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Abstract

A perturbation theory based study of the effect of an external electric field on the phase equi-

librium properties of binary Stockmayer fluids is presented. The dipole–dipole interaction and

the applied field are treated as independent perturbations to a Lennard-Jones mixture, and the

reference fluid is treated by the van der Waals 1-fluid approximation. A third-order free energy

expression in the electric field strength is established, and the dielectric constant is calculated for

a needle shaped sample parallel to the field direction. We present and discuss vapor–liquid and

liquid–liquid equilibrium curves at a given temperature for some dipolar mixtures exposed to an

electric field, including chlorodifluoromethane+difluoromethane and acetonitrile+methanol. A suf-

ficiently high electric field may result in massive shifts of vapour pressures and critical or azeotropic

points, and can considerably alter the properties of coexisting phases. The vapor pressure decreases

with increasing field strength.

PACS numbers: 61.20.Gy, 77.22.Ch, 64.70.Fx, 64.70.Ja
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I. INTRODUCTION

The need to explore the changes that dipolar fluids undergo in the presence of an external

electric/magnetic field stimulates both theoretical [1–4] and experimental [5, 6] research

activities. Nevertheless, there is no applicable theoretical model for the more complex case

of dipolar fluid mixtures in an applied electric field. In this study we propose a theory

confining the treatment to binary Stockmayer fluids, and test it for several examples.

There are a lot of different methods (see Refs. [7, 8] for a review) for the calculation of

thermal properties of dipolar fluid mixtures, even if we restrict the question to the vapor–

liquid and liquid–liquid equilibria [9]. Among them, perturbation theory is quite adequate

to determine the main effect caused by the dipole–dipole interaction on one hand, and

by the electric field on the other. To be more precise, we have to apply two different

perturbation theories successively. First, the dipole–dipole interaction term is determined

by a functional Taylor expansion [10] of the free energy of the dipolar mixture around a

nonpolar reference system. Second, we apply a so-called algebraic method [11–13] to handle

the influence of an electric field. (It should be noted that the two perturbations applied one

after the other act independently, and do not lead to a quadratic growth in the error of the

thermodynamic quantities.) It is needless to bother too much looking for an adequate dipolar

fluid model. The Stockmayer (STM) potential model where molecules have simple static,

pointlike dipoles serves well for our current purposes – the polarization effect may be the

subject of a subsequent study. In a more sophisticated model we would have to find a suitable

reference system with known free energy, correlation functions, etc.—a serious problem of

perturbation theories. In the STM model the thoroughly studied [14] Lennard-Jones fluid

plays this role. Henceforth, with a free energy formula in hand the equilibrium pressure and
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the corresponding mole fractions of two coexisting fluid phases can be determined by simple

thermodynamical relations, and one can draw vaporisation and condensation curves for the

dipolar mixture under consideration in presence of an electric field.

The outline of our paper is as follows. First of all, in Sec. II we summarise the perturbation

theory for STM fluid mixtures, and the van der Waals 1-fluid approximation is applied to

handle the problem of reference mixture. Then we determine the free energy of the dipolar

mixture up to the third order in the applied electric field. The free energy formula (20)

and the corresponding expression (22) for the dielectric constant of a needle shaped sample

parallel to the field direction constitute our main theoretical results. Sec. III contains some

applications of the theory. The change in the phase boundary curves as a function of

the electric field strength is examined in four cases. We analyse in detail two examples

for (A) vapor–liquid, and for (B) liquid–liquid equilibrium, and two real mixtures, namely

(C) chlorodifluoromethane+difluoromethane, and (D) acetonitrile+methanol. In the last

section, we draw some conclusions. The basic formulas of the algebraic perturbation theory

for dipolar mixtures are collected in the Appendix.

II. THEORY

A. Perturbation theory for dipolar mixtures

The thermodynamical functions of STM mixtures (or even much simpler systems) can

not be expressed in a closed and mathematically exact form [7], due to the multidimensional

integration appearing in the partition function. However, the perturbation theory discussed

below may serve a solution—at least an approximate free energy expression—if we give up

the unattainable exactness.
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Let us consider a fluid mixture consisting of K different species of Lennard-Jones (LJ)

particles with point dipoles of magnitude d1, . . . , dK. The ith particle of the mixture is

described by the triplet (ri, ωi, ai) of position ri, orientation ωi = (φiθi) given by the polar

angles of the dipole moment, and of type ai ∈ {1, . . . , K}. The xai
stands for the mole

fraction of species ai. We use the LJ mixture as a reference system and a dipole–dipole

interaction potential udd(ij) as the perturbation term. Here and in the following i stands

for the triplet (ri, ωi, ai). The pair correlation function gLJ(r12, a1a2) of the LJ mixture

depends not only on the distance r12 = |r1 − r2| of the selected particles, but on their types

a1, a2 as well. We usually omit to note the temperature and density dependence of gLJ to

make our equations shorter.

In principle, the method of functional Taylor expansion around a suitably chosen reference

system [10] is capable to express the free energy and the correlation functions of a fluid

mixture in a power series form. For STM mixtures the third-order free energy expansion is

ASTM = ALJ + A1 + A2 + A3, (1)

where A1 = 0 due to the properties of dipole–dipole interaction, and

A2 = −4π

6
ρ2V β

K
∑

a1,a2=1

xa1
xa2

(da1
da2

)2J(T, ρ, a1a2),

A3 =
8π2

27
ρ3V β2

K
∑

a1,a2,a3=1

xa1
xa2

xa3
(da1

da2
da3

)2

×K(T, ρ, a1a2a3). (2)

See [10] for further details. In Eq. (2), ρ = N/V is the number density, V is the volume of the

system and β = 1/kBT is the inverse temperature with kB being the Boltzmann constant.

