B L Burrows 
  
M Cohen 
  
  
  
Keywords: shell confined, polarizabilities, Shannon entropies shell confined, polarizabilities, Shannon entropies

An idealized model to treat the effect of spherically confining the electron in a hydrogen -like atom is studied, where the potential is infinite in all space except for a spherical shell. The exact solution of the Schrödinger equation is obtained in terms of two independent solutions of the Kummer equations. It is found that in some cases it is necessary to use the standard KummerM function and a non-standard second solution. In other cases we may use the KummerU function and in a limiting case the two standard solutions of Bessel's equation. The effect of an imposed dipole field on the shell is treated using the first-order perturbation equation from which the polarizability can be calculated. In addition the exact wavefunction is used to calculate the Shannon entropies of both position and momentum and it is shown that these measures give insight into the form of the wavefunction.

In the present work we extend an earlier exact treatment of confined hydrogenlike atoms. The model consists of the conventional Coulomb potential restricted to a finite radial interval R 1 < r < R 2 . In previous work [1,2,3] we adopted the traditional model with R 1 = 0; the present extension introduces non-trivial changes in the mathematical treatment of an exactly soluble problem.

We observe that this model was suggested ( but not actually treated ) in a calculation of the Shannon information entropy of confined atoms [4]. This entropy has been advocated as a particularly useful measure of the quality and properties of the wavefunction and has been the subject of much recent work [4][5][6][7][8][9] .

In the following section we solve Schrödinger's equation in terms of confluent hypergeometric functions. It turns out that the standard choice of solutions is not always appropriate. In later sections we use the resulting solutions in calculations of dipole polarizabilities and Shannon entropies.

Solutions of the Schrődinger equation

We extend the notations of our earlier work with

H 0 = - 1 2 ∇ 2 + V 0 (r; R 1 , R 2 ) (1) 
where

V 0 (r; R 1 , R 2 ) = - Z r , R 1 ≤ r ≤ R 2 , ∞ otherwise (2) 
(a natural generalization of the conventional unconfined hydrogen-like Hamiltonian).The exact solutions are expressed conveniently in the form

ψ 0 = N 0 r l Y lm (θ, Φ)exp(-αr)f (c, d, 2αr), E 0 = - α 2 2 ( 3 
)
where N 0 is a normalization constant, Y lm is the usual spherical harmonic and the parameter α must be determined numerically from the boundary conditions. Here

c = (l + 1) - Z α , d = 2(l + 1) (4) 
The function f (c, d, 2αr) satisfies the same second-order differential equation studied previously [1,2 ], but with two-point finite boundary conditions

f (c, d, 2αR 1 ) = f (c, d, 2αR 2 ) = 0 (5) 
Specifically, for fixed c and d, we have to solve:

L(c, d, x)y(x) = [xD 2 + (d -x)D -c]y(x) = 0 (6) where x = 2αr, D = d dx , f (c, d, 2αr) = y(x) (7) 
Equation ( 6) defines the Kummer functions and to satisfy both boundary conditions (5) we need to use two independent solutions. We have chosen one of these as the usual Kummer M function, which is finite at x = 0 and has the series expansion :

M (c, d, x) = 1 + c d x + c(c + 1) d(d + 1) x 2 2! + ... + (c) n (d) n x n n! + .. (8) 
where we have used the Pochhammer symbol (a) n = Γ(a + n)/Γ(a) The second series solution of Kummer's equation can be written in many ways. The standard form

x 1-d M (1 + c -d, 2 -d, x) (9) 
is singular when as in our case, d = n + 1 and n is a positive integer. A particular linear combination of ( 9) and M (c, d, x), denoted by U (c, d, x) [START_REF] Abramowitz | Handbook of mathematical Functions[END_REF] is often used as the second solution. A limiting form of this removes the singularity for positive integers n but it is not universally linearly independent of M (c, d, x) since c = l + 1 -Z/α may be zero or a negative integer in the form c = -m. If in addition n is a positive integer U(c,d,x) becomes a multiple of M(c,d,x) [START_REF] Lebedev | Special Functions and their applications[END_REF] and an alternative second, independent solution, is required. Clearly for a fixed positive integer d there is an accumulation of such values of α as m increases and the energy, E 0 approaches 0. Even for formally unproblematic values of α in the region 0 < α < 1, the numerical computations become increasingly unstable and it is necessary to find an alternative form for the second independent solution.We now introduce formally a general linearly independent second solution W (c, d, x) and write

f (c, d, 2αr) = aM (c, d, 2αr) + bW (c, d, 2αr) (10) 
The boundary conditions on ψ 0 imply that we need to solve the pair of equations aM (c, d, 2αR 1 ) + bW (c, d, 2αR 1 ) = 0 (11)

aM (c, d, 2αR 2 ) + bW (c, d, 2αR 2 ) = 0 (12) 
To obtain non-zero solutions for a and b we need to solve

