have considered a hard rod as the core of the prolate model and an infinitely thin disk as the core of the oblate one, whose characteristic parameters are well known to be different. For a given L * =L/σ (prolate, see fig. 1) or D*=D/σ (oblate, see fig. 1), the second virial coefficient will be different due to the difference in the geometrical properties (surface, volume and mean radius of curvature of the hard convex core). For prolate molecules the geometrical properties of the core have been given elsewhere [11,13] . For oblate molecules they are given by 7) is satisfied (approximately) when both the prolate and oblate molecules present the same reduced volume. A new and important question arises now:
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will the symmetry between prolate and oblate Kihara molecules exhibited at the Boyle temperature be also present in the rest of the phase diagram? This is one of the questions we intend to address here. In the case of hard ellipsoids a symmetry in the phase diagram was found [20] based on the fact that a hard prolate ellipsoid with aspect ratio κ has the same volume than an oblate one with aspect ratio 1/κ. In this work, we shall determine the vapour liquid equilibria for prolate and oblate molecules by computer simulation to explore the existence of symmetry between prolate and oblate models (when described by the Kihara model). It will be shown that when the comparison is made between models having the same molecular volume there is a good mapping between prolate and oblate models In previous works, we have widely established vapour-liquid equilibria of prolate-like Kihara molecules [5], even including multipolar interactions [21,22]. For that purpose, an algorithm able to calculate several millions of ρ per second is used [23].

In this work a well tested algorithm to calculate the minimum distance between disks has been employed [8]. In analogy to the case of prolate molecules, Gibbs ensemble Monte Carlo (GEMC) simulations [24] are developed for systems with three different reduced diameters L*=L/σ equal to 0.5233, 1 and 1.2, in order to compare with prolate models with the same L* value. GEMC were performed with 512 particles, 6000-10000 cycles for equilibration and 6000-8000 for averages, truncating the potential when ρ c =3σ and adding long tail corrections according to expression given by: ( )
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where the subscript g means geometrical average. Furthermore, long range corrections can be obtained analytically [25] by rewriting the previous equations using convex body geometry. A few years ago, we have presented an accurate perturbation theory for Kihara prolate molecules. This theory is a second order perturbation theory based on Mo-Gubbins division [26] of the Kihara potential: (10) It allows us to write the Helmholtz free energy up to second order in perturbation expansion as: 
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Since the residual free energy is considered to be the one associated to a hard particle with the same radius and diameter, the contribution to Helmholtz free energy is measured by means of a BLIP expansion and integration of the Boublík's equation of state for hard convex body [27], which gives:
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where η=n/V is the packing fraction. 

( ) ( ) ∫ Ω Ω Ω Ω - = Φ 2 1 2 1 0 * , , ln d d u T r g RAM 12 r ε (13) 
and finally:
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In a previous paper, it was shown that similar results for soft repulsive bodies obtained either using the non-sphericity parameter α extracted from the geometrical relationship and the background correlation function from RHNC equation, or using α from virial coefficient (see equation 2) and background correlation function from PY approximation. Due to the faster convergence of the PY formalism, the second choice is used because results obtained with both integral equations are very close.

2).-Two different choices for the second contribution term can be used [28]: local compressibility approximation (LCA) or macroscopic compressibility approximation (MCA):
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As for the first order term, the convenience of using MCA approximation has been previously tested and will be used in this work.

Once the Helmholtz free energy is determined, one calculates the equation of state and internal energy through:
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and the vapour-liquid equilibrium is solved treating vapour phase as a virial expansion up to second order and solving the nonlinear system:

( ) As it is well known, analytical perturbation theories cannot predict critical properties, and numerical extrapolation methods are commonly necessary. To overcome this problem, an extrapolation method for the theory already described (IPT) [29] was derived based on deviations between Monte Carlo and theoretical calculations of the first order contribution to Helmholtz free energy, giving very accurate predictions of VLE for prolate Kihara molecules yielding the so-called IPTE.
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RESULTS

In In figure 6, the behaviour of critical parameters against L* is shown, while in figure 7 the plot against molecular volume can be observed. Surprisingly, critical parameters also exhibit universal behaviour against molecular volume, within the simulation error in the case of GEMC results, independently of shape. A plot of critical temperature against Boyle temperature is presented in figure 8 showing the universal character of the relation. This rule can be used when molecular volume is not too high. This plot allows to predict critical properties of important but scarcely studied molecules such as the biofuel 2,5-dimethyl furan [17] whose known thermodynamic properties are practically restricted to its boiling point. In this case, we have checked using a quantum chemical package (gaussian03 at the B3LYP/6-31G**) that the molecule is perfectly planar and the dipole moment is negligible (0.16 Debye).

