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We discuss the applicability of finite temperature Car-Parrinello molecular dynamics simulations for the calculation of
infrared spectra of complex molecular systems, either in the gas phase or in the condensed phase, taking examples from the
infrared spectroscopy of N-methylacetamide and small peptides. Band assignments for the simulation is still challenging and
we introduce here a general method for obtaining effective normal modes of molecular systems from Molecular Dynamics
simulations. The effective normal modes are defined as linear combination of internal coordinates such that the power
spectra of these modes are as localized as possible in frequency. We further define band intensities for these modes from
different levels of approximation of the infrared spectrum. Applications of this approach for assigning infrared bands from
first-principle molecular dynamics simulations are presented for N-methylacetamide in gas phase and in solution, for the
gas phase alanine dipeptide and the gas phase octa-alanine peptide.

1 Introduction

Vibrational spectroscopy (Infrared and Raman) has been recognized for long as a fundamental tool for
the characterization and understanding of the chemical state of a molecule, the structure and dynamics
of the molecule and its environment. Vibrational spectroscopy is in particular commonly applied for the
characterization of secondary structures of peptides and proteins in solution or membranes [1–4]. As an
illustration, structural motifs such as helices or beta sheets can be clearly identified from each others by
changes in frequency positions, shapes and intensities of the infrared or Raman bands [2, 5, 6].
Linear absorption Infrared spectroscopy has been successfully applied for the last two decades on all
kinds of molecular systems in the liquid, solid and gas (matrix) phases. But the past decade has seen the
developement of new vibrational spectroscopy methods. Pump-probe non linear 2-dimensional infrared
spectroscopy 2D-IR [7–12] is one of these methods. It has been developed in order to circumvent the
limitations of linear IR, in particular bringing forth the couplings between modes and the extra-information
it gives in the understanding of molecular structures. The advance in 2D-IR is the time dependence
recording of the infrared fingerprints: dynamics of a molecular system is thus directly at hand with these
experiments, in real time. Up to now, the methodology has been principally developed on the Amide I mode
(stretching C=O cabonyl) and mainly applied on biomimetic organic molecules such as peptide models
in the liquid phase. Same developments are being made with multi-dimensional Raman spectroscopy [13,
14]. Gas phase spectroscopy has also been revolutionarized during the past decade, going far beyond
the low-temperature matrix gas phase spectroscopy. Hence, gas phase mass spectrometry and infrared
vibrational spectroscopy have been gathered in a set-up which thus couples Mass Spectrometry (MS) with
Infrared Multi Photon Dissociation (IR-MPD), as devised at FELIX [15] or CLIO [16] in Europe. This
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is an action spectroscopy, where the fragment ion yields are recorded as a function of the IR excitation
energy. Conditions necessary for IR-MPD of gas phase molecules are fulfilled by using an infrared free
electron laser (FEL). Thermalization of the produced ions is an important aspect of these experiments.
Though the ions are initially produced at high internal energies, their trapping in an ICR (Ion Cyclotron
Resonance) cell during a few seconds before exposure to the IR radiation ensures their relaxation and
thermalization at room temperature. This device therefore gives the IR spectroscopy of trapped gas phase
ions at room temperature, close enough to relevant physiological temperatures of biomolecules. See for
instance refs. [17, 18] for more information on the subject.

We are thus able to vibrationally probe molecules either in the gas phase or in the liquid phase, at finite
temperature: a direct comparison between the gas phase and liquid phase vibrational patterns can therefore
be conducted, at the same finite temperature. Environmental effects, such as the aqueous hydrogen bonding
to biomolecules, can be directly probed and characterized from this comparison.

Assignment of vibrational modes is an important step in the structural and dynamical interpretation
of the spectral fingerprints. Here is where modelling and computation can be most helpful, in particular
when a full spectrum, including positions, shapes and intensities, can be computed and directly compared
to experimental data. This however necessitates accurate intra- and inter-molecular potentials, able to
both describe the typical intramolecular motions of the molecule under study but also the induced shifts
due to conformational changes or due to the interaction with the environment. Such potential should then
correctly incorporate anharmonic terms and polarisation effects, in particular at finite temperature.

This is in a way exactly the same statement as in the seminal work of Péter Pulay [19] ! Since then,
great progress has though been made on the computation and interpretation of vibrational spectra of
molecules of reasonable size and complexity, such as bio-organic molecules which are of main interest for
many research groups nowadays.

The conventional way of calculating infrared spectra principally involves performing ab initio chemistry
calculations [18, 20]. This is the traditional approach for dealing with small organic molecules. In such a
scheme, geometry optimizations at 0 K are performed and vibrational analyses in the harmonic approx-
imation are subsequently done for each equilibrium conformation. A match between experimental and
calculated IR patterns obtained for the different conformers is generally checked in terms of positions and
relative intensities of IR bands. The bottleneck of such theoretical calculations is mainly the determination
of all the representative equilibrium conformations of the molecule. This is a tremendous amount of work
for flexible and floppy molecules. A small di-peptide already possesses several conformers (representative
of those encountered in larger peptides) which are generally lying within a small energy range. At room
temperature, one can thus expect conformational isomerisation dynamics to take place. In other words,
the peptide does possess enough internal energy to explore different zones of its potential energy surface
(PES), particularly if finite temperature IR-MPD gas phase experiments are involved. Therefore, different
isomeric conformations of the molecule can be accessible at that temperature and will most likely play a
role on the peptide IR spectroscopy. Another limitation (and not the least) of quantum chemistry calcu-
lations is the modeling of the environment surrounding the vibrationally probed solute molecule, water
being the most ubiquitous solvent. Properly characterising the surrounding hydration shells is indeed out
of reach of such calculations, where only a few water molecules that belong to the first hydration shell and
are hydrogen bonded to the main hydrophilic sites of the solute can be incorporated into the calculation.

Taking into account the dynamics of the molecule and its consequences on the measured properties can
only be achieved through molecular dynamics simulations (MD). MD simulations are also the only approach
capable of modeling condensed phase systems, such as homogeneous liquids or a solute immersed in liquid
water (or any other solvent environment). Lately, Density Functional Theory (DFT) based Molecular
Dynamics has proven successful for the computation of vibrational spectra at finite temperature. This
development is the result of the latest advances in density functional theory (DFT) based molecular
dynamics simulation (“Car-Parrinello” [21]), brought about by the implementation of the modern theory
of polarization and the maximally localized Wannier functions. In Car-Parrinello molecular dynamics
simulations the forces acting on the atoms are obtained at each time-step of the simulation by an electronic
structure calculation in the DFT framework. This thus combines accurate description of forces in many
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environments and situations, while providing a description of the structure and dynamics of a system in
its fluctuating environment at finite temperature. Since the pionneering work of Silvestrelli et al. for the
computation of the infrared spectrum of liquid water [22], DFT-based MD has been applied successfully
to the calculation of IR spectra of pure liquids [23,24] or of small biological molecules in aqueous solution
[25–29], molecular crystals [30] or Raman spectra in the condensed phase [31–33]. As we have demonstrated
in recent studies of the IR absorption of uracil [34], N-Methyl-Acetamide [35], and the protonated alanine
peptide [18,36], either in liquid water or in the gas phase, it is now possible to perform a detailed infrared
calculation for models of bio-organic molecules in finite temperature bulk solution with all water molecules
treated at the same level of theory as the solute, as well as in finite temperature gas phase.

An accurate calculation of infrared spectra is one issue to achieve, the assignment of the active bands
into individual atomic displacements or vibrational modes is another one, and this issue is essential to the
understanding of the underneath molecular structural and dynamical properties.

We have recently developped a systematic method for decomposing vibrational spectra as an approx-
imate sum of effective normal mode contributions [37]. We have defined these effective normal modes
from the data of the Fourier Transform of Velocity Correlation Functions so that they can be extracted
directly from the MD trajectory. In this framework, the effective normal modes are linear combinations of
atomic displacements constructed such that the corresponding power spectra is as localized as possible in
frequency. There is no loss of information from this transformation which is just a change of coordinates.

The present paper aims at demonstrating the applicability of ab initio molecular dynamics simulations
(such as the Car-Parrinello approach in the DFT framework) for the calculation of infrared spectra of
bio-organic molecules (in relation to gas phase and liquid phase finite temperature experiments) and our
methodology for the extraction and assignment of vibrational modes in terms of internal coordinates.
We will concentrate on the infrared spectroscopy of peptide models, either in the gas phase or in the
liquid phase, in relation with finite temperature linear IR or IR-MPD experiments. We will begin with a
summary review of static versus dynamics calculations of infrared spectra, presenting the advantages and
limitations of each method. The localization method we have developed will be described next, as well as
a way for the calculation of infrared intensities in our framework. Applications will be presented, mainly
on the N-Methyl-Acetamide molecule, Alanine di-peptides and the octa-alanine peptide chain, in the gas
phase and in the liquid phase. Ongoing further developments will be mentioned at the end of the paper.

2 Static versus dynamic ab initio calculations of infrared spectra

The basic definition of an infrared spectrum calculation lies in the Fermi Golden Rule which states that
the infrared spectrum is calculated through the following expression [38]:

I (ω) = 3
∑

i

∑

f

ρi |〈f |E.M|i〉|2 δ (ωfi − ω) (1)

where E is the applied external field vector, M is the dipole vector of the molecular system, |i〉 and |f〉
are respectively the initial and final vibrational states of the system. These are eigenstates of the system
excluding the radiation. ρi is the density of molecules in the initial vibrational state |i〉. ω is the reciprocal
wave-number (in cm−1) and ωfi is the reciprocal wave-number associated with the transition between the
initial and final vibrational states of the system.