4
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The functions J and K are known from the literature [15], and given by the expressions

J(T, ρ, a1a2) =

∫ ∞

0

dr12
1

r4
12

gLJ(r12, a1a2), (3)

and

K(T, ρ, a1a2a3) = 4

∫ ∞

0

dr12

∫ ∞

0

dr13

∫ 1

−1

d(cos α1)

×gLJ(r12, r13, r23, a1a2a3)

r12r13r
3
23

(1 + 3 cos α1 cos α2 cos α3), (4)

both of which now depend on the types of the interacting particles. In Eq. (4) α1, α2 and

α3 denote internal angles of a triangle formed by the three molecules. The integrals (3) and

(4) can only be evaluated with some simplifying assumptions. For the triplet LJ correlation

function the Kirkwood superposition approximation

gLJ(r12, r13, r23, a1a2a3) = gLJ(r12, a1a2)gLJ(r13, a1a3)gLJ(r23, a2a3) (5)

is used. The additional, more severe assumptions are treated in the next section.

B. Van der Waals 1-fluid theory

The LJ pair correlation function and the free energy is not known exactly even for pure

fluids to say nothing of mixtures. To surmount this problem we use the van der Waals

1-fluid (vdW1f) approximation restricting the treatment to binary fluids, and the question

of reference system is solved by applying the LJ equation of state proposed by Johnson et

al. [14]. This paper contains the most accurate values of the 33 parameters of the widely

5
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used modified Benedict–Webb–Rubin equation of state applied first by Nicolas et al. [16] to

the LJ fluid.

First of all, we recall briefly the vdW1f theory used for LJ mixtures (see e.g. [17, 18]).

Consider a binary mixture with LJ pair potentials

uLJ(r12, a1a2) = 4εa1a2

[

(

σa1a2

r12

)12

−
(

σa1a2

r12

)6
]

. (6)

Here εa1a2
and σa1a2

are the energy and size parameters of the interaction of type a1 and

a2 particles. The vdW1f theory is a conformal solution theory in which the real mixture is

replaced by a hypothetical pure LJ fluid with parameters

σ3
x =

∑

a1a2

xa1
xa2

σ3
a1a2

(7)

and

εx =
1

σ3
x

∑

a1a2

xa1
xa2

εa1a2
σ3

a1a2
. (8)

The interaction between the unlike particles of our binary mixture is described by the

Lorentz–Berthelot combining rules

σ12 =
σ11 + σ22

2
, ε12 =

√
ε11ε22 (9)

as the standard choice.

6
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Let us introduce the reduced temperature, density and dipole moment by

T ∗ =
kBT

εx

, ρ∗ = ρσ3
x, d∗

a
2 =

da
2

εxσ3
x

. (10)

Now the pair correlation function gLJ(r12, a1a2) turns into gLJ(r
∗
12) where r∗12 = r12/σx, and

dividing the integrals (3) and (4) by σ3
x we obtain

J(T ∗, ρ∗) =

∫ ∞

0

dr∗12
1

r∗412

gLJ(r
∗
12) (11)

and

K(T ∗, ρ∗) = 4

∫ ∞

0

dr∗12

∫ ∞

0

dr∗13

∫ 1

−1

d(cos α1)

×gLJ(r
∗
12)gLJ(r

∗
13)gLJ(r

∗
23)

r∗12r
∗
13r

∗3
23

(1 + 3 cos α1 cos α2 cos α3),

(12)

which depend only on the parameters of a pure (although hypothetical) fluid. In our cal-

culations for the J and K integrals we used the formulae of Luckas et al. [15]. With the

notation introduced above the reduced free energy A∗
STM = ASTM/Nεx with the usual Padé

approximation is

A∗
STM = A∗

LJ +
A∗

2

1 − A∗
3/A

∗
2

, (13)

where A∗
LJ is taken from Ref. [14]. The second and third-order reduced free energy terms

7

Page 7 of 49

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

are

A∗
2 = − 27

8π

T ∗

ρ∗
y2J(T ∗, ρ∗),

A∗
3 =

27

8π

T ∗

ρ∗
y3K(T ∗, ρ∗), (14)

where

y =
4π

9

ρ∗

T ∗

∑

a

xad
∗
a
2 (15)

is the dipole strength function of the mixture.

C. The case of an external field

Let the Stockmayer mixture exposed to a weak homogenous electric field Eext = Eextez.

The algebraic perturbation theory (summarised in the Appendix) is applied to describe the

free energy contributions due to the interaction of dipoles with the electric field. Following

the symbolism introduced in the Appendix the effect of the external field on the ith particle

(characterised by (ri, φiθi, ai)) is

u1(i) = −Eextdai
cos θi,

and the corresponding Mayer function turns to

fM(i) = exp (βEextdai
cos θi) − 1. (16)

8
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The series expansion derived to the free energy of the STM mixture in external field is:

A = ASTM − 1

β

ρ

4π
q1 −

1

2β

( ρ

4π

)2

q2 − . . . , (17)

where the coefficients qi are given by (A.15). A straightforward calculation (see Refs. [12,

13]) up to third order in Eext leads to

q1 = V
4πβ2

6

∑

a1

xa1
d2

a1
E2

ext,

q2 = V
(4πβ)3

27

∑

a1a2

xa1
xa2

(da1
da2

)2E2
ext

− ρV
(4πβ)4

243

∑

a1a2a3

xa1
xa2

xa3
(da1

da2
da3

)2E2
ext

+ ρV
(4πβ)4

27

∑

a1a2a3

xa1
xa2

xa3
(da1

da2
da3

)2E2
ext

×L(T, ρ, a1a2a3). (18)

