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Abstract

An idealized model to treat the effect of spherically confining the elec-
tron in a hydrogen -like atom is studied, where the potential is infinite in
all space except for a spherical shell. The exact solution of the Schrödinger
equation is obtained in terms of two independent solutions of the Kummer
equations. It is found that in some cases it is necessary to use the stan-
dard KummerM function and a non-standard second solution. In other
cases we may use the KummerU function and in a limiting case the two
standard solutions of Bessel’s equation. The effect of an imposed dipole
field on the shell is treated using the first-order perturbation equation
from which the polarizability can be calculated. In addition the exact
wavefunction is used to calculate the Shannon entropies of both position
and momentum and it is shown that these measures give insight into the
form of the wavefunction.

Key words: shell confined, polarizabilities , Shannon entropies.

*Corresponding author.

1

Page 1 of 21

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
1 Introduction

In the present work we extend an earlier exact treatment of confined hydrogen-
like atoms. The model consists of the conventional Coulomb potential restricted
to a finite radial interval R1 < r < R2 . In previous work [1,2,3] we adopted
the traditional model with R1 = 0; the present extension introduces non-trivial
changes in the mathematical treatment of an exactly soluble problem.

We observe that this model was suggested ( but not actually treated ) in
a calculation of the Shannon information entropy of confined atoms [4]. This
entropy has been advocated as a particularly useful measure of the quality and
properties of the wavefunction and has been the subject of much recent work
[4-9 ] .

In the following section we solve Schrödinger’s equation in terms of confluent
hypergeometric functions. It turns out that the standard choice of solutions
is not always appropriate. In later sections we use the resulting solutions in
calculations of dipole polarizabilities and Shannon entropies.

2 Solutions of the Schrődinger equation

We extend the notations of our earlier work with

H0 = −1
2
∇2 + V0(r;R1, R2) (1)

where
V0(r;R1, R2) = −Z

r
, R1 ≤ r ≤ R2, ∞ otherwise (2)

(a natural generalization of the conventional unconfined hydrogen-like Hamilto-
nian).The exact solutions are expressed conveniently in the form

ψ0 = N0r
lYlm(θ,Φ)exp(−αr)f(c, d, 2αr), E0 = −α

2

2
(3)

where N0 is a normalization constant, Ylm is the usual spherical harmonic and
the parameter α must be determined numerically from the boundary conditions.
Here

c = (l + 1)− Z

α
, d = 2(l + 1) (4)

The function f(c, d, 2αr) satisfies the same second-order differential equation
studied previously [1,2 ], but with two-point finite boundary conditions

f(c, d, 2αR1) = f(c, d, 2αR2) = 0 (5)

Specifically, for fixed c and d, we have to solve:

L(c, d, x)y(x) = [xD2 + (d− x)D − c]y(x) = 0 (6)

where
x = 2αr, D =

d

dx
, f(c, d, 2αr) = y(x) (7)

Equation (6) defines the Kummer functions and to satisfy both boundary con-
ditions (5) we need to use two independent solutions. We have chosen one of

2
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these as the usual Kummer M function, which is finite at x = 0 and has the
series expansion :

M(c, d, x) = 1 +
c

d
x+

c(c+ 1)
d(d+ 1)

x2

2!
+ ...+

(c)n
(d)n

xn

n!
+ .. (8)

where we have used the Pochhammer symbol (a)n = Γ(a + n)/Γ(a) The sec-
ond series solution of Kummer’s equation can be written in many ways. The
standard form

x1−dM(1 + c− d, 2− d, x) (9)