• Infrared spectroscopy with static ab initio calculations

The root of vibrational spectra calculations is solving the Schrödinger vibrational equation [39, 40]. It
is expressed within the harmonic normal mode coordinates qk (k = 1 · · · 3N − 6, where N is the number
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of atoms of the investigated molecular system) in order to be analytically and numerically solvable very
easily. With these coordinates, the kinetic energy T and potentiel energy V that appear in the Schrödinger
vibrational equation are simply expressed as:

T =
1

2

3N−6
∑

k=1

q̇2k V =
1

2

3N−6
∑

k=1

λkq
2
k

where λk is the frequency associated to the normal mode qk,
and the Schrödinger vibrational equation is:

−
h2

8π2

3N−6
∑

k=1

∂2ΨV

∂q2k
+

1

2

3N−6
∑

k=1

λkq
2
kΨV = EV ΨV (2)

where ΨV is the vibrational wavefunction and EV the corresponding energy; h is the Planck’s constant.
Due to the normal modes decouplings, the vibrational energy EV and vibrational wavefunction ΨV can
be decomposed as

EV = E(q1) +E(q2) + · · · +E(q3N−6) ΨV = Ψ(q1)Ψ(q2) · · ·Ψ(q3N−6)

so that equation (2) is satisfied if the following 3N-6 decoupled equations are satisfied

−
h2

8π2

∂2Ψ(qk)

∂q2k
+

1

2
λkq

2
kΨ(qk) = EkΨ(qk) ∀k = 1 · · · 3N − 6 (3)

Solution of the Schrödinger vibrational equation of a harmonic oscillator qk (equation 3) is well-known,
with the vibrational energy Ek = (vk + 1/2)hνk (where vk is a quantum number associated with the
normal frequency νk), and the vibrational wavefunction Ψvk

(qk) = Ckexp(−1/2γkq
2
k)Hvk

(γkqk) where Ck

is a normalising factor, γk = 4π2νk/h and Hvk
(γkqk) is the Hermite polynomial of degree vk in qk. The

harmonic oscillator wavefunctions are orthonormalised, i.e.:

∫

dqkΨ
∗

vk
(qk)Ψv′

k
(qk) = δvkv′

k
(4)

The intensity of a spectral line is the probability of the transition which gives rise to the line: the
coefficient of absorption of light of frequency νvkv′

k
for infrared spectroscopy is given by the Einstein

coefficient [41]

Bvkv′

k
=

8π3

3h2

[

∣

∣µXvkv′

k

∣

∣

2
+
∣

∣µY vkv′

k

∣

∣

2
+
∣

∣µZvkv′

k

∣

∣

2
]

where µX , µY , µZ are the components of the transition dipole moment:

µαV V ′ =

∫

dτΨ∗

V ′µαΨV α = X,Y,Z (5)

with µα the αth (X, Y, Z) component of the electric dipole moment of the molecular system. ΨV and ΨV ′

are the total vibrational wavefunctions for states V and V ′. The integral is taken over the configuration
space of the system.
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By application of the electric harmonic approximation (second harmonic approximation), each µα com-
ponent can be written:

µα = µ(0)
α +

3N−6
∑

k=1

µ(k)
α qk

where µ
(0)
α is the permanent dipole moment of the molecule evaluated at the equilibrium geometry, and

µ
(k)
α =

(

∂µα

∂qk

)

0
is also evaluated at the equilibrium geometry. Equation (5) now reads:

µαV V ′ = µ(0)
α

∫

dτΨ∗

V ′ΨV +

3N−6
∑

k=1

(

∂µα

∂qk

)

0

∫

dτΨ∗

V ′qkΨV (6)

which gives rise to the well-known infrared selection rules of harmonic oscillators (with orthonormalized
wave-functions, eq. 4), i.e. µαV V ′ 6= 0 if vl′ = vl for all vibrational levels except vk′ and vk for which
∫

dqkΨ
∗
vk′
qkΨvk

is different from zero if vk′ = vk ± 1 (absorption or emission of one photon from two

consecutive vibrational levels). The permanent dipole µ
(0)
α does not play any role in the intensity of the

spectral lines.

The absolute intensity of an active infrared transition is given by [39]

κ =
8π3

3ch
νV V ′ (NV ′ −NV )

[

|µXV V ′ |2 + |µY V V ′ |2 + |µZV V ′ |2
]

where NV and N ′

V are the number of molecules per unit volume respectively in the state V and V ′, and
c is the speed of light. In the double harmonic approximation, κ is thus proportional to the sum of the
transition dipole derivatives with respect to the harmonic normal modes, i.e.

κ =
∑

α=x,y,z

3N−6
∑

k=1

∣

∣

∣

∣

(

∂µα

∂qk

)

0

∣

∣

∣

∣

2

δvk′ ,vk±1. (7)

In the double harmonic approximation, the Fermi Golden Rule thus reduces to the calculation of the
normal modes of the molecular system in its equilibrium geometry and to the calculation of the transition

dipole derivatives
(

∂µα

∂qk

)

0
. Normal modes qk give the frequency value at which a vk = 0 → vk′ = 1

transition takes place and the associated atomic movements, while dipole derivatives give the infrared
intensities associated to each mode. The investigated infrared spectroscopy is related to the absorption of
one photon from v = 0 to v = 1 harmonic vibrational transitions.
This is achieved with geometry optimization and harmonic frequency calculations performed with quantum
chemistry calculations. The DFT (Density Functional Theory) framework has the advantage of allowing
the study of molecular systems of tens to hundreds of atoms routinely on most of the computer platforms.
The conventional way of proceeding is to perform a systematic search for the different possible molecular
conformations of lowest energy on the potential energy surface, followed by harmonic frequency calculations
of the different identified conformers and the related transition dipole derivatives. Frequencies are usually
scaled [20]: the main purpose of the scaling is to compensate for the double harmonic approximations
(potential energy surface and dipole moment expression) as well as for the level of the ab initio calculations.
The calculated absorption spectra are finally convoluted with a Gaussian or Lorentzian band profile,
adjusted in agreement with experimental conditions.
Obviously, the main drawbacks of this approach are i) the search for the minima of lowest energy on the
potential energy surface, which can be tricky for floppy molecules, ii) the double harmonic approximations,
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iii) as well as the inherent 0 K temperature associated to the search of the minima on the potential
energy surface. This is in particular a very crude approximation for floppy molecules which can undergo
conformational dynamics at finite temperature, as should occur in the infrared experiments we will be
comparing our calculations to, which are typically performed at temperatures around 300 K. We will come
back on these points later on.

• Infrared spectroscopy with ab initio molecular dynamics simulations

Within Linear Response Theory [38, 42], the Fermi Golden Rule formula (equation 1) can be rewritten
as the Fourier Transform of the dipole moment time correlation function:

I (ω) =
2πβω2

3cV

∫

∞

−∞

dt 〈M(t)·M(0)〉 exp(iωt) (8)

where β = 1/kT , c is the speed of light in vacuum, V is the volume. The angular brackets indicate a
statistical average of the correlation of the dipole moment M of the absorbing molecular system. This
average is taken in the absence of the applied external field. In this formula, we have taken into account a
quantum correction factor (multiplying the classical line shape) of the form β~ω/(1 − exp(−β~ω)), which
was shown by us and others to give the most accurate results on calculated IR amplitudes [34,43,44]. For
a complete discussion on quantum corrections, we refer the reader to refs. [45, 46].

Equation (8) gives the whole infrared spectrum of a molecular system with one single calculation, i.e.
the band positions, the band intensities and the band shapes, through the fourier transform of a time
correlation function. There are no approximations made apart from the hypothesis of linear response
theory, i.e. a small perturbation on the absorbing molecular system from the applied electric external field.

This is the standard way used in statistical mechanics for calculating the infrared spectrum of a molecular
assembly of molecules (isolated molecule, liquids, solutes in the liquid phase, solids) [38,47–55]. Molecular
dynamics simulations are adapted to the calculation of the evolution in time of the dipole moment of the
system, and therefore its time correlation. We stress again that the only hypothesis on infrared spectra
calculations through equation (8) corresponds to the linear response theory in which the applied external
electric field is a small perturbation to the absorbing molecular system. In particular, in this kind of
calculation there are no harmonic approximations made, be they on the potential energy surface or on the
dipole moment, contrary to the static calculations previously described.

The main advantages of the molecular dynamics approach for the calculation of infrared spectra can be
summarized as follows.
i) Dynamics simulations are performed at finite temperature; this will mainly be room temperature in
our calculations as they will be compared with experiments typically done at this temperature. At finite
temperature, there can be a conformational dynamics between different isomeric conformations of the
absorbing molecules of interest. All conformations populated when going from one basin to the others
on the potential energy surface are thus taken into account in the calculation of the infrared spectrum.
This population dynamics therefore gives rise to a natural broadening of the calculated IR active bands,
which is essential for the comparison to the experimental spectra. This has been demonstrated by us in the
case of the floppy protonated peptide Ala-Ala-H+ in the gas phase [18,36]. A very good agreement of the
calculated Car-Parrinello infrared spectrum of this molecule with the IR-MPD (InfraRed Multi Photon
Dissociation) experimental spectrum, obtained at a finite temperature of ∼300 K, could be achieved
because the simulated room-temperature dynamics of the gas phase peptide was able to take into account
the continual conformational dynamics between the two major isomers of the molecule. This could not be
achieved with standard static ab initio calculations [18,56]. The main thing is that we found that the most
populated conformations of Ala-Ala-H+ were not the geometries at the bottom wells (identified with static
calculations) but rather all conformations explored in going from the basin of one isomer to the basin of
the other isomer.