Here the function L is introduced by

L(T, ρ, a1a2a3) =
1

2

∫ ∞

0

dr12

∫ ∞

0

dr13

∫ 1

−1

d(cos α1)

×gLJ(r12r13r23, a1a2a3)

r12r13
(3 cos2 α1 − 1). (19)

The three-particle correlation function of the LJ mixture appeared anew which we can

only handle with the Kirkwood approximation (5) and vdW1f theory restricting the treat-

ment to binary fluids. In the vdW1f approximation, for the reduced free energy A∗ = A/Nεx

9
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of a binary STM fluid exposed to an external field we find that

A∗ = A∗
STM − 3

8π

E∗2
ext

ρ∗

(

y + y2 − y3 + 9y3L(T ∗, ρ∗)
)

. (20)

Here E∗2
ext = E 2

extσ
3
x/εx and the function L(T ∗, ρ∗) is given in the next section.

From the free energy we can easily derive the polarization

P = − 1

V

(

∂A

∂Eext

)

V,T,{xa}

.

The resulting equation is:

P = − 3

4π

(

y + y2 − y3 + 9y3L(T ∗, ρ∗)
)

Eext. (21)

For a needle-shaped sample (parallel to the z-axis) the field strength inside the fluid is

identical [12, 19] to the external field Eext and 4πP = (ε − 1)Eext, therefore the dielectric

constant reads as

ε = 1 + 3y + 3y2 − 3y3 + 27y3L(T ∗, ρ∗). (22)

Equation (22) looks like the corresponding formula given in Ref. [20] for the dielectric con-

stant of dipolar hard sphere fluids (see also Ref. [12]), which expression proved to be quite

accurate up to moderately high dipole moments. But, now both the dipole strength function

y and L(T ∗, ρ∗) are complicated functions of the fluid parameters of the mixture.

10
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D. Determination of the function L(T ∗, ρ∗)

In the vdW1f approximation, the function L defined by Eq. (19) (originating from the ap-

plication of the algebraic method to the STM mixture exposed to an external field) simplifies

to

L(T ∗, ρ∗) =
1

2

∫ ∞

0

dr∗12

∫ ∞

0

dr∗13

∫ 1

−1

d(cos α1)

×gLJ(r
∗
12)gLJ(r

∗
13)gLJ(r

∗
23)

r∗12r
∗
13

(3 cos2 α1 − 1). (23)

The function L(T ∗, ρ∗) is well known [20] for hard sphere fluids (where it does not depend

on T ∗, of course), and examined thoroughly by Goldman [21] for LJ fluids. The two main

methods described in the literature for the calculation of L(T ∗, ρ∗) are the hat-function

method [22] and a method based on Fourier transforms and the convolution theorem (see

[21] and the references therein). Goldman’s paper contains L(T ∗, ρ∗) in tabular form for the

ranges 0.6 ≤ ρ∗ ≤ 1.0 and 0.6 ≤ T ∗ ≤ 4.0, but we could not find any data for low densities

in the literature. Our intended phase equilibrium investigations, however, require to fill this

gap.

Our calculations confirmed that the two methods give essentially identical results at high

densities [21], but the hat-function method proved to be more adequate at low densities.

Going into details, a ‘hatted’ function

f̂(r∗) =
gLJ(r

∗)

r∗3
− 3

∫ ∞

r∗
dx

gLJ(x)

x4
(24)

11
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has been introduced in Ref. [22] to transform (23) into a short-ranged integral

L(T ∗, ρ∗) =

∫ ∞

0

dr∗12r
∗
12gLJ(r

∗
12)

∫ ∞

0

dr∗13r
∗
13f̂(r∗13)

×
∫ |r∗

12
+r∗

13
|

|r∗
12
−r∗

13
|

dr∗23r
∗
23f̂(r∗23). (25)

We applied the simple trapezoidal integration rule in Eq. (25), and the pair correlation func-

tion gLJ(r
∗
12) was taken from Monte Carlo (MC) simulations performed with 512 LJ particles.

The simulations were started from a randomly generated configuration and the first 15 000

MC cycles were thrown away. The length of the production period was 30 000 000 moves

with acceptance ratio 40%− 60%. The half of the boxlength was divided into 400 ‘bins’ and

the resulting histogram was used for the calculation of the pair correlation function, likewise

in Ref. [23]. The low density limit of L(T ∗, ρ∗) can be given by the cluster expansion [7]

gLJ(ρ
∗, r∗12) = exp (−βuLJ(r

∗
12)) + O(ρ∗) (26)

of the pair correlation function. We kept in Eq. (26) the first term only, and we extended

the MC simulation data with the resulting L(T ∗, ρ∗ ≈ 0) values. Finally, the following

interpolation equation [15] was fitted to our approximately 270 data points taken from the

ranges 0.0 ≤ ρ∗ ≤ 0.9 and 0.7 ≤ T ∗ ≤ 3.0:

L(T ∗, ρ∗) = B1 + B2T
∗ + B3 exp

4

T ∗

(

1 − ρ∗

√
2

)

+ B4 exp
3

T ∗

(

1 − ρ∗

√
2

)

, (27)

12
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where

Bj = b1j + b2jρ
∗ + b3jρ

∗2 + b4jρ
∗3.

The coefficients bij are displayed in Table I.