Using van der Waals radii for atoms on this geometry-optimized structure yields D*=1.6 and V m *=2.83. From the fit of T c * vs. V m * (figure 7a), one can interpolate to obtain T c *=0.57. Moreover, using the classical empirical approximation [31] of T boiling /T critical = 2/3 and the experimental value for boiling temperature of 346 K, one can predict for this biofuel T c = 550 K, T B = 1117 K. Moreover, from the relation between T c * and T c an estimated value of ε/k= 966 K is found. This value is consistent with the usual values adopted for benzene or cyclohexane in this potential [9,11]. 

V. CONCLUSIONS.
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3a. Computer simulations.
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It allows us to write the Helmholtz free energy up to second order in perturbation expansion as:
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Since the residual free energy is considered to be the one associated to a hard particle with the same radius and diameter, the contribution to Helmholtz free energy is measured by means of a BLIP expansion and integration of the Boublík's equation of state for hard convex body [27], which gives:
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where η=n/V is the packing fraction. Perturbation terms can be calculated in different ways: As for the first order term, the convenience of using MCA approximation has been previously tested and will be used in this work.
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and the vapour-liquid equilibrium is solved treating vapour phase as a virial expansion up to second order and solving the nonlinear system:
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2 1 B n n Z n g g l l + = (19) 
+ + + = + + (20) 

RESULTS

In In figure 6, the behaviour of critical parameters against L* is shown, while in figure 7 the plot against molecular volume can be observed. Surprisingly, critical parameters also exhibit universal behaviour against molecular volume, within the simulation error in the case of GEMC results, independently of shape. A plot of critical temperature against Boyle temperature is presented in figure 8 showing the universal character of the relation. This rule can be used when molecular volume is not too high. This plot allows to predict critical properties of important but scarcely studied molecules such as the biofuel 2,5-dimethyl furan [17] whose known thermodynamic properties are practically restricted to its boiling point. In this case, we have checked using a quantum chemical package (gaussian03 at the B3LYP/6-31G**) that the molecule is perfectly planar and the dipole moment is negligible (0.16 Debye).

Using van der Waals radii for atoms on this geometry-optimized structure yields D*=1.6 and V m *=2.83. From the fit of T c * vs. V m * (figure 7a), one can interpolate to obtain T c *=0.57. Moreover, using the classical empirical approximation [31] of T boiling /T critical = 2/3 and the experimental value for boiling temperature of 346 K, one can predict for this biofuel T c = 550 K, T B = 1117 K. Moreover, from the relation between T c * and T c an estimated value of ε/k= 966 K is found. This value is consistent with the usual values adopted for benzene or cyclohexane in this potential [9,11]. 

V. CONCLUSIONS.

Gibbs ensemble

2 .

 2 model and the relevant parameters in prolate and oblate systems. In section 3 we present the simulation procedure and a review of the perturbation theory used in this work. Results related to vapour-liquid equilibrium of some oblate molecules including the new biofuel 2,5-dimethylfuran are shown in section 4. Finally, some remarks and conclusions close the paper in section 5. Molecular model and hard convex systems.
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Monte Carlo simulations of oblate and prolate Kihara molecules have been carried out in order to estimate the influence of shape upon vapour-liquid equilibrium. This influence is very subtle and, thus, we have found a similar behaviour of the virial coefficient -i.e. equation of state-for both models when it is plotted against molecular volume. The same behaviour is observed when critical parameters are plotted

Table 2 . GEMC coexistence data for prolate fluids.

 2 Critical parameters are: T c *=1.03(2), n c *=0.18(1) and p c *=0.054(12). b) L*=1. Critical parameters are: T c *=0.928(13), n c *=0.118(4) and p c *=0.029(5). c) L*=1.2. Critical parameters are: T c *=0.911(13), n c *=0.106(5) and p c *=0.030(14).