is singular when as in our case, d = n + 1 and n is a positive integer. A
particular linear combination of (9 ) and M(c, d, x), denoted by U(c, d, x) [10] is
often used as the second solution. A limiting form of this removes the singularity
for positive integers n but it is not universally linearly independent of M(c, d, x)
since c = l+ 1− Z/α may be zero or a negative integer in the form c = −m. If
in addition n is a positive integer U(c,d,x) becomes a multiple of M(c,d,x) [11]
and an alternative second, independent solution, is required. Clearly for a fixed
positive integer d there is an accumulation of such values of α as m increases and
the energy, E0 approaches 0. Even for formally unproblematic values of α in the
region 0 < α < 1, the numerical computations become increasingly unstable and
it is necessary to find an alternative form for the second independent solution.We
now introduce formally a general linearly independent second solution W (c, d, x)
and write

f(c, d, 2αr) = aM(c, d, 2αr) + bW (c, d, 2αr) (10)

The boundary conditions on ψ0 imply that we need to solve the pair of equations

aM(c, d, 2αR1) + bW (c, d, 2αR1) = 0 (11)

aM(c, d, 2αR2) + bW (c, d, 2αR2) = 0 (12)

To obtain non-zero solutions for a and b we need to solve

M(c, d, 2αR1)W (c, d, 2αR2)−M(c, d, 2αR2)W (c, d, 2αR1) = 0 (13)

This is an equation for α and once this parameter is determined the ratio a/b
may be determined from either (11) or (12). Note it is impractical to choose
W (c, d, x) = U(c, d, x) , with 0 < α < 1 , for the reasons outlined above .
To obtain a second independent solution we follow the standard procedure for a
series solution where one or more of the coefficients are singular( see for example
Piaggio [12]) .In this case we form the function

Q = xsM(c+ 2s+ n, n+ 1 + 2s, x) (14)

which is obtained from (9) by replacing 1 − d by the variable s and writing
d = n+1 where n is a positive integer ; it reduces to (9) with s = 1−d = −n.This
is the solution of

L(c, 1− 2s− n, x)Q = 0, L(c, d, x) ≡ xD2 + (d− x)D − c (15)

The operator L(c,d,x) and more details of the solutions of the Kummer equation
are considered in the appendix. Note L(c, 1−2s−n, x) reduces to L(c, 1+n, x) =

3
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L(c, d, x) when s = −n, but Q is singular for this choice of s. To deal with this
we replace Q by P = (s+ n)Q and then

L(c, n+1, x)P = (s+n)L(c, 1−2s−n, x)Q+2(s+n)2DQ = 2(s+n)2DQ (16)

This shows that P is a solution when s = −n and since (s+ n) occurs quadrat-
ically we also have

lim
s→−n

{L(c, d, x)
∂P

∂s
} = 2 lim

s→−n
{∂((s+ n)2DQ)

∂s
} = 0 (17)

and we may deduce that when s = −n another solution is

N(c, d, x) = lim
s→−n

∂(s+ n))Q
∂s

(18)

and we may choose W (c, d, x) = N(c, d, x) as an independent second solution.
The solution W (c, d, x) = P (c, d, x) is not independent of M(c, d, x);further
details are deferred to the appendix.

The functions M(c, d, x) and W (c, d, x) are calculated using the mathemati-
cal package MAPLE and in the tables below we list the energies E0 for selected
values of R1 and R2. In table 1 we use R1 = 0.5, Z = 1 with R2 in the interval
2.9...17 and these lead to negative ground state ( l = 0 ) energies decreasing with
R2. Similarly in table 2 we use R1 = 2, Z = 1, R2 = 7..20 and again obtain
negative ground state energies; we note that in the case R1 = 2 as R2 → ∞
this solution approaches the 2s state for an unconfined hydrogen-like atom. In
table 3 we again use R1 = 2, Z = 1 but for the first excited l = 0 state and for
the larger values of R2 the energies are small and negative, but eventually they
become positive and increase sharply. This is similar to the behaviour in our
earlier work where the confinement was purely spherical ( R1 = 0 for some R2)
[1,3 ]. To deal with the case of positive energy we may replace α by iβ ( β real)
and solve (13), equating both real and imaginary parts to zero simultaneously.
The resulting energy is given by E0 = β2/2. In the calculations in table 3, to
find the value of R2 for which E0 = α = 0 we use a similar analysis to that
given in [1 ]. We multiply H0 by r to obtain