Page 6 of 70

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 17, 2007 20:48 Molecular Physics article

7

ii) When calculating IR spectra from the dipole time correlation function, all anharmonic effects are
naturally described. This is to be opposed to the two sucessive harmonic approximations usually adopted for
the determination of IR spectra from static ab initio calculations (harmonic approximation of the potential
energy surface at the optimised geometries and electrical harmonic approximation for the transition dipole
moments). Both approximations are released in molecular dynamics, simply because they are not needed.
In fact, the finite temperature dynamics takes place on all accessible parts of the potential energy surface,
be they harmonic or anharmonic. The quality of the potential energy surface is entirely contained in
the ”ab-initio” force field used in Car-Parrinello dynamics, calculated at the DFT/BLYP level in our
works. The good reproduction of the relative positions of the different active bands in our studies (gas
phase [36] and liquid phase [24,34,35] ) is a demonstration that this level of theory is correct. Moreover, the
calculation of IR spectra with molecular dynamics is related only to the time-dependent dipole moment of
the molecule, and it does not require any harmonic expansion of the transition dipole moments. Therefore,
if the dipole moments and their fluctuations are accurately calculated along the trajectory, the resulting
IR spectrum should be reliable too.

iii) One should also emphasize two more points showing that dynamics (in particular Car-Parrinello
dynamics) goes beyond ab initio static calculations applied currently in the domain. The first point is
connected with the calculation of the infrared spectrum of complex flexible molecules in the gas phase, for
example large peptides and nucleic acids. These complex molecular systems display numerous energetically
equivalent conformations which are difficult to be characterised with geometry optimisation searches.
Dynamics does release this difficulty as the geometry at the minima on the potential energy surface
is not needed. On the other hand, molecular dynamics is the natural method of statistical mechanics
for modeling complex molecular systems immersed in liquids. This is obviously very important when
considering biomimetic molecules which natural environment is liquid water. The characterisation of the
vibrational finger-prints of these molecules should better be performed in the liquid phase if one wants
to get a proper structural information to be compared with the natural environment of the molecule.
Inclusion of a few water molecules hydrogen bonded to the main hydrophilic sites of the molecule is
nowadays commonly performed in ab initio geometry optimisations and harmonic frequency calculations,
though still challenging. Properly characterising the surrounding hydration shells is nonetheless out of
reach of static calculations. Calculations proposed by some authors (see for instance refs. [57–59]) with
up to tens of water molecules clustered around the solute are still not convincing as these clusters do
not possess any temperature. Water clusters surrounding a biomimetic solute at 0 K can not mimick the
’true’ solvation shell of the solute at finite 300 K temperature. There are in particular hydrogen bonds
between the solute and water displayed in solute-water clusters at 0 K that will only exist because there is
no temperature in the molecular system, or because the full solvation shell (i.e. two or three surrounding
shells) is not taken into account in the calculation. This has been shown by us in refs. [34, 59] in the case
of the solvated uracil.

3 Generalities on Car-Parrinello molecular dynamics simulations

In ab initio Car-Parrinello molecular dynamics (CPMD) [21], the nuclei are treated classically and the
electrons quantum mechanically within the DFT formalism. CPMD simulations consist in solving Newton’s
equations of motion at finite temperature, with the forces that act on the nuclei deriving from the Kohn-
Sham energy. Plane-waves and pseudo-potentials are used to represent valence electrons. Contrary to
Born-Oppenheimer MD where the Schrödinger equation for the electronic configuration of the system is
solved at each time step of the dynamics (i.e. at each new configuration of the nuclei), the Schrödinger
equation is solved only once at the beginning of CPMD simulations. The wave-function is subsequently
propagated in time adiabatically with the nuclei propagation. This is denoted “the fictitious dynamics
of the electrons”, and relies on the use of a fictitious electron mass. Typical fictitious mass values are
comprised between 100 and 500 a.u. associated with time steps of 1-5 a.u. A detailed presentation of the

Page 7 of 70

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 17, 2007 20:48 Molecular Physics article

8

Car-Parrinello molecular dynamics method can be found in refs. [60, 61].

The DFT-based Car-Parrinello simulations performed in our work follow the general set-up of ab initio
molecular dynamics simulations that can be found in our previous publications [34,35,62,63]. We use the
Becke, Lee, Yang and Parr (BLYP) gradient-corrected functional [64,65] for the exchange and correlation
terms. The one-electron orbitals are expanded in a plane-wave basis set with a kinetic energy cut-off of
70 Ry restricted to the Γ point of the Brillouin zone. Medium soft norm-conserving pseudopotentials of
the Martins-Trouillier type [66] are used. The core-valence interaction of C, N and O is treated by s and
p potentials with pseudization radii of 1.23, 1.12 and 1.05 au, respectively (taking the same radius for
s and p), while H atoms are treated as a s potential with a 0.5 au radius. We should mention that the
70 Ry energy cut-off is mostly determined by the convergence of the H and O pseudopotentials. Energy
expectations are calculated in reciprocal space using the Kleinman-Bylander transformation [67].
Simulations were performed at constant volume using a fictitious electron mass of 500 au, a time step of
5 au (0.12 femtoseconds). Liquid simulations have been performed within periodic boundary conditions.
Starting configurations have been prepared using classical force field simulations, where we chose the
precise number of water molecules in the simulation cell; this is done in order to fix the correct density of
such a small simulated liquid system. We refer the reader to Ref. [34,63] for more details on the procedure.
Our liquid phase simulations take into account ∼50 water molecules surrounding the solute molecule (N-
methylacetamide presented in the present work), i.e. two complete hydration shells and part of the third
one. For gas phase simulations, we refer the reader to ref. [36] for details on the choice of the cubic box
length, and the use of the decoupling technique of Martyna and Tuckerman [68] in order to eliminate the
effect of the periodic images of the charge density.

The dipole moment of the box cell is calculated with the Berry phase representation, as implemented
in the Car-Parrinello framework [69]. Briefly, in the limit where the Γ point approximation applies, the
electronic contribution to the cell dipole moment Mel

α (where α = x, y, z) is given by [70]:

Mel
α =

e

|Gα|
= ln zN (9)

where = ln zN is the imaginary part of the logarithm of the dimensionless complex number zN =

〈Ψ|e−iGα.R̂|Ψ〉, Gα is a reciprocal lattice vector of the simple cubic supercell of length L (G1 = 2π/L(1,0,0),

G2 = 2π/L(0,1,0), G3 = 2π/L(0,0,1)) and R̂ =
∑N

i=1 r̂i denotes the collective position operator of the N
electrons (or in other words the center of the electronic charge distribution). Ψ is the ground-state wave
function. The quantity = ln zN is the Berry phase, which in terms of a set of occupied Kohn-Sham orbitals
ψk(r) is computed as = ln zN = 2= ln detS with elements of the matrix S given by Skl = 〈ψk|e

−iGα.r̂|ψl〉 [70].
The IR spectra in our work are given as products α(ω)n(ω) expressed in cm−1 (decadic linear absorption

coefficient) as a function of reciprocal wavenumber, ω, in cm−1. The spectra have been smoothed with a
window filtering applied in the time domain, i.e. each term of the correlation function C(t) is multiplied
by a gaussian function exp(−0.5σ(t/tmax)2), where tmax is the length of the simulation, and σ is 10 for
gas phase simulations and 40 for liquid phase simulations.

When interested in the infrared spectrum of a solute immersed in liquid water, we face additional
difficulties, namely separation of the absorption in solute and solvent contributions. Due to the limited
statistics, the substraction method used in experiment is not an option for simulation. The approach,
initiated by Parrinello et al. [69] and that we first applied in the case of a solute immersed in liquid
water in our calculation of the IR spectrum of aqueous uracil [34], is based on a decomposition of charge
density using the Maximally localized Wannier Functions scheme of Marzari and Vanderbilt [71]. This
enabled us to write the total electronic dipole moment M = msolute +

∑

W mW as the sum of the solute
dipole moment (msolute) and the sum of the solvent dipole moments (mW ). As a result, the total dipole
correlation function CMM (t) needed in equation (8) (CMM (t) = 〈M(t).M(0)〉) is resolved into the sum of
three contributions CW/W (t), CW/solute(t) and Csolute/solute(t) which are respectively the water-water dipole
correlation function, the water-solute dipole correlation function and the solute-solute dipole correlation
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function. The IR spectrum of the solute is calculated from only the Fourier transform of the self-correlation
function Csolute/solute(t). As discussed in Ref. [34], one disadvantage of this decomposition is that coupling
with the surrounding solvent molecules is taken into account only through intermolecular polarization. The
cross term CW/solute(t), which includes the remaining IR contributions arising from correlations between the
motion of the solute and the solvent molecules, is ignored. In fact, this term is hard to compute as opposite
positive and negative contributions make it difficult to reach convergence within the short simulation
times of tens of picoseconds. As a last remark, while fully consistent in the sense that the molecular
dipole moments rigorously sum to the cell dipole moment, the use of Wannier function for partitioning
the electron density nonetheless introduces a certain arbitrariness for the definition of molecular dipole
moments in solution.