III. APPLICATIONS

Our aim is to study the influence of the electric field on the phase equilibria of binary

STM fluids. Two phases (either vapor and liquid or two liquids) marked by prime and

double-prime are in equilibrium at a common temperature T if [8]

p′(ρ′, x′
1) = p′′(ρ′′, x′′

1),

µ′
1(ρ

′, x′
1) = µ′′

1(ρ
′′, x′′

1),

µ′
2(ρ

′, x′
1) = µ′′

2(ρ
′′, x′′

1), (28)

where p is the pressure and µi is the chemical potential of the ith component in the corre-

sponding phases. In both phases the density and the mole fraction of the 1st fluid component

(x1) are chosen as independent variables. For the binary systems studied in this paper the

reduced pressure and chemical potentials of the components are derived from our free energy

formula (20) as

p∗ = −σ3
11

ε11

∂

∂V
(NεxA

∗)
∣

∣

∣

T,{xa}
,

µ∗
a =

1

Nε11

∂

∂xa

(NεxA
∗)
∣

∣

∣

T,V,{x̌a}
. (29)
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Ref. [14] serves as a guide for the calculation of µ∗
a for LJ binary mixtures, and contains the

LJ contributions to the free energy and pressure derived from a well founded equation of

state.

Throughout this section and in the related figures we use the reduced units T ∗ = kT/ε11,

ρ∗ = ρσ3
x, d∗2

a = d 2
a /σ3

11ε11 and E∗2
ext = E 2

extσ
3
11/ε11.

A. Vapor–liquid equilibrium

We have performed extensive vapor–liquid equilibrium calculations for a binary STM

fluid in the vdW1f approximation with size and energy parameter ratios σ22/σ11 = 1.0

and ε22/ε11 = 0.5, respectively, at reduced temperature T ∗ = 1.0. Although the given

choice of parameters seems to be ad hoc, our findings remains generally valid for their slight

modifications (more on this later). The emphasis is on the structural change in equilibrium

due to the interaction of the applied electric field with the dipole moments.

The critical data are pc∗ = 0.169, ρc∗ = 0.439 and xc
1 = 0.458 for the dipole moments,

d∗
i = 0. Table II shows the critical point ‘wandering’ caused by changes in the dipole

moments or field strength. Three possiblities can be distinguished depending on which

component of the mixture has a dipole moment: only the first, the second or both. In all

cases there is an E∗2
ext value above which the vapor–liquid critical point cannot be found,

and surprisingly enough the reasons—discussed below—are quite different (see Table II and

Figs. 1–7).

(a) Case d∗2
2 = 0.0. Table II shows that with zero applied field the reduced critical pressure

pc∗ and density ρc∗ clearly get higher and higher with increasing dipole moment d∗2
1 . The

mole fraction xc
1 increases in a less determined manner. For a given d∗2

1 all of the critical data

strongly increase when the electric field is turned on. One can find for each d∗2
1 a maximal
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E∗2
ext above which there is no vapor–liquid critical point, i.e. the contour of the two-phase

region is open at the top. In advance, we were expecting the closed phase envelope to persist

(although distorted in some way, of course), and the much more significant effect encouraged

us to examine the equilibrium diagrams for higher pressures more closely. We have found

that above a lower critical solution pressure (LCSP) there are two partially miscible fluid

phases, one of which is rich in the polar component. Figure 1 displays the logarithm of

the equilibrium pressure as a function of x1, while Fig. 2 shows the same pressure as a

function of ρ∗ for various field strengths in case of d∗2
1 = 0.5. For E∗2

ext = 0.075 it is explicitly

shown that well above the closed vapor–liquid phase boundary curve two fluid phases have

been formed. The fluid–fluid critical point is characterised by the LCSP p∗ = 3.845 and

ρ∗ = 0.914, x1 = 0.647. Repeated small increases in the field strength decrease considerably

the LCSP while the vapor–liquid critical pressure increases. Finally, the phase boundary

curves fuse at the quadruple point:

E∗2
ext p∗ ρ∗ x1

0.086496 1.1269 0.7833 0.6727

(30)

For even higher field strengths only the two fluid phases are presented.

The strong effect found for a moderately high electric field seems to be intimately related

to the LJ parameters and dipole moments chosen. A small deviation in the ratio σ22/σ11 from

the unity does not alter much the phase equilibrium in contrast to the energy parameter

ratio. The mixture shown in Fig. 1 has ε22/ε11 = 0.5. The change to 0.6 results in the

curves displayed in Fig. 3, which differ considerably from the preceding ones. Not so in

their shapes (consider the logarithmic scale in Fig. 1) but instead in the field strength of

the quadruple point. That is E∗2
ext = 0.0865 approximately for the former system and 0.112
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for the latter one. Moreover, let us point out that the ‘effective’ reduced dipole moment

and field strength (defined in terms of σx and εx) may be higher, e.g. d 2
1 /σ3

xεx = 0.612

and E 2
extσ

3
x/εx = 0.1058, respectively, in the quadruple point (30). Summing up, we believe

that the large discrepancies in the energy parameters and the dipole moments of the two

fluid components result as a cumulative effect in the appearance of the new fluid phases in

presence of a sufficiently strong electric field.

(b) Case d∗2
1 = 0.0. With increasing d∗2

2 the critical pressure decreases as well as the

critical density and the mole fraction, likewise in case of a given d∗2
2 with increasing electric

field strength. The mixture behaves exactly opposite to the system described above. Beyond

that the mixture shows positive azeotropy above a critical E∗2
ext value. Fig. 4 proves that an

azeotropic point occurs for the system under study with dipole moments d∗2
1 = 0.0, d∗2

2 = 1.0

provided that E∗2
ext is nearly 0.020 or higher. We note that a binary mixture is said to be at

an azeotropic point if the corresponding mole fractions of the two phases become identical

(x′
1 = x′′

1) without the densities being equal [8]. For the two azeotropic points of the system

displayed in Fig. 4 the mixture parameters are

E∗2
ext p∗ ρ′∗ ρ′′∗ x1

0.020 0.117 0.234 0.467 0.192

0.025 0.107 0.193 0.518 0.249

(31)

The pressure of the azeotrope decreases with increasing field strength, while the mole fraction

increases, as well as the difference between the densities of the coexisting phases. Studying

the variation of p∗ in terms of ρ∗ interesting U-turns occur at the azeotropic densities (see

Fig. 5), for the equilibrium pressure is maximal at the azeotropic point.