(r2D2
r + 2(l + 1)rDr + 2Zr)f = 0 (19)

where Dr = d/dr . Using the substitutions

r =
x2

8Z
, p = −(2l + 1), f = xpy (20)

leads to the canonical Bessel equation of order p :

(xD2 + xD + (x2 − p2))y = 0 (21)

so that the two independent solutions are the Bessel functions, Jp(x), Yp(x).
The analogue of (13) in the case l = 0 is

J1(x1)Y1(x2)− J1(x2)Y1(x2) = 0 (22)

where x1 =
√

8R1 and x2 =
√

8R2. For R1 = 2, Z = 1 and α = 0 this is an
equation for R2 and can be used to find the position of the zero energy for the
first excited s-state; this is given in table 3.

4
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All of the calculations presented in the tables are for l = 0, but it is easy to

extend to higher values. For example for the case l = 1, R1 = 0.2, R2 = 30 we
obtain an energy of −0.1248 , which is close to the 2p energy of atomic hydrogen
( −0.125 ); this is to be expected when R1 is small and R2 is large. Similarly
for l = 1, R1 = 6, R2 = 30 we obtain −0.0554. Since R1 = 6 corresponds
to the node of the 3p state for atomic hydrogen, as expected, this is close
to the corresponding energy ( −1/18 ). In the intermediate range of R1 , with
parameters l = 1, R1 = 0.2, R2 = 30 we obtain the lowest p-state energy−0.1140
lying between the hydrogen 2p and 3p energies.

3 Polarizabilities

As in our earlier treatment of (one- sided) confinement [2 ] we treat the dipole
polarizability of s-states. This has been the subject of much interest over many
years [13-16]. It turns out that the present model involves more extensive anal-
ysis. With the field-free solution written as in (3 ) the first order equation

(H0 − E0)ψ1 = −rcos(θ)ψ0 (23)

may be used to calculate the second-order energy and hence the polarizability
with the first-order equation expressed in the form

ψ1 = N1rcos(θ)exp(−x/2)F (x) (24)

In the following analysis it is convenient to express f(c, d, x) of (7) in the form

f(c, d, x) = AM(c, d, x) +BU(c, d, x); (25)

this allows direct use of the standard recurrence relations for M(c, d, x) and
U(c, d, x). We emphasize that this is legitimate so long as we do not have the
degenerate case where U(c, d, x) is a multiple of M(c, d, x). ( In section 1 we
needed to use (18) rather than U(c, d, x) to avoid the solutions of (13 ), arising
from the degenerate cases, that lead to unacceptable wavefunctions which did
not satisfy (11) and (12)). Given α from (13) we can find A and B from either
of the two equations:

f(c, d, x1) = 0 or f(c, d, x2) = 0 (26)

The explicit solution for F (x) of (24 ) is obtained from

L(c+ 1, d+ 2, x)F (x) = µx(AM(c, d, x) +BU(c, d, x)), µ =
1

2α2
(27)

is now derived analogously to the earlier F (x) in [2 ]. In the present case
F (x) naturally contains superpositions of both the KummerM and KummerU
functions in the form

F (x) =
4∑

k=0,k 6=2

(AkM(c− 1 + k, d+ 2, x) +BkU(c− 1 + k, d+ 2, x))

+
∂

∂c
(A2M(c+ 1, d+ 2, x) +B2U(c+ 1, d+ 2, x)) (28)

5
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The coefficients are given by

A0 =
(c− 1)(c− 3)(c− 4)

6
, B0 = 1

A1 = −2
(c− 1)(c− 2)(c− 3)

3
, B1 = −4(c− 1)

A2 = c(c− 1)(c− 2), B2 = 6c(c− 1)

A3 = −2
(c+ 1)c(c− 1)

3
, B3 = −4(c− 1)c(c+ 1)

A4 =
(c+ 2)(c+ 1)c

6
, B4 = (c− 1)c(c+ 1)(c+ 2) (29)

We note that if α = 0 so that the solution is expressed in terms of Bessel
functions, or such that N(c, d, x) needs to be used instead of U(c, d, x), then
it is necessary to consider an alternative form for ψ1 or use a limiting process.
However this will only occur for a discrete set of α in the interval 0 ≤ α ≤ 1 .