		L* = 0.5233	
	T*	n* gas	n* liq	p*
	0.95	0.0520 23	0.31 2	0.0328 15
	0.925	0.043 2	0.337 14	0.0280 12
	0.9	0.039 2	0.36 1	0.025 1
	0.875	0.0286 15	0.364 13	0.0194 9
	0.85	0.024 2	0.380 7	0.016 1
	0.8	0.017 1	0.399 6	0.0112 7
	0.775	0.012 1	0.407 4	0.0084 7
	0.75	0.0094 6	0.418 4	0.00634 35
		L* = 1		
	T*	n* gas	n* liq	p*
	0.825	0.024 1	0.23 2	0.0151 6
	0.8	0.020 1	0.246 9	0.0123 6
	0.775	0.0150 7	0.261 7	0.0095 4
	0.75	0.0126 4	0.272 7	0.0079 2
	0.725	0.010 1	0.281 6	0.0063 5
	0.7	0.0083 4	0.289 3	0.0051 2
	0.675	0.0058 3	0.297 4	0.0036 2
	0.65	0.0051 3	0.306 3	0.0030 2
	0.625	0.00343 23	0.312 4	0.0020 1
	0.6	0.0028 5	0.3194 25	0.0016 2
		L* = 1.2		
	T*	n* gas	n* liq	p*
	0.7	0.0095 17	0.249 3	0.0055 8
	0.675	0.0074 4	0.259 4	0.0043 2
	0.65	0.0055 4	0.265 4	0.0032 2
	0.625	0.00435 24	0.275 3	0.0025 1
	0.6	0.0029 2	0.2794 35	0.0016 1
	0.575	0.00195 3	0.287 3	0.00107 2
	0.55	0.00160 5	0.291 3	0.00084 3
	0.5	0.0014 1	0.3050 25	0.00066 6
	0.475	0.00079 4	0.3100 25	0.00037 2
	0.7	0.010 2	0.2496 34	0.0055 8

a) L*=0.5233.

Table 3 . Critical properties of oblate fluids. D* T c *(IPTE) T c *(GEMC) n c *(IPTE) n c *(GEMC) p c *(IPTE) p c *(GEMC) Z c
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	0		1.310 a		0.314 a		0.126 a	
	0.3	1.06 2		0.169 9		0.061 15		0.342
	0.42	0.974 12		0.143 5		0.052 3		0.373
	0.5233 0.923 7	0.89 3	0.121 4	0.122 13	0.041 4	0.030 14	0.367
	0.6	0.88 2		0.110 4		0.036 4		0.351
	0.8	0.808 7		0.082 2		0.029 6		0.438
	0.82	0.800 6		0.080 2		0.027 6		0.422
	1	0.745 11	0.74 3	0.064 1	0.066 8	0.023 4	0.010 5	0.482
	1.08	0.70 2		0.061 2		0.018 4		0.418
	1.2	0.68 2	0.77 6	0.054 5	0.05 2	0.019 5	0.009 3	0.518
	1.345	0.653 15		0.047 1		0.014 5		0.456

a data taken from ref.
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  If the principal moment of inertia with respect to the revolution axis is the largest we have an oblate molecule, if it is the smallest, the molecule is called prolate. Whether a molecule is prolate or oblate can be inferred from the experiment. Many real-world

	qualitatively and quantitatively reported for molecules of this geometry. For prolate
	molecules a number of studies describing liquid crystal transitions
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molecules can be considered prolate or oblate. Liquids composed by prolate molecules have received a lot of theoretical attention and thermodynamic properties have been

  figures 4 and 5, vapour-liquid coexistence of oblate and prolate Kihara molecules respectively for L*(D*)=1.0 are shown. Numerical results for the VLE of simulated models are shown in table1for oblate models and in table 2 for prolate models not previously reported. The critical temperature is accurately predicted for both shapes (prolate or oblate) using IPTE as can be observed in table 3. However, liquid density is systematically underestimated in the case of oblate molecules while the agreement for prolate molecules is excellent. Better agreement is obtained in considering coexistence pressures. In panel b of figures 4 and 5, Clausius plots for these models are presented. IPTE data fit very well the simulation results. Furthermore, although densities in the VLE curve are not accurately estimated for oblate models with high anisotropy, critical densities are. As pointed out above, the behaviour of Boyle temperature against molecular volume is universal, but not against characteristic length.

Table 3

 3 simulation and perturbation theory. A comparison for both models can be observed plotting critical temperature against Boyle temperature. Thus, knowledge of Boyle temperature could be used as a tool to estimate critical temperature.

	summarizes all the results

Table 1 . GEMC coexistence data for oblate fluids.
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of the virial coefficient -i.e. equation of state-for both models when it is plotted against molecular volume. The same behaviour is observed when critical parameters are plotted

Table 2 . GEMC coexistence data for prolate fluids.

 2 Critical parameters are: T c *=1.03(2), n c *=0.18(1) and p c *=0.054(12). b) L*=1. Critical parameters are: T c *=0.928(13), n c *=0.118(4) and p c *=0.029(5). c) L*=1.2. Critical parameters are: T c *=0.911(13), n c *=0.106(5) and p c *=0.030(14).
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ABSTRACT

and finally:

In a previous paper, it was shown that similar results for soft repulsive bodies obtained either using the non-sphericity parameter α extracted from the geometrical relationship and the background correlation function from RHNC equation, or using α from virial coefficient (see equation 2) and background correlation function from PY approximation. Due to the faster convergence of the PY formalism, the second choice is used because results obtained with both integral equations are very close.

2).-Two different choices for the second contribution term can be used [28]: local compressibility approximation (LCA) or macroscopic compressibility approximation (MCA):