(c) Case d∗2
1 = d∗2

2 . The dipole moments are set to be equal for simplicity, but the results
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in general remain unchanged in case of a less polar first component and a more polar second

one. The most remarkable feature of the mixture is that the critical mole fraction xc
1 of

the first component diminishes rapidly with increasing field strength. The xc
1 required to

be nearly zero for a sufficiently high E∗2
ext above which there is no vapor–liquid critical point

(see the dotted lines in Figs. 6 and 7).

It is generally valid that the vapor pressure of a pure polar fluid decreases with increasing

field strength. In all binary mixtures studied in this paper the first fluid component is

the less volatile one, so its vapor pressure pv
1 is lower than the vapor pressure pv

2 of the

second component. The vaporization and condensation pressures as functions of x1 raise

monotonically starting from pv
1 at x1 = 1.0 and reaching pv

2 at x1 = 0.0, or the vaporization

and condensation curves meat at the critical point provided that the critical pressure pc

exceeds pv
2. It is concluded from this case (c) that a dipolar fluid mixture in increasing

electric field can on the whole behave like it was cooled. The electric field decreases the

molecular disorder.

B. Liquid–liquid equilibrium

It is well known (see e.g. [18]) about binary LJ fluids that a suitable deviation measured

by a parameter ξ from the Berthelot combining rule

ε12 = ξ
√

ε11ε22 (32)
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brings in two partially miscible liquid phases bounded below by a LCSP. Now we study the

liquid–liquid equilibrium in an electric field. The effect of a similar change

σ12 = η
σ11 + σ22

2
(33)

in the Lorentz rule will be treated in the next section. In the following examples we set

ξ = 0.75 and σ22/σ11 = 0.8, ε22/ε11 = 1.0, T ∗ = 1.15.

a) Case d∗2
1 = 1.0, d∗2

2 = 0.0. Fig. 8 shows that with increasing field strength the LCSP

decreases, and for a given pressure the region of liquid–liquid coexistence gets wider and

wider. Furthermore, a sufficiently strong electric field fuses the liquid–liquid and vapor–

liquid phase envelopes.

b) Case d∗2
1 = d∗2

2 = 0.5. In contrast with the preceding example for this choice of the

dipole moments the regions of liquid–liquid and vapor–liquid coexistence intersect without

any electric field (see Fig. 9). The effect of the electric field is similar to the former case, i.e.

the increasing field strength enlarges the two-phase region.

c) It is worth noting that an alteration of the energy parameter ratio may weaken the

effect of the dipole–dipole interaction on the two-phase properties. E.g. in Fig. 10 we set

ε11/ε22 = 0.75 and despite the higher dipole moments d∗2
1 = d∗2

2 = 1.0 the two-phase regions

are isolated for zero or weak applied electric field, in contrast to the preceding case.

C. Chlorodifluoromethane + difluoromethane

The hidro(chloro)fluorocarbons (HCFC/HFC) serve [24] as potential alternatives for the

halogenated chlorofluorocarbons to make ozone friendly propellants, refrigerants, solvents,

etc. Extensive experimental and theoretical investigations have been started recently to
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determine, among others, the thermodynamical properties, esp. vapor–liquid equilibria of

HCFC/HFC binary mixtures. (See [24] and the referencies therein.) In Ref. [24] these mix-

tures were considered as dipolar ones, and Gibbs ensemble Monte Carlo (GEMC) simulations

were performed with an effective STM potential model. The effective potential parameters

ε, σ and d∗
eff for chlorodifluoromethane (CHClF2) and difluoromethane (CH2F2), hereinafter

referred to as R22 and R32, respectively, can be found in Table III. R32 seems [25] to be

a possible compound of refrigerant mixtures, however, during the manufacturing process of

R32 a certain amount of R22 is also produced, which has a considerably higher boiling point

and therefore should be removed. An applied electric field may help—at least from a merely

theoretical viewpoint—in the inevitable purification process. To put this idea on a sound

basis, let us discuss the vapor–liquid equilibria curves (shown in Fig. 11) of the R22+R32

mixture taken at T = 283.15 K in various electric fields. In our calculations the free energy

expression (20) and the potential parameters given in Table III were used, except that the

reduced dipole moments d∗
eff taken from [24] were changed to d∗. This slight modification of

the dipole moments was arose from a simple fitting to the experimentally determined [25]

vapor pressures. In Fig. 11 solid lines refer to the case of zero applied field, and small squares

represent the experimental data [25]. The fairly good agreement in the whole range of mole

fractions proves the validity of the perturbation theory and the Lorentz–Berthelot combining

rules applied here to describe the interaction between unlike particles. It should be noted

that—in correspondence with the results published in Ref. [24]—for the mixture R22+R32

the introduction of a coefficient ξ = 0.993 in the Berthelot rule (32) was needed. As it can

be seen in Fig. 11 and Table IV a sufficiently high—but experimentally accessible—electric

field decreases the vapor pressures of pure compounds and significantly alter the R22 content

of the two phases in vapor–liquid equilibrium at a given pressure.
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D. Acetonitrile + methanol