4 Shannon Entropies

The Shannon entropy of the electron density in coordinate space is defined by

Sr = −
∫
ρ(r)ln(ρ(r))dr (30)

where ρ(r) = |ψ0|2 and ψ0 is the normalized wavefunction. As the electron
density function, ρ(r) becomes more de-localized Sr increases and conversely
for localized electron densities Sr increases. This is analogous to the usual
information theory entropy

−
∑
i

piln(pi) ≥ 0 (31)

for a discrete distribution {pi} which is a maximum for a uniform distribution
and zero when one of the pi is unity and the others all zero. There is one
important difference and that is that Sr may be negative. This property of Sr

may be illustrated using a one dimensional model where

ρr(r) = ρ(x) =
√
a

π
exp(−ax2) (32)

and Sr may be calculated exactly as

Sr =
1
2

(1 + ln(
a

π
)) (33)

As a→∞, Sr → −∞ and as a→ 0, Sr →∞. In this paper we consider l = 0 so
that although we have a 3-dimensional example, ρr(r) = ρ(r) a one-dimensional
radial electron density.

The corresponding Shannon entropy for the momentum is given by

Sp = −
∫
γ(p)ln(γ(p)dp (34)

6
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with γ(p) = |φ0|2 where φ0 is the normalized momentum wavefunction obtained
from a Fourier transform of ψ0∫

ψ0 exp(i(p.r)dr (35)

These entropies ( or uncertainties) provide a measure of information about the
probability distributions in the coordinate space and momentum space respec-
tively. An uncertainty principle [9] has been derived for these entropies which
for a single electron in 3 dimensions takes the form

ST = Sr + Sp ≥ 3(1 + ln(π)) ≈ 6.4342 (36)

One of the earliest applications was the use of ST to measure the quality of
approximate wavefunctions [8] but more recently it has been related to various
chemical properties that can be obtained from the wavefunction. ( For a compre-
hensive list of these applications see [5 ]). Here we concentrate on the separate
entropies to measure the wavefunction properties and shape. We use the exam-
ple of calculations given in table 1 and since l = 0 we have Ylm(θ,Φ) = 1 and
(30 ) becomes

Sr = −4π
∫ ∞

0

r2|ψ0|2ln(|ψ0|2)dr (37)

The results are given in table 4 and we see a steady decrease in Sr as the
system becomes more confined and the uncertainty in position decreases. To
obtain φ0 corresponding to ψ0 we may fix the direction of p in (35) to be the
z-axis and obtain

2π
∫ R2

R1

∫ π

0

r2ψ0 exp(−iprcos(θ))sin(θ)dθdr = 4π
∫ R2

R1

r2ψ0sinc(pr)dr (38)

which only depends on the variable p.The Shannon entropies are defined for
normalized wavefunctions and we may normalize φ0 so that∫

|φ0|2dp = 1 (39)

and consequently φ0 can be expressed in the form

φ0 = Np

∫ R2

R1

r2ψ0sinc(pr)dr (40)

where Np is a normalization constant and the momentum entropy becomes

Sp = −4π
∫ ∞

0

p2|φ0|2ln(|φ0|2)dp (41)

Both ( 37) and (41 ) are easily calculated using standard numerical integra-
tion techniques and the values are given in table 4. At first sight the uncertainty
principle (36) would seem to imply that as Sr decreases then Sp should increase.
This is certainly the case for the very large and very small values of R2 but in the
intermediate region Sp decreases (and in fact becomes small and negative).This