An alternative approach to achieve a similar, but not necessarily equivalent, decomposition of the ab-
sorption signal is to return to the more fundamental current representation, involving the autocorrelation
function of the total current, j = Ṁ = dM/dt:

n(ω)α(ω) =
2π

3V kBT

∫ +∞

−∞

〈j(0)j(t)〉eiωtdt. (10)

Note again that in this formula we have taken into account a quantum correction factor of the form
β~ω/(1 − exp(−β~ω)). Since in the Born-Oppenheimer approximation the dipole moment of the system
depends only on the atomic positions, one can make use of a chain rule to compute the current j(t) at
time t:

jβ(t) =
∑

i,α

∂Mβ

∂xα
i

(t)
dxα

i

dt
(t) =

∑

i,α

∂Mβ

∂xα
i

(t)vα
i (t). (11)

where M is the total dipole moment of the system, xi is the position of atom i, and
∂Mβ

∂xα
i

, α, β = x, y, z,

represent the components of the atomic polar tensor (APT) of atom i. The APT of atom i is thus defined
as the derivatives of the dipole moment of the system with respect to infinitesimal displacements of
atom i [72, 73]. This tensor is directly related to intensities of infrared bands in the double harmonic
approximation [39], as we will show in section 6. Numerous calculations of APT have been performed in
the solid phase or in the gas phase [72–75], and recently, a calculation of the APT of water molecules in
liquid water has been performed [76].
In our applications in liquid water, the APT tensor was calculated for each atom in the solution using
Density Functional Response Theory [73]. This was repeated every 1.2 fs over a ≈ 1 ps interval taken from
the full trajectory in solution. In the gas phase calculations at low temperature, only one APT tensor of
one conformation has been computed. We have used the Putrino et al. [31] implementation of the linear
response to an applied electric field in the CPMD code [77]. In this scheme, the macroscopic polarization
of the periodically replicated cell is defined using the Berry phase approach of Resta [70, 78]. The APT
tensor for the whole system is then obtained from the Maxwell relation:

∂Mβ

∂xα
i

=
∂Fα

i

∂Eβ
=

∂2Etot

∂Eβ∂xα
i

(12)

where E is an applied uniform electric field and Fi the force acting on particle i. This allows for the
calculation of the 3N elements of the system APT tensor through only three linear response calculations
(β = x, y, z) [73].
In order to resolve the infrared spectrum of the whole system into solvent, solute and cross contributions,
the total current of the system was separated into a solvent and a solute term:

jβ(t) = jβwater(t) + jβsolute(t) (13)

Page 9 of 70

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 17, 2007 20:48 Molecular Physics article

10

by restricting the sum in eq. (11) to atoms of the solvent or the solute only. This natural decomposition
of the current then provides a decomposition of the infrared spectrum which is different from the one
obtained through the maximally localized Wannier orbitals. The infrared spectrum of the solute is now
defined as

n(ω)αsolute(ω) =
2π

3V kBT

∫ +∞

−∞

〈jsolute(0)jsolute(t)〉e
iωtdt. (14)

A major argument in favor of the current scheme is that any partitioning of the charge density is thus
avoided.

In our previous works we have shown that DFT-based Car-Parrinello molecular dynamics simulations
(CPMD) yield very accurate infrared spectra of biomimetic molecules in the gas phase or immersed in
aqueous solvent at room temperature, in terms of band-positions, band-shapes and band-intensities [34–36].
In particular, we have shown on the prototype gas phase protonated Ala-Ala-H+ peptide [36] that CPMD
simulations are the proper tool to calculate IR absorption spectra of gas phase molecules undergoing
multiple isomeric conformations at room temperature. This methodology has been applied to the IR
spectra calculations of molecules such as Uracil [34], N-Methyl-Acetamide [35], and the protonated alanine
peptide [36], either in liquid water or in the gas phase. We should mention here that in our applications
we have systematically found that our calculated infrared spectra have to be blue-shifted by 100-120 cm−1

so that the whole calculated bands can be aligned with their experimental counterparts. This holds true
at least in the 800-2000 cm−1 spectral region we have systematically investigated. Therefore, though our
CPMD calculations do not give the proper absolute values of band positions, they do give the proper
account of band-gaps between the different active bands. Among the effects leading to the very good
agreement of our calculated infrared spectra with respect to the experiment (once the global translation
has been applied) is the effective inclusion of the anharmonic effects in our finite temperature molecular
simulations, unlike static ab initio calculations which are being performed in the harmonic approximation.

We stress again that a single shift factor or global translation is applied to the whole spectrum and not
a scaling factor. This empirical finding is in contrast to static ab initio calculations where a scaling factor
is used to correct the theoretical predictions with respect to the observed frequencies. The origin of this
is at the moment unclear to us. Effects of the fictitious mass, which leads to instantaneous Car-Parrinello
forces being different from Born-Oppenheimer ones whatever the fictitious mass value [79,80], is certainly
important and indeed the blue-shift of 100-120 cm−1 can be reduced when performing Car-Parrinello
dynamics with smaller fictitious masses for the propagation of the electronic wave-function. This is though
at the cost of more expensive simulations. However, it has been demonstrated in references [79, 80] that
the Car-Parrinello forces can be brought into good agreement with the BO forces by simply rescaling the
ionic masses. Were it so, this would amount once more to a scaling factor and not a global translation.
Such rescaling of the atomic masses should then be dependent on the vibrational mode considered, in a
way not understood at the moment.

4 Assignment of vibrational modes

An accurate calculation of infrared spectra is one goal to achieve, the assignment of the active bands into
individual atomic displacements or vibrational modes is another one, and this issue is essential to the
understanding of the underlying molecular structural and dynamical properties. In molecular dynamics
simulations, interpretation of the infrared active bands into individual atomic displacements is tradition-
ally done using the vibrational density of states (VDOS) formalism. The VDOS is obtained by Fourier
transformation of the atomic velocity auto-correlation functions:

V DOS(ω) =
∑

i=1,N

∫

∞

−∞

〈vi(t)·vi(0)〉 exp(iωt) dt (15)
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where i runs over all atoms of the investigated system. There are no approximations in this formula. In
addition, the VDOS can be decomposed according to each atom type in order to really get an interpretation
of the vibrational bands in terms of individual atomic motions. This is done by restraining the sum over i
in eq. (15) to the atoms of interest only. The advantage of the VDOS formalism is that all anharmonicities
are taken into account in the calculation.

In the case of a harmonic molecular system though, velocities can be written as q̇k = q̇0
k sin(ωk t+ φk),

where q̇0
k is the amplitude taken at the initial time, ωk the wave-number of the kth normal mode, and φk

the phase, so that equation (15) can be re-expressed as

V DOS(ω) =
∑

i=1,N

∑

k,l

Zik Zil

∫

∞

−∞

< q̇k(0) q̇l(t) > eiωt dt

where ẋi =
∑

k Zikq̇k is the transformation between cartesian and harmonic normal mode velocities, and
< q̇k(0) q̇l(t) > is the correlation function between these harmonic velocities. Decoupling of harmonic
modes leads to the following expression for the VDOS of a harmonic system:

V DOS(ω) =
∑

i=1,N

∑

k

Z2
ik

< q̇0
k >

2
δ(ω − ωk) (16)

where < q̇0
k > is taken as an ensemble average over the initial conditions of the dynamics. The VDOS of

each individual atom (restraining the sum
∑

i=1,N in equation 16 to one atom at a time) is therefore a
sum of dirac functions which are localized at the wave-number of each normal mode ωk, in the case of a
strictly harmonic molecular system. This function is weighted by the amplitude Z 2

ik which quantifies the
participation of atom i into the normal mode k. Atoms that do not participate in a certain normal mode
k thus make no contribution to the spectral signature of the VDOS.

It is mandatory to note here that VDOS spectra correspond to the vibrational density of states of the
investigated molecular system, representing all its vibrational modes. However, only some of these modes
will be infrared active or Raman active, so VDOS spectra can by no means substitute for IR or Raman
spectra. They are used to interpret and assign vibrational modes which are active in IR or Raman spectra.
Finally, when a solute is immersed into a solvent, the decomposition into individual atomic contributions
of the VDOS can be interpreted as the contributions of the atoms of the solute on the one hand, and the
contributions of the atoms of the solvent on the other hand. It is therefore easy to assess the couplings
between solute and solvent atoms and their contributions to the VDOS spectral features of the solute
molecule.

This methodology is illustrated in figure 1 in the case of the Car-Parrinello molecular dynamics simulation
of N-Methyl-Acetamide in the gas phase at 20 K. We have reported the VDOS of the system as calculated
through equation (15) at the bottom of the figure, and the individual VDOS associated with each atom
type on top. We only report here the individual contributions of the four peptidic atoms (H, N, C, O)
to the VDOS of N-Methyl-Acetamide. This is illustrated in the 1000-2000 cm−1 domain where the active
bands can still be interpreted by simple combinations of stretching and bending movements of the atoms.
Hence, one can note that the four atoms participate to the vibrational band located at ∼1600 cm−1, while
the oxygen atom does not contribute to the ∼1480 cm−1 band. Again, the ∼1200 cm−1 band can be
decomposed to indicate the contributions of the C, N and H atoms, while the ∼1100 cm−1 band displays
contributions arising only from N and H atoms. One can thus infer that these bands are respectively
related to C=O stretch and N-H bending (1600 cm−1), N-H bending and N-C stretch (1480 cm−1), N-H
bending and N-C stretch (1200 cm−1), and N-H bending (1100 cm−1). Nonetheless, the amplitudes of the
individual peaks can not be interpreted per se, so that we clearly can not conclude on the relative weight
of each movement on each vibrational mode. Moreover, contributions arising from the methyl groups have
to be considered in order to make a definitive statement on the assignment and interpretation of each
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vibrational band. For a complete discussion on N-Methyl-Acetamide, see our ref. [35].

As can be seen from this example, analysis of the vibrational density of states is not so convenient and
becomes rapidly fastidious as soon as the number of atoms in the molecular system increases. This analysis
becomes basically unreachable for molecules that contain more than 10 atoms, N-Methyl-Acetamide being
one of the more complex molecules on which this approach can be easily applied. One main bottleneck
of this analysis is that VDOS signatures of each individual atom are spread all over the spectrum, which
makes the interpretation and assignment of the vibrational bands relatively difficult. Last, but not least,
VDOS do not provide a direct analysis in terms of stretches, bends and torsions, as we need for the
interpretation of spectroscopic features of molecules. As we saw before, these motions can be inferred from
simple molecules, even of the size of N-Methyl-Acetamide, but this is not true anymore when the size and
complexity of the molecule increase. The same argument holds when we assign bands in the far-IR region
where movements become more complicated, with couplings of torsional modes. Moreover, a quantitative
analysis of the couplings between the movements that participate to the vibrations is out of reach with
this approach. Another approach and formalism is required in order to answer to these questions.