The thermodynamic properties of acetonitrile and methanol—two important solvents of

the chemical industry—can be well approximated [26] by the STM potential model, and

their mixture shows [8] a characteristic positive azeotrope at room temperature. It is an

interesting question to ask whether a strong electric field may end the azeotropy? To answer

this question we determine the shifts in the vapor pressures and in the azeotropic point

caused by an applied electric field. First of all, STM potential parameters are needed

which we have taken from [26] (see Table V). However, the reduced dipole moments d∗
eff

determined in [26] have to be modified considerably (cf. d∗
eff and d∗ in Table V) to obtain the

experimentally known vapor pressures of the pure compounds—a possible drawback of the

method presented in [26]. A minor change in the Lorentz rule is also needed. We introduce

the η = 1.011 coefficient in Eq. (33) to get the azeotropic point correctly. Fig. 12 shows our

results for the acetonitrile+methanol mixture at T = 333.46 K. The solid line represents

the case of zero electric field, and small squares indicate the corresponding experimental

data [27]. The agreement is remarkable, considering the highly nontrivial shapes of the

phase boundary curves. Small stars in Fig. 12 refer to GEMC simulations [28] based on ab

initio pair potentials. In Ref. [28] the interaction between unlike molecules were determined

separately without using any combining rules, and the phase boundary curves were found

to be in good agreement with experiments [27]. However, for the case under study Fig. 12

proves the slight superiority of the perturbation theory applied in this paper.

In Fig. 12 the dashed and dotted lines present the perturbative effect of an applied

electric field with different field strengths. The numerical results concerning the shifts in

vapor pressures and in the azeotropic point are collected in Table VI. We have found that
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an experimentally accessible field strength does not put an end to the azeotropic behavior

of the mixture at or near the examined temperature.

IV. CONCLUSIONS

In this study we have proposed a theoretical model to incorporate the perturbative effect

of an external electric field into the thermodynamics of dipolar fluid mixtures. We found a

free energy expression (20) for binary STM fluids, which is valid up to third order in the

perturbation expansion. The dielectric constant was calculated, and the result (22) was

found to be a generalization of a formula [12, 20] widely accepted in case of dipolar hard

sphere fluids up to moderately high dipole moments.

In Sec. III we have used our theory to calculate vapor–liquid and liquid–liquid equilibria

in four cases. (A) In an example it has been demonstrated that a sufficiently high electric

field may change considerably the shape of the vaporization and condensation curves, even a

critical point may disappear and an azeotropic point may appear. For a careful choice of STM

fluid parameters a strong electric field can separate the molecules into two partially miscible

fluid phases, one of which is rich in the more polar molecules (see Fig. 1). The sufficient

field strength seems to be experimentally unattainable, but it would be interesting to prove

these results by MC simulations. (B) The liquid–liquid equilibrium also shows changes in an

external field. The LCSP decreases with increasing field strength, and the two-phase region

gets wider. (C) We have studied the mixture chlorodifluoromethane+difluoromethane at

T = 283.15 K to investigate the role an applied electric field may play during the separation

process of these two promising refrigerant compounds. We have concluded that the field

effect turns to be important at field strengths as high as 5 · 106 V/m (see Fig. 11 and Table

IV). (D) Similarly, in case of an acetonitrile+methanol mixture taken at T = 333.46 K
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the considerable shifts in the vapor pressures or in the azeotropic point appear above a

2 · 106 V/m field strength, approximately (see Fig. 12 and Table VI).
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APPENDIX: THE ALGEBRAIC METHOD

In this Appendix a short summary of Ruelle’s algebraic method [11, 12] extended [13]

to fluid mixtures is given. The stress is laid on the free energy expression in presence of a

perturbing field.

Consider a fluid mixture composed of K species of particles and described in the canonical

ensemble. The potential energy of the refence system is of the form

U0 =
∑

i<j

u0(ij). (A.1)

Here and in the following i stands for (ri, ωi, ai) and ai ∈ {1, . . . , K}. Let the perturbation

caused by an external field interacting with the particles be described by the potential u1(i).

The configurational integral of the reference mixture reads

Z0
N =

∫

drNdωNe−βU0

, (A.2)

where N is the number of particles, drN = dr1 · · ·drN and β = 1/kT . The same integral
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for the perturbed system is

ZN =

∫

drNdωNe−βU0

exp
(

− β
∑

i

u1(i)
)

=

∫

drNdωNe−βU0
∏

i

(fM(i) + 1)

=

∫

drNdωNe−βU0(

1 +
N
∑

n=1

Φn(1 . . .N)
)

. (A.3)

Here the Mayer function fM(i) = (e−βu1(i) − 1) is introduced, and

Φn(1 . . .N) =
∑

1≤i1<...<in≤N

fM(i1) · · ·fM(in). (A.4)

Our goal is to expand the free energy

A = A0 − 1

β
ln

ZN

Z0
N

(A.5)

of the perturbed fluid mixture in power series form. To this end the algebraic method is

used, and we express the fraction ZN/Z0
N in exponential form [see Eqs. (A.12) and (A.13)

later]. First of all, we prove the following lemma.

LEMMA. Let f(ijk) be a function which does not depend on the order of its arguments

i, j, k, and let f(ijk) be zero whenever any two of its arguments coincide. Then

N
∑

i,j,k=1

∫

dr3dω3f(ijk) = 3!
∑

1≤i<j<k≤N

∫

dr3dω3f(ijk).
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Proof. One can perform the following substitutions inside the multiple integral:

N
∑

i,j,k=1

f(ijk) ⇒
∑

k

(

∑

i<j

+
∑

j<i

)

f(ijk) ⇒ 2
∑

k

∑

i<j

f(ijk)

⇒ 2
(

∑

k<i<j

+
∑

i<k<j

+
∑

i<j<k

)

f(ijk) ⇒ 3!
∑

i<j<k

f(ijk).

Clearly, one can extend the defining equation (A.4) of Φn in accordance with the Lemma.