M (c, d, 2αR 1 )W (c, d, 2αR 2 ) -M (c, d, 2αR 2 )W (c, d, 2αR 1 ) = 0 (13) 
This is an equation for α and once this parameter is determined the ratio a/b may be determined from either [START_REF] Lebedev | Special Functions and their applications[END_REF] or [START_REF] Piaggo | An elementary treatise on differential equations[END_REF]. Note it is impractical to choose W (c, d, x) = U (c, d, x) , with 0 < α < 1 , for the reasons outlined above .

To obtain a second independent solution we follow the standard procedure for a series solution where one or more of the coefficients are singular( see for example Piaggio [START_REF] Piaggo | An elementary treatise on differential equations[END_REF]) .In this case we form the function

Q = x s M (c + 2s + n, n + 1 + 2s, x) (14) 
which is obtained from (9) by replacing 1 -d by the variable s and writing d = n+1 where n is a positive integer ; it reduces to (9) with s = 1-d = -n.This is the solution of

L(c, 1 -2s -n, x)Q = 0, L(c, d, x) ≡ xD 2 + (d -x)D -c (15) 
The operator L(c,d,x) and more details of the solutions of the Kummer equation are considered in the appendix. Note L(c, 1-2s-n, x) reduces to L(c, 1+n, x) = L(c, d, x) when s = -n, but Q is singular for this choice of s. To deal with this we replace Q by P = (s + n)Q and then

L(c, n + 1, x)P = (s + n)L(c, 1 -2s -n, x)Q + 2(s + n) 2 DQ = 2(s + n) 2 DQ (16)
This shows that P is a solution when s = -n and since (s + n) occurs quadratically we also have

lim s→-n {L(c, d, x) ∂P ∂s } = 2 lim s→-n { ∂((s + n) 2 DQ) ∂s } = 0 (17)
and we may deduce that when s = -n another solution is

N (c, d, x) = lim s→-n ∂(s + n))Q ∂s ( 18 
)
and we may choose W (c, d, x) = N (c, d, x) as an independent second solution.

The solution W (c, d, x) = P (c, d, x) is not independent of M (c, d, x);further details are deferred to the appendix. The functions M (c, d, x) and W (c, d, x) are calculated using the mathematical package MAPLE and in the tables below we list the energies E 0 for selected values of R 1 and R 2 . In table 1 we use R 1 = 0.5, Z = 1 with R 2 in the interval 2.9...17 and these lead to negative ground state ( l = 0 ) energies decreasing with

R 2 . Similarly in table 2 we use R 1 = 2, Z = 1, R 2 = 7.
.20 and again obtain negative ground state energies; we note that in the case R 1 = 2 as R 2 → ∞ this solution approaches the 2s state for an unconfined hydrogen-like atom. In table 3 we again use R 1 = 2, Z = 1 but for the first excited l = 0 state and for the larger values of R 2 the energies are small and negative, but eventually they become positive and increase sharply. This is similar to the behaviour in our earlier work where the confinement was purely spherical ( R 1 = 0 for some R 2 ) [1,3 ]. To deal with the case of positive energy we may replace α by iβ ( β real) and solve [START_REF] Dalgarno | [END_REF], equating both real and imaginary parts to zero simultaneously. The resulting energy is given by E 0 = β 2 /2. In the calculations in table 3, to find the value of R 2 for which E 0 = α = 0 we use a similar analysis to that given in [1 ]. We multiply H 0 by r to obtain

(r 2 D 2 r + 2(l + 1)rD r + 2Zr)f = 0 ( 19 
)
where D r = d/dr . Using the substitutions

r = x 2 8Z , p = -(2l + 1), f = x p y (20)
leads to the canonical Bessel equation of order p :

(xD 2 + xD + (x 2 -p 2 ))y = 0 (21)
so that the two independent solutions are the Bessel functions, J p (x), Y p (x). The analogue of (13) in the case l = 0 is