Other methods have been proposed in the litterature for assigning or approximating vibrational spectra,
like spectral analysis [81–84], filtering [85–88], instantaneous normal mode analysis and its variants [89–92],
or principal mode analysis (PMA) [93–96] and essential dynamics [97–99], both based on the diagonalisation
of covariance matrices. Instantaneous normal mode analysis requires however many calculations of the
Hessian system which can become quickly prohibitive for DFT-based MD simulation. Due to its simplicity,
PMA has lately attracted attention [94, 95, 100–102].
Our new general definition for effective normal modes, that we will present in the following section, based
on a localization principle in frequency space, not only leads at zero temperature to the usual normal mode
analysis, but is also consistent with the PMA approach. Moreover, it provides another route to extract an
effective Hessian and effective normal modes at finite temperature, without any computational cost.

5 New methodology for the assignment of vibrational modes: localized modes in terms of internal

coordinates

For the purpose of assigning bands in vibrational spectra, we propose to construct modes qk as (invertible)
linear combinations of the natural coordinates that describe the dynamics of the systems:

ζi(t) = Zik qk(t) ⇔ qk(t) = Z−1
ki ζi(t) (17)

ζ̇i(t) = Zik q̇k(t) ⇔ q̇k(t) = Z−1
ki ζ̇i(t). (18)

In this equation and in the following, the Einstein summation convention will be used.
The coordinates ζi(t) can be either a set of cartesian coordinates xi(t) or a set of internal coordinates

Sj(t) or can also be mass weighted coordinates. As we saw above, since band assignment from VDOS is
limited by the fact that these VDOS are delocalized in frequency we ask here that the mode qk have VDOS
as localized as possible in frequency. Noting P q

k (ω) the power spectrum of mode k:

P q
k (ω) =

∫ +∞

−∞

< q̇k(0)q̇k(t) > eiωtdt (19)

the modes are localized in frequency by minimizing the functional:

Ω(n) =
∑

k

(

β

2π

∫ +∞

−∞

dω |ω2n|P q
k (ω) −

(

β

2π

∫ +∞

−∞

dω |ωn|P q
k (ω)

)2
)

(20)
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with respect to linear transformation Z. This functional is parametrized by the free parameter n. In the
case n = 1, the functional Ω(1) =

∑

k(< ω2 >k − < ω >2
k) is the sum of the spreads of the power spectra

of modes k; in the following we have rather made the choice n = 2.
This minimization criterion however is not sufficient for describing the localized modes qk as the func-

tional Ω(n) can be minimized by setting qk = 0. We thus require a normalisation and orthogonality
criterion:

1

2π

∫ +∞

−∞

dω

(
∫ +∞

−∞

< q̇k(0)q̇l(t) > eiωt dt

)

=< q̇k(0)q̇l(0) >= kBT δkl (21)

where T is the temperature and kB the Boltzmann constant. This constraint then imposes the equipartition
of the energy in the modes while keeping the modes decorrelated at equilibrium. This criterion will also
ensure that the matrix Z is invertible as required. The choice of introducing the temperature in this
equation allows for a definition of the modes independant of T for a truly harmonic system.

To better understand the effect of band localization we can employ the Wiener-Khintchine theorem [103]
to show a Cauchy-Schwartz relation:

P q
kl(ω) ≤

√

P q
kk(ω)P q

ll(ω) (22)

where P q
kl(ω) is a generalization of the power spectra (eq. 19) in a matrix form:

P q
kl(ω) =

∫ +∞

−∞

< q̇k(0)q̇l(t) > eiωtdt (23)

If the power spectra P q
kk(ω) and P q

ll(ω) are well localized in frequency we can hope that for k 6= l their
overlap is very small and as a result the cross-correlation P q

kl(ω) is very small for all ω such that the
modes k and l have very small dynamical correlation. This is indeed expected for effective normal modes
describing the dynamics of the system. Furthermore, we have seen in the preceeding section that in an
harmonic system the normal mode possess delta like VDOS.

Minimization of the localization functional Ω(n) does not require an iterative procedure like steepest-
descent or conjugate gradients. It can be shown [37] that the solution of the minimization problem is
solution of a much simpler linear system. The matrix Z defining the localized modes from the choice of
coordinates ζi is then solution of a generalized eigenvalue problem:

K
(n)
ζ Z−1T

= K
(0)
ζ Z−1T

Λ with the constraint Z−1 K
(0)
ζ Z−1T

= I3N (24)

where Λ is a diagonal matrix; the matrices K
(n)
ζ are defined from the power spectra of the original ζi

coordinates as:

K
(n)
ζ =

β

2π

∫ +∞

−∞

dω |ω|n Pζ(ω) (25)

where the matrix Pζ(ω) is defined similarly as Pq(ω) for the coordinates ζi and β = 1
kBT . The eigenvalues

λ
(n)
k , diagonal elements of the matrix Λ, are equal to:

λ
(n)
k =

∫ +∞

−∞

dω |ω|n P q
kk (26)

and are thus the averages < ωn >k of ωn over the power spectrum of mode k.

The definition of localized modes from their power spectra then appears to be equivalent to a generalized
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eigenvalue problem with the same structure as normal mode analysis at zero temperature. In paper [37]
we have employed cartesian coordinates to construct the localized normal modes and we have shown that
the case n = 2 amounts to a generalization at finite temperature of the usual normal mode analysis where
the Hessian at the optimized geometry is replaced by the average Hessian at finite temperature.

However, the use of cartesian coordinates may not be appropriate for large floppy molecules containing
mobile groups like rotating CH3 groups. This can be circumvented by using internal coordinates. To this
aim we have taken the coordinates ζi as streches, bends, torsions and out of plane angles. In order to build
a complete set of non-redundant internal coordinates we have used the methods devised by Decius [104]
or Pulay [19, 105]. Once these modes are defined, we can construct the Wilson B matrix that describes
the change of internal coordinates with respect to cartesian displacement for each configuration along the
dynamics:

B ≡
∂Sj

∂xi
(27)

This B matrix can then be used to evaluate the time-derivatives of the internal coordinates, needed for
computing the power spectra matrices, from the cartesian velocities simply by applying

Ṡj =
∑

i

∂Sj

∂xi
ẋi (28)

If we further need to compute accelerations of internal coordinates, numerical time-derivatives of the
velocities have been used.

Figures 2 and 3 show the resulting VDOS of the effective normal modes obtained from first-principle
molecular dynamics simulations for N-Methyl-Acetamide (NMA) in the gas phase and solvated in liquid
water, respectively at low temperature and ambient temperature. For NMA, we have defined a complete
set of non-redundant internal coordinates according to Pulay’s definitions and localized modes were con-
structed as linear combinations of these coordinates as described above. In both cases, it can be seen that
all modes are well localized in frequency, each showing mainly one peak with a spread usually less than
100 cm−1. In the case of NMA in the gas phase, some modes have a nearly perfect localization indicating
their harmonic character. In the liquid phase, overlap between bands can be large, as in the case of C-H
stretch bands around 2900 cm−1: these modes are however nearly decoupled from each other, and each
mode still exhibits a high level of localization.

The method can be straightforwardly applied to larger systems and figure 4 shows the VDOS of effec-
tive normal modes calculated from the Car-Parrinello dynamics of a gas phase alanine dipeptide in the
C7eq conformation at 20 K. The first-principle molecular dynamics simulation of this molecule was done
using the same general setup as for NMA. The initial set of non-redundant internal coordinates was also
constructed following Pulay’s prescriptions. At this low temperature, the system is mostly harmonic and
the VDOS of the effective normal modes are all very well localized around each normal mode frequencies
of this system, with very small or even no overlap between localized modes. This suggests that molecular
dynamics simulations at low temperature may be an alternative route for determining normal modes, with
the advantage that a perfect geometry optimization is not required contrary to the conventional hessian
method. This is a net advantage for systems of increasing size and complexity.

Figure 5 illustrates the effect of the localization of VDOS in frequency in the case of the dynamics
of the alanine di-peptide. At the top of the figure, VDOS of the two amide N-H groups of the alanine
dipeptide calculated with the usual definition presented in equation (15) restricted to the N and H atoms
only of each N-H group (see section 4) are shown, while the bottom of the figure illustrates the VDOS
after the localization transformation (see section 5) using non-redundant internal coordinates as defined
by Pulay [19]. In this latter case, the localized modes are identified as Amide III modes. Clearly, top of the
figure exhibits peaks spread over the 1000-1800 cm−1 range, in many different regions of the spectrum, and
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are thus difficult to use as such to interpret the vibrational spectrum of the molecule. The two effective
normal modes describing the two Amide III modes of alanine di-peptide are however perfectly localized
around 1100 cm−1. One can moreover note the ∼20 cm−1 frequency shift between both modes, indicating
that the two N-H groups do not exhibit equivalent frequency signatures.

In order to describe the resulting effective normal modes in terms of internal motion, it is necessary to
quantitatively determine the contribution of an internal coordinate in an effective normal mode. To this
end, we employ a method derived from the Potential Energy Distribution as used in standard normal mode
analysis [106–108]. PED is based on the contribution of each internal coordinates to the potential energy
of an effective normal mode.