The one-particle correlation function g0(i) = g0(ri, ωi, ai) of the reference mixture is defined

by

g0(1)
ρa1

Ωa1

= Na1

1

Z0
N

∫

drN−1dωN−1e−βU0

, (A.6)

where ρa1
= ρxa1

, and Ωa1
= 4π for linear molecules and 8π2 for nonlinear ones. The

reference pair correlation function g0(ij) can be read from

g0(12)
ρa1

ρa2

Ωa1
Ωa2

= Na1
(Na2

− δa1a2
)

× 1

Z0
N

∫

drN−2dωN−2e−βU0

, (A.7)

and similar expressions are valid for the higher order correlation functions. With these

notations and the Lemma in hand the summands in the integral (A.3) can be written in a

more suitable form for later use. The first term (divided by Z0
N) will be

1

Z0
N

∫

drNdωNe−βU0

Φ1(1 . . .N)

=
1

Z0
N

∫

dr1dω1

K
∑

a1=1

Na1
fM(1)

∫

drN−1dωN−1e−βU0

=
∑

a1

∫

dr1dω1
ρa1

Ωa1

g0(1)fM(1). (A.8)
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Here we have made use of the fact that the form of the Mayer function fM(i) is the same for

particles of the same type. The second summand of (A.3) can be written in the following

form:

1

Z0
N

∫

drNdωNe−βU0

Φ2(1 . . .N)

=
1

Z0
N

∫

drNdωNe−βU0 1

2

∑

i6=j

fM(i)fM(j)

=
1

Z0
N

∫

dr1dr2dω1dω2
1

2

K
∑

a1,a2=1

Na1
(Na2

− δa1a2
)

×fM(1)fM(2)

∫

drN−2dωN−2e−βU0

=
1

2

∑

a1a2

∫

dr1dr2dω1dω2
ρa1

ρa2

Ωa1
Ωa2

g0(12)fM(1)fM(2).

(A.9)

Finally, the nth term will be

1

Z0
N

∫

drNdωNe−βU0

Φn(1 . . . N)

=
1

n!

∑

a1...an

∫

drndωng0(1 . . . n)

n
∏

k=1

ρak

Ωak

fM(k).

(A.10)

Substituting (A.8–A.10) into (A.3) we get

ZN

Z0
N

= 1 +
N
∑

n=1

1

n!

∑

a1...an

∫

drndωng0(1 . . . n)
n
∏

k=1

ρak

Ωak

fM(k).
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Here ρak
= ρxak

and Ωak
= 4π for linear molecules studied in this paper, so

ZN

Z0
N

= 1 +

N
∑

n=1

zn

n!

∑

a1...an

∫

drndωng0(1 . . . n)

n
∏

k=1

xak
fM(k),

(A.11)

where z = ρ/4π.

Now let us consider the thermodynamic limit N → ∞. In this limiting case

ZN

Z0
N

→ p(z) =

∞
∑

n=0

zn

n!
pn, z =

ρ

4π
, (A.12)

with p0 = 1, and

pn =
∑

a1...an

∫

drndωng0(1 . . . n)
n
∏

k=1

xak
fM(k)

for n > 0. Kalikmanov pointed out in Ref. [12] that the algebraic perturbation theory serves

the fundamental expression

p(z) = exp q(z) = exp

(

∞
∑

n=0

zn

n!
qn

)

, (A.13)

where q0 = 0, q1 = p1, q2 = p2 − p2
1, q3 = p3 − 3p1p2 + 2p3

1, etc. Eq. (A.13) together with

(A.10) and (A.5) lead to the desired series expansion of the free energy:

A = A0 − 1

β

ρ

4π
q1 −

1

2β

( ρ

4π

)2

q2 − . . . (A.14)

The reference mixture is considered to be homogenous and isotropic, whereby g0(i) = 1.
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The first nontrivial terms of series q(z) are

q1 =
∑

a1

∫

dr1dω1xa1
fM(1)

q2 =
∑

a1a2

∫

dr2dω2(g0(12) − 1)xa1
xa2

fM(1)fM(2)

q3 =
∑

a1a2a3

∫

dr3dω3(g0(123) − 3g0(23) + 2)

×xa1
xa2

xa3
fM(1)fM(2)fM(3). (A.15)
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List of Figures

Figure 1. Plots for the equilibrium pressure p∗ on logarithmic scale against x1 for

a mixture (σ22/σ11 = 1.0, ε22/ε11 = 0.5, T ∗ = 1.0) in various electric fields with dipole

moments d∗2
1 = 0.5, d∗2

2 = 0.0.

Figure 2. Plots for the equilibrium pressure p∗ against ρ∗ for the mixture in Fig. 1.

Figure 3. Plots for the equilibrium pressure p∗ against x1 for a mixture (σ22/σ11 = 1.0,

ε22/ε11 = 0.6, T ∗ = 1.0) in various electric fields with dipole moments d∗2
1 = 0.5, d∗2

2 = 0.0.

Figure 4. Plots for the equilibrium pressure p∗ against x1 for a mixture (σ22/σ11 = 1.0,

ε22/ε11 = 0.5, T ∗ = 1.0) in various electric fields with dipole moments d∗2
1 = 0.0, d∗2

2 = 1.0.

Figure 5. Plots for the equilibrium pressure p∗ against ρ∗ for the mixture in Fig. 4.

Figure 6. Plots for the equilibrium pressure p∗ against x1 for a mixture (σ22/σ11 = 1.0,

ε22/ε11 = 0.5, T ∗ = 1.0) in various electric fields with dipole moments d∗2
1 = d∗2

2 = 1.0.

Figure 7. Plots for the equilibrium pressure p∗ against ρ∗ for the mixture in Fig. 6.