J 1 (x 1 )Y 1 (x 2 ) -J 1 (x 2 )Y 1 (x 2 ) = 0 (22)
where

x 1 = √ 8R 1 and x 2 = √ 8R 2 .
For R 1 = 2, Z = 1 and α = 0 this is an equation for R 2 and can be used to find the position of the zero energy for the first excited s-state; this is given in table 3. All of the calculations presented in the tables are for l = 0, but it is easy to extend to higher values. For example for the case l = 1, R 1 = 0.2, R 2 = 30 we obtain an energy of -0.1248 , which is close to the 2p energy of atomic hydrogen ( -0.125 ); this is to be expected when R 1 is small and R 2 is large. Similarly for l = 1, R 1 = 6, R 2 = 30 we obtain -0.0554. Since R 1 = 6 corresponds to the node of the 3p state for atomic hydrogen, as expected, this is close to the corresponding energy ( -1/18 ). In the intermediate range of R 1 , with parameters l = 1, R 1 = 0.2, R 2 = 30 we obtain the lowest p-state energy -0.1140 lying between the hydrogen 2p and 3p energies.

Polarizabilities

As in our earlier treatment of (one-sided) confinement [2 ] we treat the dipole polarizability of s-states. This has been the subject of much interest over many years [START_REF] Dalgarno | [END_REF][14][15][16]. It turns out that the present model involves more extensive analysis. With the field-free solution written as in (3 ) the first order equation

(H 0 -E 0 )ψ 1 = -rcos(θ)ψ 0 (23)
may be used to calculate the second-order energy and hence the polarizability with the first-order equation expressed in the form

ψ 1 = N 1 rcos(θ)exp(-x/2)F (x) (24) 
In the following analysis it is convenient to express f (c, d, x) of ( 7) in the form

f (c, d, x) = AM (c, d, x) + BU (c, d, x); (25) 
this allows direct use of the standard recurrence relations for M (c, d, x) and U (c, d, x). We emphasize that this is legitimate so long as we do not have the degenerate case where U (c, d, x) is a multiple of M (c, d, x). ( In section 1 we needed to use (18) rather than U (c, d, x) to avoid the solutions of (13 ), arising from the degenerate cases, that lead to unacceptable wavefunctions which did not satisfy [START_REF] Lebedev | Special Functions and their applications[END_REF] and ( 12)). Given α from (13) we can find A and B from either of the two equations:

f (c, d, x 1 ) = 0 or f (c, d, x 2 ) = 0 (26) 
The explicit solution for F (x) of ( 24) is obtained from

L(c + 1, d + 2, x)F (x) = µx(AM (c, d, x) + BU (c, d, x)), µ = 1 2α 2 (27) 
is now derived analogously to the earlier F (x) in [2 ]. In the present case F (x) naturally contains superpositions of both the KummerM and KummerU functions in the form The coefficients are given by

F (x) = 4 k=0,k =2 (A k M (c -1 + k, d + 2, x) + B k U (c -1 + k, d + 2, x)) + ∂ ∂c (A 2 M (c + 1, d + 2, x) + B 2 U (c + 1, d + 2, x)) (28 
A 0 = (c -1)(c -3)(c -4) 6 , B 0 = 1 A 1 = -2 (c -1)(c -2)(c -3) 3 , B 1 = -4(c -1) A 2 = c(c -1)(c -2), B 2 = 6c(c -1)
A 3 = -2 (c + 1)c(c -1) 3 , B 3 = -4(c -1)c(c + 1) A 4 = (c + 2)(c + 1)c 6 , B 4 = (c -1)c(c + 1)(c + 2) ( 29 
)
We note that if α = 0 so that the solution is expressed in terms of Bessel functions, or such that N (c, d, x) needs to be used instead of U (c, d, x), then it is necessary to consider an alternative form for ψ 1 or use a limiting process. However this will only occur for a discrete set of α in the interval 0 ≤ α ≤ 1 .

Shannon Entropies

The Shannon entropy of the electron density in coordinate space is defined by

S r = -ρ(r)ln(ρ(r))dr (30) 
where ρ(r) = |ψ 0 | 2 and ψ 0 is the normalized wavefunction. As the electron density function, ρ(r) becomes more de-localized S r increases and conversely for localized electron densities S r increases. This is analogous to the usual information theory entropy

- i p i ln(p i ) ≥ 0 (31)
for a discrete distribution {p i } which is a maximum for a uniform distribution and zero when one of the p i is unity and the others all zero. There is one important difference and that is that S r may be negative. This property of S r may be illustrated using a one dimensional model where