The eigenvectors Z obtained after diagonalisation of the matrix K(2) satisfy:

Z−1 K(2) Z−1T
= Λ ⇔

∑

k,l

ZT
ik K

2
kl Zlj = λij δij

from which we deduce the normalization condition:

∑

kl Zki K
2
kl Zli

λii
= 1

Then, the matrix Pij that defines the contribution of the internal coordinate i to the normal mode j, can
be expressed as [108]:

Pij =

∑

l Zji K
2
jl Zli

λi
(29)

We have used here an alternative definition [107] of the PED as a slight variation of Morino’s approach.
Constructing the matrix P(k) indexed by the normal mode k as:

Pij(k) =
Zik Zjk K

2
ij

λk
,

it has been recognised that the contribution of the internal coordinate i in this effective normal mode can
be evaluated in two ways: either as a sum of the ith row (or ith column as the matrix is symmetric) - this
is McCarthy’s proposal - or as considering only the diagonal terms of P(k) which are necessarily positive:

Pii(k) = Pik =
Z2

ik K
2
ii

λk
(30)

The resulting contributions need then be normalized and are generally expressed in percentage.

Table 1 shows the PED decomposition of some of the most important modes of NMA in the gas phase
at 20 K, in both Cis and Trans conformations, and of Trans-Nma immersed in liquid water at 300 K.
In the gas phase, three modes can be clearly identified as the three amide modes with Amide I being a
nearly pure C=O stretch. In the liquid phase, this mode appears as a mixing of C=O stretch and N-H
bend. Comparison of the gas phase and liquid phase for Trans-NMA shows that the C-N stretch and N-H
bend are blue-shifted while the C=O stretch is red-shifted in the liquid phase. The resulting overlap of the
C=O strecth and NH bend then leads to Amide modes which are mixed. These shifts are compatible with
a picture where the zwitterionic form of the peptide bond is favored in solution, presumably due to the
large dielectric constant of water and to hydrogen bonds formed between NMA and the surrounding water
molecules. In this zwitterionic form, the CO bond acquires a more important single bond character, less
stiff than in the neutral form, while the C-N bond acquires a double bond character. Table 1 also shows
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that the other modes localized in this region of the spectrum mostly involve motion of the two terminal
methyl groups displaying symetric and anti-symetric bends as defined by Pulay’s non redundant internal
coordinates [19].

Here again, concepts from the normal mode analysis are straightforwardly generalised to effective normal
modes extracted from MD simulations and can thus help in the band assignments as well as in comparing
results, at finite temperature, in the gas phase and condensed phase.

Another way of describing the calculated effective normal modes is simply by visual inspection of the
atomic displacements associated with each mode. These displacements are defined as:

δxi(k) =
∂xi

∂qk
(31)

and can be obtained through the chain rule:

∂xi

∂qk
=
∑

j

∂xi

∂Sj

∂Sj

∂qk
(32)

in which the matrix ∂Sj

∂qk
is simply the matrix Z defining the effective normal modes. The first term, ∂xi

∂Sj
is

obtained from Wilson’s B matrix defined as:

B ≡
∂Sj

∂xi
. (33)

This matrix however is (3N − 6)× 3N and is thus not invertible to obtain the needed ∂xi

∂Sj
terms. This can

however be achieved by further requiring that the displacements δxi(k) satisfy the six Eckart conditions,
i.e. no net translation nor rotation of the investigated molecular system. There also, we follow the general
prescription of normal mode analysis in internal coordinates from Crawford and Fletcher [109] which
results in:

∂xi

∂Sj
≡ B− = M−1 BT (BT M−1 B)−1 (34)

where B is the Wilson’s matrix and M is the matrix of atomic masses. It is then possible to express the
atomic displacement vector corresponding to mode k as:

δxi(k) =
(

B−Z
)

ik
(35)

Figure 6 displays some of the effective normal modes of NMA solvated in liquid water. On these figures,
as on the PED reported in table 1, one can identify the participation of C=O stretch, NH bend and C-N
stretch to the three Amide modes, while the two other modes displayed whose frequencies are in the same
range as the Amide bands are deformations of the terminal methyl groups. See table 1 for the precise
assignment of the modes.

We are thus able to extract effective normal modes from molecular dynamics simulations performed at
finite temperature, either in the gas phase or for a solute immersed in the condensed phase. These modes
are effective in the sense that they include temperature, all anharmonicities of the dynamics (potential
energy surface anharmonicities, dipole anharmonicities), and dynamical isomerisation along the dynamics.
From the effective normal mode localization, a PED analysis can be applied. These two steps are strictly
similar to the analyses conducted in static ab initio calculations, with the net advantage of an underneath
molecular dynamics simulation.
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6 Infrared intensities

The localization of modes in frequency is very helpful for assigning observed bands in IR spectra. However,
not all the computed modes may be observed in the spectra because their IR intensity is low. Sometimes
many bands may be present in the same frequency domain and only a few may have significant IR intensity
to be observable. Thus for the purpose of assigning IR spectra bands, it is of great interest to also have at
disposal the IR intensity associated with each effective normal mode motion. This is the purpose of this
paragraph.

Starting from the expression of the infrared spectrum as the Fourier-transform of the autocorrelation
function of the dipole or its time derivative (current), see eq. (11), we can re-write the current in the newly
introduced effective normal modes qk as:

jβ(t) =
∑

k

∂Mβ

∂qk
(t)
dqk
dt

(t) =
∑

k

∂Mβ

∂qk
(t)q̇k(t) (36)

to re-express the infrared absorption as:

IR(ω) = n(ω)α(ω) =
2π

3V kBT

∫ +∞

−∞

∑

k,l

〈

(

∂Mβ

∂qk
q̇k

)

(0)

(

∂Mβ

∂ql
q̇l

)

(t)〉eiωtdt (37)

In this equation the velocity q̇k of the kth effective normal mode is obtained as:

q̇k(t) =
∂qk
∂St

∂St

∂xi
ẋi (38)

from the internal coordinates definition. The APT tensors expressed in effective normal mode coordinates
is a vector ∂Mβ

∂qk
analogous to a time-dependent transition dipole vector. It can be calculated in a similar

way using the chain rule:

∂M

∂qk
=
∂M

∂x′i

∂x′i
∂St

∂St

∂qk
(39)

where the first term, ∂M

∂x′
i

is the APT tensor in the laboratory frame, the second term is the generalized
inverse of Wilson’s matrix B which we have already introduced, while the third term is the matrix transform
between effective normal modes and the internal coordinates. The first two terms are time-dependent and
need to be calculated on the fly along the dynamics with an inversion of the B matrix for each configuration.

The first approximation to this otherwise exact formula for the infrared spectrum is to assume that the
effective normal modes are decorrelated from each others, which gives:

IR(ω) = n(ω)α(ω) ≈
2π

3V kBT

∫ +∞

−∞

∑

k

〈

(

∂Mβ

∂qk
q̇k

)

(0)

(

∂Mβ

∂qk
q̇k

)

(t)〉eiωtdt (40)

as suggested by the definition of the effective normal modes that should minimalize the overlap between
their respective power spectra. In this approximation, the infrared spectrum is decomposed as a sum of
effective normal modes contributions that can be computed in order to interpret the spectrum and assign
observed IR bands. The rest of the paragraph is devoted to further approximations that allow to assign
an intensity to each effective normal mode.

The next approximation to this sum of modes is to assume a kind of rotation-vibration decorrelation
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assuming that the terms ∂Mβ

∂qk
are decorrelated from the mode velocities, so that:

〈

(

∂Mβ

∂qk
q̇k

)

(0)

(

∂Mβ

∂qk
q̇k

)

(t)〉 = 〈

(

∂Mβ

∂qk

)

(0)

(

∂Mβ

∂qk

)

(t)〉〈q̇k(0)q̇k(t)〉 (41)

and

IR(ω) = n(ω)α(ω) ≈
2π

3V kBT

∑

k

∫ +∞

−∞

〈

(

∂Mβ

∂qk

)

(0)

(

∂Mβ

∂qk

)

(t)〉〈q̇k(0)q̇k(t)〉eiωtdt (42)

Noting that ∂M/∂qk is a vector which we can write as a norm times a unit vector: ∂M/∂qk =
|∂M/∂qk|u(t), and further assuming decorrelation between the two, we can write:

IR(ω) =
2π

3V kBT

∑

k

∫ +∞

−∞

< |
∂M

∂qk
(0)|.|

∂M

∂qk
|(t) > < uk(0).uk(t) > < q̇k(0)q̇k(t) > eiωtdt (43)

which is our expression for the IR spectrum including mode decoupling and complete rotation-vibration
decorrelation.

In a final approximation, we can assume that the term < q̇k(0)q̇k(t) > describing the modes dynamics
varies much more rapidly than the two other terms, which thus can be evaluated at time t = 0 only. The
infrared spectrum is therefore simply written as:

IR(ω) =
2π

3V kBT

∑

k

Ak

∫ +∞

−∞

< q̇k(0)q̇k(t) > eiωtdt (44)

where the Ak’s are the mode intensities:

Ak =< |
∂M

∂qk
(0)|2 > . (45)

In this form, the infrared spectrum is a weighted sum of the effective normal modes power spectra, whose
intensities are obtained from the Atomic Polar Tensor or transition dipole vectors in a similar way as
in the double harmonic approximation. In the examples below, the intensities Ak are obtained using the
APT calculated on one single configuration only of the system instead of a true configuration average
< |∂M

∂qk
(0)|2 >, this allows for a rapid estimation of band intensities for the purpose of assigning bands.

This is however not necessary in our framework, as upon the change of coordinates made to introduce
the effective normal modes, all information about the system dynamics is still retained at this stage and
the IR spectrum can still be calculated exactly as in eq. (37) or with a minimal approximation, eq. (40)
that still allows for a decomposition of the total spectrum in a sum of effective normal modes contributions.