7
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behaviour mirrors the form of the wavefunction which localized near r = R2

for large R2, localized near r = R1 for small R2 but has a bimodal shape in
the intermediate region. (see figures 1,2 and 3; the wavefunctions are arbitrarily
normalized). In the bimodal situation the spread of the coordinate wavefunction
is large even though it is increasingly confined. Thus, from the standard Heisen-
berg uncertainty principle, the momentum spread is narrow and this manifests
itself in Sp. The two entropy measures therefore give information about the
shape of the wavefunctions whereas the sum, ST essentially mirrors Sr.
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Appendix A: Solutions of Kummer’s equation

We require two linearly independent solutions of the Kummer differential equa-
tion

L(c, d, x)f(x) = 0 (A1)

where we denote the second-order linear operator L(c, d, x) :

L(c, d, x) = xD2 + (d− x)D − c, D =
d

dx
(A2)

The standard ( Frobenius) method of solution for f(x) is to assume a convergent
infinite series

f(x) = xsF (x; s), F (x; s) =
∞∑
k=0

ak(s)xk (A3)

which yields on substitution into (A1)

L(c, d, x)f(x) = a0(s)s(s+ d− 1)xs−1 (A4)

provided that the higher-order expansion coefficients ak(s) satisfy the recurrence
relations

ak+1(s) =
(s+ k + c)

(s+ k + d)(s+ k + 1)
ak(s) (A5)

Assuming a0 is non-zero, we generally have two linearly indpendent solutions
to (A1) provided that the indical equation

s(s+ d− 1) = 0 (A6)

has distinct roots. Unless d = 1 the distinct roots are s = 0, s = 1− d and the
two convergent series solutions are usually denoted by (we adopt the notations
of Abramowitz and Stegun [10])

f1(x) = M(c, d, x) (A7)

and
f2(x) = x1−dM(c+ 1− d, 2− d, x) (A8)

8
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where M(c,d,x) denotes the Kummer fiunction regular at x = 0 :

M(c, d, x) =
∞∑
k=0

ck
dk

xk

k!
(A9)

and we have used the Pockhammer symbol

ck = c(c+ 1)...(c+ k − 1) =
Γ(c+ k)

Γ(c)
(A10)

Clearly when d = 1, we have identically f1(x) = f2(x), and we must derive
a second solution be other means. Moreover , whenever d is zero or a negative
integer in (A7) or d > 1 in (A8), a zero factor in some of the denominators
in (A9) invalidates the form of series solution. The procedure for finding the
second solution is similar in all cases but for definiteness, we now apply the
procedure of Piaggio to the case d = n+ 1 where n is a positive integer, so that
s = 0 gives a finite solution, but s = −n does not. In such a case, Piaggio
rewrites the zero-order expansion coefficient , a0(−n) , in the form

a0(−n) = (s+ n)b0(−n) (A11)

but now assumes b0(−n) is non-zero, so that the n leading coefficients of the
series F (x;−n) vanish:

a0(−n) = a1(−n) = .... = an−1(−n) = 0 (A12)

while the effect of the zero multiplier, (s+ n) on all higher-order coefficients is
to cancel the zero term in easch denominator. We follow Piaggio’s procedure ,
writing the solution more generally

f(x) = (s+ n)xsF (x) (A13)

and obtain formally

L(c, d, x)[(s+n)xsF (x)] = (s+n)xs[L(c+s, n+1+2s)+
s(s+ n)

x
]F (x) (A14)

By definition of the KummerM function,

L(c+ s, d+ 2s, x)M(c+ s, d+ 2s, x) = 0 (A15)

so that a solution, F (x), of (A14) is given by a multiple of

M(c+ s, n+ 1 + 2s, x) = 1 +
(c+ s)

(n+ 1 + 2s)
x+

(c+ s)(c+ s+ 1)
(n+ 1 + 2s)(n+ 2 + 2s)

x2

2
+ ...