ρ r (r) = ρ(x) = a π exp(-ax 2 ) ( 32 
)
and S r may be calculated exactly as

S r = 1 2 (1 + ln( a π )) (33) 
As a → ∞, S r → -∞ and as a → 0, S r → ∞. In this paper we consider l = 0 so that although we have a 3-dimensional example, ρ r (r) = ρ(r) a one-dimensional radial electron density. The corresponding Shannon entropy for the momentum is given by These entropies ( or uncertainties) provide a measure of information about the probability distributions in the coordinate space and momentum space respectively. An uncertainty principle [9] has been derived for these entropies which for a single electron in 3 dimensions takes the form

S p = -γ(p)ln(γ(p)dp (34) 
S T = S r + S p ≥ 3(1 + ln(π)) ≈ 6.4342 (36)
One of the earliest applications was the use of S T to measure the quality of approximate wavefunctions [8] but more recently it has been related to various chemical properties that can be obtained from the wavefunction. ( For a comprehensive list of these applications see [5 ]). Here we concentrate on the separate entropies to measure the wavefunction properties and shape. We use the example of calculations given in table 1 and since l = 0 we have Y lm (θ, Φ) = 1 and (30 ) becomes

S r = -4π ∞ 0 r 2 |ψ 0 | 2 ln(|ψ 0 | 2 )dr (37) 
The results are given in table 4 and we see a steady decrease in S r as the system becomes more confined and the uncertainty in position decreases. To obtain φ 0 corresponding to ψ 0 we may fix the direction of p in (35) to be the z-axis and obtain which only depends on the variable p.The Shannon entropies are defined for normalized wavefunctions and we may normalize φ 0 so that

|φ 0 | 2 dp = 1 (39)
and consequently φ 0 can be expressed in the form

φ 0 = N p R2 R1 r 2 ψ 0 sinc(pr)dr (40)
where N p is a normalization constant and the momentum entropy becomes

S p = -4π ∞ 0 p 2 |φ 0 | 2 ln(|φ 0 | 2 )dp (41)
Both ( 37) and (41 ) are easily calculated using standard numerical integration techniques and the values are given in table 4. At first sight the uncertainty principle (36) would seem to imply that as S r decreases then S p should increase. This is certainly the case for the very large and very small values of R 2 but in the intermediate region S p decreases (and in fact becomes small and negative).This behaviour mirrors the form of the wavefunction which localized near r = R 2 for large R 2 , localized near r = R 1 for small R 2 but has a bimodal shape in the intermediate region. (see figures 1,2 and 3; the wavefunctions are arbitrarily normalized). In the bimodal situation the spread of the coordinate wavefunction is large even though it is increasingly confined. Thus, from the standard Heisenberg uncertainty principle, the momentum spread is narrow and this manifests itself in S p . The two entropy measures therefore give information about the shape of the wavefunctions whereas the sum, S T essentially mirrors S r . 

M (c, d, x) = ∞ k=0 c k d k x k k! (A9)
and we have used the Pockhammer symbol

c k = c(c + 1)...(c + k -1) = Γ(c + k) Γ(c) (A10)
Clearly when d = 1, we have identically f 1 (x) = f 2 (x), and we must derive a second solution be other means. Moreover , whenever d is zero or a negative integer in (A7) or d > 1 in (A8), a zero factor in some of the denominators in (A9) invalidates the form of series solution. The procedure for finding the second solution is similar in all cases but for definiteness, we now apply the procedure of Piaggio to the case d = n + 1 where n is a positive integer, so that s = 0 gives a finite solution, but s = -n does not. In such a case, Piaggio rewrites the zero-order expansion coefficient , a 0 (-n) , in the form

a 0 (-n) = (s + n)b 0 (-n) (A11)
but now assumes b 0 (-n) is non-zero, so that the n leading coefficients of the series F (x; -n) vanish:

a 0 (-n) = a 1 (-n) = .... = a n-1 (-n) = 0 (A12)
while the effect of the zero multiplier, (s + n) on all higher-order coefficients is to cancel the zero term in easch denominator. We follow Piaggio's procedure , writing the solution more generally

f (x) = (s + n)x s F (x) (A13)
and obtain formally

L(c, d, x)[(s + n)x s F (x)] = (s + n)x s [L(c + s, n + 1 + 2s) + s(s + n) x ]F (x) (A14)
By definition of the KummerM function,

L(c + s, d + 2s, x)M (c + s, d + 2s, x) = 0 (A15)
so that a solution, F (x), of (A14) is given by a multiple of