In the following, we will be presenting calculations of IR intensities following equation (42) with the
APT tensor and correlation calculated over one pico-second of the dynamics, or using equation (44) in
which only one APT tensor is calculated for the first configuration of the dynamics.

6.1 Applications

Comparisons between the infrared spectrum calculated through the Fourier transform of the dipole cor-
relation function (equation (8)) and the Fourier transform of the localized normal modes (equation (44))
making use of APT tensors is presented in figures 7 and 8. Comparisons are presented for the Trans-NMA
molecule in the gas phase (Car-Parrinello dynamics at 20 K) and immersed in liquid water (Car-Parrinello
molecular dynamics simulation at 300 K). The whole spectrum is presented in the gas phase, while only
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the 1000-2000 cm−1 domain is presented in the liquid phase. In both cases, it can be seen that the infrared
spectrum of Trans-NMA calculated through equation (44) captures the main features of the exact infrared
spectrum calculated through equation (8). Moreover, the result is not sensitive to the choice of the APT
tensor as can be concluded from the condensed phase calculation in figure 8, be it sampled over part of
the dynamics (here one pico-second) or fixed from the first configuration of the dynamics. In particular,
structural deformations taken into account in the APT tensors calculated over one pico-second of the
trajectory do not give substantial further informations to the infrared intensities and band widths. In the
gas phase, both spectra are similar, with mainly an underestimation of the intensity of the Amide I band
at ∼1600 cm−1 and of the C-H stretching band above 2000 cm−1 when equation (44) is applied. The N-H
stretching band above 2000 cm−1 is overestimated. In the liquid phase calculation, one can see that the
three main Amide bands are present in all calculations, though the Amide II band located at ∼1400 cm−1

is merged with the Amide I band in the calculations done through the APT tensors. The disappearance of
the Amide II band in the APT calculation of the IR spectrum could be due to the choice of definition of the
molecular current from the APT tensor, which gives a completely different decomposition of the density in
comparison to the Wannier orbital decomposition. Note here (see our paper [35]) that the Car-Parrinello
spectrum, calculated with the Wannier orbital decomposition, gives an IR spectrum of NMA immersed in
water which is in very good agreement with the experiment.

Figure 9 reports the 1000-1800 cm−1 frequency domain of the calculated infrared spectrum of Trans-
NMA obtained from our Car-Parrinello trajectory at 20 K (dashed black line) and its decomposition into
its fundamental normal mode contributions as described with our formalism of the IR intensities. The
intensities of the bands are reported in table 1. The band located at ∼1595 cm−1 clearly comes solely
from the Amide I mode (stretching C=O as from 95%, red line). The broad band roughly located between
1300 and 1500 cm−1 can be nicely decomposed into three contributions. The 1440 cm−1 shoulder on the
upper frequency part is due to the Amide II mode (bending N-H as from 42%, N-Terminal methyl symetric
stretching as from 17% and stretching C-N as from 10%, blue line); two modes take part in the central
part of the broad band, respectively coming from the C-Terminal asymetric methyl C-H bendings (85%,
purple line) and the N-Terminal symetric methyl C-H bendings (77%, black line); the lower frequency
part is due to the C-Terminal symetric methyl C-H bendings (95%, orange line). Features arising from the
symetric and asymetric C-H bendings can thus be nicely separated over the whole infrared spectrum, as
well as the contributions arising from each of the terminal methyl groups. Finally, the ∼1180 cm−1 band
results from the Amide III mode, which is a composition of C-N stretching (32%), N-H bending (30%)
and C=O stretching (12%) in our calculation.

The same 1000-1800 cm−1 frequency domain decomposition is presented in figure 10 in the case of the
calculated infrared spectrum of Trans-NMA from our Car-Parrinello molecular dynamics trajectory in
aqueous water at 300 K (black dashed line). The intensities of the bands are reported in table 1 and the
transition dipole moments are shown as red arrows in figure 6. As can be easily seen, the 1400-1600 cm−1

active band is composed of the Amide I mode (now interpreted as 54% of C=O stretching and 38% of
N-H bending) on its upper frequency part and of the Amide II mode (intrepreted as 48% N-H bending,
24% C-N stretching and 13% N-Terminal C-H symetric stretching) on its lower part. Both modes thus
merge into a broad band in the liquid phase, while both modes are now composed of more mixing between
C=O and N-H motions. The active band located at ∼1230 cm−1 is only composed of the Amide III mode
(interpreted as 38% stretching C-N, 35% bending N-H and 12% stretching C=O, which is very similar to
the gas phase interpretation). The band located at ∼1350 cm−1 is a merging of the methyl symetric C-H
bending motions, the C-Terminal methyl being at the upper frequency part and the N-Terminal methyl
at the lower frequency part.

Another illustration is presented in figure 11 in the case of the gas phase Car-Parrinello trajectory of the
octa-alanine peptide chain at ∼20 K. As can be seen again (top of figure 11), the approximated infrared
spectrum (calculated through equation (42)) is very close to the exact infrared spectrum (calculated
through equation (8)), the biggest discrepency arising again from the intensity of the C-H stretching
modes at ∼2800 cm−1. The three main bands obtained in the 1000-1800 cm−1 frequency domain can
be nicely decomposed into individual contributions as proposed at the bottom of figure 11. The band
at ∼1570 cm−1 is composed of the Amide I C=O stretching modes, arising from the different carbonyl
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groups along the octa-peptide chain, the band at ∼1420 cm−1 results from the Amide II N-H bending
modes of the different amide groups along the octa-peptide chain, while the ∼1130 cm−1 band comes from
the Amide III modes. For each Amide band, one can see that each decomposed sub-band is peaked at a
different absolute position value, the sum of which giving rise to the broadening of the resulting final band.

7 Discussion–Conclusions

We have reviewed here Car-Parrinello molecular dynamics simulations for the calculation of infrared spectra
of complex molecular systems, either in the gas phase or in the condensed phase, like here immersed in
a liquid environment, at finite temperature. Although first-principle simulations have proved powerful for
this aim, interpretation of the resulting vibrational spectrum is often not straighforward, based on the
study of VDOS for selected coordinates as illustrated here in the case of N-Methyl-Acetamide. We have
here presented a new formalism in order to extract localized effective normal modes from the trajectories
in order to interpret and assign the active vibrational bands of the IR spectra. This method is quite general
and can be applied in gas, solid or liquid phase. The effective normal modes thus constructed can be written
as linear combinations of linear coordinates, being more adapted to solid state or stiff molecules [37], and
we have introduced here effective normal modes as linear combinations of internal coordinates. This is
better adapted to situations were part of the system/molecule is floppy.

Our methodology has been illustrated on the N-Methyl-Acetamide (NMA) molecule, on the alanine
dipeptide molecule and on the more complex octa-alanine peptide chain. The effective normal modes
were constructed here in terms of individual internal coordinates (taken as non-redundant as defined
by Pulay [19]). We have shown that our formalism is able to localize effective vibrational modes in the
frequency domain, allowing for a clear separation of the different modes.

The construction of the effective normal modes is formally only a change of variables and no information
is lost from the dynamics. Only the representation of the dynamics has changed, allowing for an easier band
assignment since, in this representation, the VDOS are as localized as possible; they still have however
a width and possibly complex shape reflecting the complex dynamics in the system. The modes thus
extracted are effective in the sense that they include temperature, all anharmonicities of the dynamics
(potential energy surface anharmonicities and dipole anharmonicities), and a complex dynamics such as
dynamical isomerisation along the time. We have previously shown [37] that this method is close to PMA
for a choice n = −2 and cartesian coordinates, and is a generalization at finite temperature of the usual
normal mode analysis for the choice n = 2. Here, we have also shown that concepts like PED can be
straightforwardly adapted to our approach. We are then able to compute PED contributions in order to
give a proper and precise assignment of each effective mode as illustrated for the gas phase and solvated
NMA.

In this paper, we also introduced infrared intensities calculated for the effective normal modes. These are
very helpful indicators for the assignment of bands in the observed or calculated IR spectra. Different ways
of calculating the IR intensities associated with each effective mode have been devised and we have shown
that they correspond in each case to an approximation of the IR ’exact’ spectrum. In the simplest case,
it amounts to computing the APT tensor in the new set of effective normal mode coordinates, defining a
transition moment similar to the normal mode analysis case first introduced by Pulay [19]. As can be seen
in the illustrations on the peptide models, the reconstructed IR spectra hence computed from the band
intensity and band VDOS compare very well to the exact ones calculated through the Fourier Transform
of the time correlation of the dipole moment.

These intensities, although representing the IR spectra in a simplified way as described above, can be
also useful in providing an approximation to the IR spectrum when a full calculation may be difficult or
costly (calculation of molecular dipoles by orbital rotation or computation of currents). This should be
particularly true for Raman spectra for which the approach presented here can bring a useful approximation
at a minimal numerical cost.

The effective normal mode method discussed here can be seen as fitting the best harmonic model to
the computed dynamics, as we have previously discussed in cartesian coordinates [37]. This suggests that
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the method could be used to reparameterize intramolecular classical force-fields to better represent the
molecular vibrations in a given environment, including anharmonicity in an effective way. It is however also
expected that mode localization will not be very efficient in strong anharmonic situations, as in the case of
a complex molecular dynamics where isomerisation between different isomeric conformations occur. In such
situations, the methodology discussed here can be slightly modified in order to extract the influence of each
isomeric conformation on the effective normal modes computed from the entire dynamics. The velocity
correlations can indeed be weighted by the amount of time spent by the molecule in each of the isomeric
basins, and the localization principle can still be applied for vibrations in each basin. This is current work
in progress to assess the validity of this approach. Another envisioned development for anharmonicity is
the inclusion of higher order terms in the definition of effective modes (e.g. a second order polynomial).