Figure 8. Plots for the equilibrium pressure p∗ on the logarithmic scale against x1 for

a mixture (ξ = 0.75, σ22/σ11 = 0.8, ε22/ε11 = 1.0, T ∗ = 1.15) in various electric fields with

dipole moments d∗2
1 = 1.0, d∗2

2 = 0.0.

Figure 9. Plots for the equilibrium pressure p∗ on the logarithmic scale against x1 for

a mixture (ξ = 0.75, σ22/σ11 = 0.8, ε22/ε11 = 1.0, T ∗ = 1.15) in various electric fields with

dipole moments d∗2
1 = d∗2

2 = 0.5.

Figure 10. Plots for the equilibrium pressure p∗ on the logarithmic scale against x1 for

a mixture (ξ = 0.75, σ22/σ11 = 0.8, ε22/ε11 = 0.75, T ∗ = 1.15) in various electric fields with

dipole moments d∗2
1 = d∗2

2 = 1.0.

Figure 11. Plots for the equilibrium pressure p (measured in bars) against the mole

fraction x1 of R22 for the mixture R22+R32 at T = 283.15 K in various electric fields.

29

Page 29 of 49

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Experimental data for Eext = 0.0 are taken from Ref. [25].

Figure 12. Plots for the equilibrium pressure p (measured in bars) against the mole

fraction x1 of acetonitrile for the mixture acetonitrile+methanol at T = 333.46 K in various

electric fields. For the case of zero applied field some experimental data [27] and the results

[28] of GEMC simulations with ab initio pair potentials are also presented.
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Tables

TABLE I: The matrix (bij) of the coefficients in Eq. (27).

19.07848434 −0.02206566 0.03267467 −0.43489042
24.11991429 −7.16957630 −2.46413554 2.48863015

−54.94579263 17.95946765 14.05731128 −19.26865259
26.48841930 −10.82856816 −17.29258662 29.21044620
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TABLE II: Critical data of a binary STM fluid in the vdW1f approximation (σ22/σ11 = 1.0,

ε22/ε11 = 0.5, T ∗ = 1.0) with various dipole moments and external field strengths. For each pair of

dipole moments and field strength the reduced critical pressure pc∗, density ρc∗ and mole fraction

xc
1 are given one under the other.

d∗2
1 d∗2

2 E∗2
ext

0.0 0.002 0.005 0.010 0.025 0.050 0.075
0.5 0.0 0.187 0.188 0.189 0.192 0.201 0.226 0.368

0.465 0.467 0.471 0.477 0.501 0.563 0.676
0.440 0.440 0.442 0.444 0.457 0.509 0.631

0.75 0.0 0.213 0.219 0.229 0.257
0.507 0.519 0.539 0.584 –[1]
0.439 0.447 0.462 0.504

1.0 0.0 0.272 0.315 0.502
0.574 0.608 0.684 –[1]
0.462 0.490 0.557

1.25 0.0 0.439 1.025
0.643 0.750 –[1]
0.471 0.523

0.0 0.5 0.158 0.157 0.157 0.156 0.153 0.149 0.146
0.433 0.428 0.427 0.426 0.421 0.415 0.406
0.450 0.446 0.445 0.443 0.438 0.431 0.421

0.0 0.75 0.145 0.144 0.142 0.140 0.133 0.128
0.418 0.416 0.413 0.406 0.382 0.346 –[2]
0.434 0.432 0.428 0.420 0.393 0.320

0.0 1.0 0.129 0.127 0.124 0.121
0.396 0.387 0.373 0.356 –[2]
0.410 0.401 0.384 0.356

0.5 0.5 0.159 0.159 0.160 0.161 0.162 0.164 0.164
0.430 0.428 0.429 0.430 0.427 0.426 0.416
0.396 0.390 0.383 0.371 0.332 0.273 0.210

0.75 0.75 0.145 0.146 0.147 0.148 0.150
0.410 0.410 0.408 0.403 0.388 –[3]
0.330 0.314 0.289 0.246 0.126

1.0 1.0 0.127 0.129 0.130 0.133
0.370 0.367 0.362 0.353 –[3]
0.243 0.206 0.151 0.060

TABLE III: Effective STM parameters quoted from [24]. Concerning the dipole moment d∗ see the

main text.

Compound ε/k (K) σ (Å) d∗
eff d∗

R22 CHClF2 199.8 4.374 1.768 1.728
R32 CH2F2 163.1 3.900 2.098 2.051
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TABLE IV: Shifts in the vapor pressures pv
R22 and pv

R22 of pure R22 and R32 compounds, respec-

tively, in electric field Eext.

Eext (V/m) 0.0 1 · 106 2 · 106 5 · 106 1 · 107

pv
R22 (bar) 6.788 6.782 6.765 6.647 6.229

pv
R32 (bar) 11.056 11.049 11.020 10.820 10.106

TABLE V: STM potential parameters of acetonitrile and methanol [26]. Concerning the dipole

moment d∗ see the main text.

Compound ε/k (K) σ (Å) d∗
eff d∗

Acetonitrile CH3CN 175.7 4.284 2.838 2.783
Methanol CH3OH 359.0 3.803 1.036 1.516

TABLE VI: Shifts in the azeotropic pressure pa and mole fraction xa
1 of the mixture acetoni-

trile+methanol, and in the vapor pressures pv
1 and pv

2 of pure acetonitrile and ethanol, respectively,

caused by the electric field Eext.

Eext (V/m) 0.0 1 · 106 2 · 106 5 · 106

pa (bar) 0.900 0.898 0.894 0.863
xa

1 0.198 0.196 0.191 0.156
pv

1 (bar) 0.494 0.490 0.479 0.407
pv

2 (bar) 0.856 0.855 0.853 0.834
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