(A16)

since the right hand side of (A14) is zero when s = −n, so long as (s+ n)F (x)
is finite. It will be necessary to evaluate the limit of the product (s+n)F (x) as
s→ −n , in order to obtain the well-defined result:

f2(x) = lim
s→−n

{xs[(s+ n)M(c+ s, n+ 1 + 2s, x)]}

9
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=

(c− n)..(c− 1)
(1− n)(2− n)..(−1)

1
n!

(1 +
c

n+ 1
x+ ...) = kM(c, n+ 1, x) (A17)

which is a finite multiple of the solution f1(x) ( with s = 0 ). Moreover , the
presence of the quadratic factor (s+n)2 on the right-hand side of (A14) implies
that, provided the limit as s→ −n exists , a third solution of (A1) is obtained
by first taking partial derivatives with respect to s and then proceeding to the
limit s→ −n : formally, this result may be written

f3(x) = lim
s→−n

∂

∂s
[xs(s+ n)M(c+ s, n+ 1 + 2s, x)] = N(c, n+ 1, x) (A18)

and we emphasize that this function, N(c, n+ 1, x) is not necessarily identical
with the second Kummer solution usually denoted by U(c, n+ 1, x) ( see [10]).
However the three functions M(c, n+ 1, x), N(c, n+ 1, x) and U(c, n+ 1, x) can-
not be linearly independent , since they all satisfy the second-order differential
equation (A1).

We note that , on account of the derivative of xs, (A18) generally contains
a term proportional to ln(x)M(c, n + 1, x), which is linearly independent of
M(c,n+1,x). The solution of (A18) may be identified with (18) in the main
text.
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Table 1 Ground state energies where R1 = 0.5 for various R2

R1 R2 E0

0.5 17 −0.398906
0.5 15 −0.344312
0.5 13 −0.327935
0.5 11 −0.320705
0.5 9 −0.313823
0.5 7 −0.302277
0.5 5 −0.264904
0.5 3 −0.029066
0.5 2.9 −0.005937
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Table 2 Ground state energies where R1 = 2 for various R2

R1 R2 E0

2 20 −0.124986
2 13 −0.122945
2 12 −0.121104
2 11 −0.117727
2 10 −0.111565
2 9 −0.100268
2 8 −0.079198
2 7 −0.038704
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Table 3 First excited state energies where R1 = 2 for various R2; the
results include the zero energy and one positive energy.

R1 R2 E0

2 20 −0.047672
2 17 −0.037193
2 16 −0.030875
2 15 −0.022229
2 14 −0.010407
2 13.171086 0
2 12 0.272603
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Table 4 The position,momentum and total entropies for the states
in table 1.

R1 R2 Sr Sp ST
0.5 17 9.2542 0.4697 9.7239
0.5 15 9.0095 0.4131 9.4226
0.5 13 8.9015 −0.3029 8.5986
0.5 11 8.2187 −0.9717 7.2470
0.5 9 6.9682 −0.3132 6.6550
0.5 7 6.1373 0.3985 6.5358
0.5 5 5.3598 1.282 6.6418
0.5 3 4.0696 2.779 6.8486
0.5 2.9 3.9741 2.862 6.8361
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Figure Captions

Figure 1: the ground state wavefunction for R1 = 0.5 and R2 = 17
Figure 2: the ground state wavefunction for R1 = 0.5 and R2 = 2.9
Figure 3: the ground state wavefunction for R1 = 0.5 and R2 = 13
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Figure 1: the ground state wavefunction for R1 = 0.5 and R2 = 17

 

16

Page 16 of 21

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Figure 2: the ground state wavefunction for R1 = 0.5 and R2 = 2.9
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Figure 3: the ground state wavefunction for R1 = 0.5 and R2 = 13
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