M (c + s, n + 1 + 2s, x) = 1 + (c + s) (n + 1 + 2s) x + (c + s)(c + s + 1) (n + 1 + 2s)(n + 2 + 2s) x 2 2 + ... (A16)
since the right hand side of (A14) is zero when s = -n, so long as (s + n)F (x) is finite. It will be necessary to evaluate the limit of the product (s + n)F (x) as s → -n , in order to obtain the well-defined result:

f 2 (x) = lim s→-n {x s [(s + n)M (c + s, n + 1 + 2s, x)]} F o r P e e r R e v i e w O n l y = (c -n)..(c -1) (1 -n)(2 -n)..(-1) 1 n! (1 + c n + 1 x + ...) = kM (c, n + 1, x) (A17)
which is a finite multiple of the solution f 1 (x) ( with s = 0 ). Moreover , the presence of the quadratic factor (s + n) 2 on the right-hand side of (A14) implies that, provided the limit as s → -n exists , a third solution of (A1) is obtained by first taking partial derivatives with respect to s and then proceeding to the limit s → -n : formally, this result may be written

f 3 (x) = lim s→-n ∂ ∂s [x s (s + n)M (c + s, n + 1 + 2s, x)] = N (c, n + 1, x) (A18)
and we emphasize that this function, N (c, n + 1, x) is not necessarily identical with the second Kummer solution usually denoted by U (c, n + 1, x) ( see [START_REF] Abramowitz | Handbook of mathematical Functions[END_REF]). However the three functions M (c, n + 1, x), N (c, n + 1, x) and U (c, n + 1, x) cannot be linearly independent , since they all satisfy the second-order differential equation (A1). We note that , on account of the derivative of x s , (A18) generally contains a term proportional to ln(x)M (c, n + 1, x), which is linearly independent of M(c,n+1,x). The solution of (A18) may be identified with (18) in the main text. 
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)

  

  p) = |φ 0 | 2 where φ 0 is the normalized momentum wavefunction obtained from a Fourier transform of ψ 0 ψ 0 exp(i(p.r)dr (35)

r 2 ψ

 2 0 exp(-iprcos(θ))sin(θ)dθdr = 4π R2 R1 r 2 ψ 0 sinc(pr)dr (38)

  c,d,x) denotes the Kummer fiunction regular at x = 0 :
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 1931311629313 Figure 1: the ground state wavefunction for R 1 = 0.5 and R 2 = 17 Figure 2: the ground state wavefunction for R 1 = 0.5 and R 2 = 2.9 Figure 3: the ground state wavefunction for R 1 = 0.5 and R 2 = 13

Table 1

 1 Ground state energies where R 1 = 0.5 for various R 2

Table 2

 2 Ground state energies where R 1 = 2 for various R 2
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	R 1 R 2	E 0
	2 20 -0.124986
	2 13 -0.122945
	2 12 -0.121104
	2 11 -0.117727
	2 10 -0.111565
	2	9 -0.100268
	2	8 -0.079198
	2	7 -0.038704

URL: http://mc.manuscriptcentral.com/tandf/tmph

Table 3

 3 First excited state energies where R 1 = 2 for various R 2 ; the results include the zero energy and one positive energy.

	R 1	R 2	E 0
	2	20	-0.047672
	2	17	-0.037193
	2	16	-0.030875
	2	15	-0.022229
	2	14	-0.010407
	2 13.171086	0
	2	12	0.272603

URL: http://mc.manuscriptcentral.com/tandf/tmph

Table 4

 4 The position,momentum and total entropies for the states in table 1.

				Molecular Physics	Page 14 of 21
	R 1 R 2	S r	S p	S T
	0.5 17 9.2542 0.4697 9.7239
	0.5 15 9.0095 0.4131 9.4226
	0.5 13 8.9015 -0.3029 8.5986
	0.5 11 8.2187 -0.9717 7.2470
	0.5 9 6.9682 -0.3132 6.6550
	0.5 7 6.1373 0.3985 6.5358
	0.5 5 5.3598	1.282	6.6418
	0.5 3 4.0696	2.779	6.8486
	0.5 2.9 3.9741	2.862	6.8361
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Appendix A: Solutions of Kummer's equation

We require two linearly independent solutions of the Kummer differential equation

where we denote the second-order linear operator L(c, d, x) :

The standard ( Frobenius) method of solution for f (x) is to assume a convergent infinite series

which yields on substitution into (A1)

provided that the higher-order expansion coefficients a k (s) satisfy the recurrence relations

Assuming a 0 is non-zero, we generally have two linearly indpendent solutions to (A1) provided that the indical equation