Finally, one of the biggest advantages of first-principle molecular dynamics for the computation of vibra-
tional spectra is the explicit description of the electronic system. This allows, in principle, the prediction
of other type of vibrational spectroscopy than infrared spectra, like Raman spectroscopy or vibrational
circular dichröısm.
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Mode Freq. Intens. Contributions from PED
(cm−1) (km/mol)

gas phase cis-NMA
Amide III 1255 58.9 C1 sym.bend.:47%, st.C2-N:22%, b.N-H:7%
C1 sym.bend 1322 217.5 C1 sym.bend.:98%
Amide II 1365 0.9 b.N-H:42 %,st.C=O:32%
Méthyl def. 1396 22.3 C1 asym.bend.:61%, C3 sym.bend.:28%
Méthyl def.2 1413 20.7 C1 asym.bend.:46%, C3 asym.bend.:39%
Amide I 1598 451.4 st C=O: 92%, b. N-H: 4%

gas phase trans-NMA
Amide III 1179 63.7 st.C2-N:32%, b.N-H:30%, st.C=O:12%
C1 sym.bend. 1320 33.0 C1 sym.bend.:95%, C1 asym.bend.:3%
C3 sym.bend. 1363 36.7 C3 sym.bend.:77%, b.N-H:11%
Méthyl bend. 1394 40.2 C1 asym.bend.:85%, b.N-H:4%
Amide II 1420 37.6 b.N-H:42%, C3 sym.bend.:17%, st.C2-N:10%
Amide I 1596 330.7 st.C=O:95%, b.N-H:2%

solvated trans-NMA
Amide III 1243 124.8 st.C2-N:38%, b.N-H:35%, st.C=O:12%,
C1 sym. def. 1349 47.3 C1 sym.bend.:93%
C3 sym. def. 1374 99.2 C3 sym.bend.:79%, b.N-H:6%
Amide II 1493 478.9 b.N-H:48%, st.C2-N:24%, C3 sym.bend.:13%
Amide I 1515 235.9 st.C=O:54%, b.N-H:38%

Table 1. PED and IR intensities of localized modes between 1100 and 1700çm−1 for gas phase Cis- and Trans-NMA and solvated Trans-

NMA,extracted from first-principle Molecular Dynamics simulations at 20 K (gas phase) and 300 K (liquid phase). Effective modes are defined

using Pulay’s non redundant internal coordinates [19]. st: stretch, b: bend, sym bend: symetric bend, asym bend: asymetric bend.
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Figure 1. Vibrational density of states (VDOS) of isolated Trans-NMA (N-Methyl-Acetamide) obtained in a Car-Parrinello molecular
dynamics at 20 K. The total VDOS is displayed at the bottom of the figures and the various contributions from individual atoms of the
peptidic group (H, N, C, O) are given above. C and O respectively stand for the carbonyl carbon and oxygen atom of NMA, N and H

for the amide nitrogen and hydrogen atoms.
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Figure 2. Power spectra of the localized modes for gas phase Trans-N-Methyl-Acetamide at 20 K.

The effective normal modes are computed with the formalism described in section 5 using non-redundant
internal coordinates as defined by Pulay [19].
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Figure 3. Power spectra of the localized modes for solvated Trans-N-Methyl-Acetamide at 300 K.

The effective normal modes are computed with the formalism described in section 5 using non-redundant
internal coordinates as defined by Pulay [19].
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Figure 4. Power spectra of the localized modes for gas phase alanine di-peptide in the C7eq conformation, from the gas phase
Car-Parrinello dynamics at 20 K. The effective normal modes are computed with the formalism described in section 5 using

non-redundant internal coordinates as defined by Pulay [19].
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Figure 5. Top: VDOS of the two amide N-H groups of an alanine dipeptide calculated with the usual definition in equation (15)
restricted to the N and H atoms only of each N-H group, see section 4. One N-H group is identified with the black line, the other with
the dashed black line. See text for the related discussion. Bottom: Power spectra of the effective normal modes associated to the N-H
Amide III modes after the localization transformation presented in section 5 using non-redundant internal coordinates as defined by

Pulay [19]. See text for the related discussion.
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Figure 6. Atomic displacements (orange arrows) for some selected effective normal modes of solvated Trans-NMA. For each mode, the
transition dipole as defined by eq. 39 is also shown as a red arrow.
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Figure 7. Comparison between the infrared spectrum calculated through the Fourier transform of the dipole correlation function
(equation (8), black line) and the Fourier transform of the localized normal modes (equation (44), red line) making use of APT tensors
(APT tensor calculated at the first configuration of the dynamics). Comparison presented for the Car-Parrinello molecular dynamics of

Trans-NMA in the gas phase at 20 K.
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Figure 8. Comparison between the infrared spectrum calculated through the Fourier transform of the dipole correlation function
(equation (8), black line) and the Fourier transform of the localized normal modes (equation (44), red and green lines) making use of
APT tensors (red: APT tensor sampled over one pico-second trajectory, green: APT tensor calculated at the first configuration of the

dynamics). Comparison presented for the Car-Parrinello molecular dynamics of Trans-NMA immersed in liquid water at 300 K.
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Figure 9. Decomposition of the infrared spectrum intensity of Trans-NMA from the 20 K simulation in the gas phase. Decomposition
into the different contributions arising from the Amide normal modes in the 1000-1800 cm−1 frequency domain: Dashed Black: total IR
spectrum; Red: Amide I mode; Blue: Amide II mode; Orange, black and purple: methyl groups C-H bending; green: Amide III mode.
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Figure 10. Decomposition of the infrared spectrum intensity of Trans-NMA solute from the 300 K aqueous Trans-NMA simulation.
Decomposition into the different contributions arising from the Amide normal modes in the 1000-1800 cm−1 frequency domain: Dashed

Black: total IR spectrum; Red: Amide I mode; Blue: Amide II mode; Orange and black: methyl groups C-H bending modes,
respectively from the C-Terminal side and N-Terminal side of the molecule; green: Amide III mode.
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Figure 11. Gas phase octa-alanine at 20 K. Top: Comparison between the infrared spectrum calculated through the Fourier transform
of the dipole correlation function (equation (8), black line) and the Fourier transform of the localized normal modes (equation (44), red

line) making use of APT tensors (APT tensor calculated at the first configuration of the dynamics). Bottom: Decomposition of the
infrared spectrum intensity into the different contributions arising from the Amide normal modes in the 1000-1800 cm−1 frequency

domain: Dashed Black: total IR spectrum; Color curves: individual effective normal modes.

Page 35 of 70

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 17, 2007 20:48 Molecular Physics article

Molecular Physics, Vol. 00, No. 00, DD Month 200x, 1–35

Infrared spectroscopy in the gas and liquid phase from first principle molecular

dynamics simulations - Application to small peptides
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We discuss the applicability of finite temperature Car-Parrinello molecular dynamics simulations for the calculation of
infrared spectra of complex molecular systems, either in the gas phase or in the condensed phase, taking examples from the
infrared spectroscopy of N-methylacetamide and small peptides. Band assignments for the simulation is still challenging and
we introduce here a general method for obtaining effective normal modes of molecular systems from Molecular Dynamics
simulations. The effective normal modes are defined as linear combination of internal coordinates such that the power
spectra of these modes are as localized as possible in frequency. We further define band intensities for these modes from
different levels of approximation of the infrared spectrum. Applications of this approach for assigning infrared bands from
first-principle molecular dynamics simulations are presented for N-methylacetamide in gas phase and in solution, for the
gas phase alanine dipeptide and the gas phase octa-alanine peptide.

1 Introduction

Vibrational spectroscopy (Infrared and Raman) has been recognized for long as a fundamental tool for
the characterization and understanding of the chemical state of a molecule, the structure and dynamics
of the molecule and its environment. Vibrational spectroscopy is in particular commonly applied for the
characterization of secondary structures of peptides and proteins in solution or membranes [1–4]. As an
illustration, structural motifs such as helices or beta sheets can be clearly identified from each others by
changes in frequency positions, shapes and intensities of the infrared or Raman bands [2, 5, 6].
Linear absorption Infrared spectroscopy has been successfully applied for the last two decades on all
kinds of molecular systems in the liquid, solid and gas (matrix) phases. But the past decade has seen the
developement of new vibrational spectroscopy methods. Pump-probe non linear 2-dimensional infrared
spectroscopy 2D-IR [7–12] is one of these methods. It has been developed in order to circumvent the
limitations of linear IR, in particular bringing forth the couplings between modes and the extra-information
it gives in the understanding of molecular structures. The advance in 2D-IR is the time dependence
recording of the infrared fingerprints: dynamics of a molecular system is thus directly at hand with these
experiments, in real time. Up to now, the methodology has been principally developed on the Amide I mode
(stretching C=O cabonyl) and mainly applied on biomimetic organic molecules such as peptide models
in the liquid phase. Same developments are being made with multi-dimensional Raman spectroscopy [13,
14]. Gas phase spectroscopy has also been revolutionarized during the past decade, going far beyond
the low-temperature matrix gas phase spectroscopy. Hence, gas phase mass spectrometry and infrared
vibrational spectroscopy have been gathered in a set-up which thus couples Mass Spectrometry (MS) with
Infrared Multi Photon Dissociation (IR-MPD), as devised at FELIX [15] or CLIO [16] in Europe. This
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is an action spectroscopy, where the fragment ion yields are recorded as a function of the IR excitation
energy. Conditions necessary for IR-MPD of gas phase molecules are fulfilled by using an infrared free
electron laser (FEL). Thermalization of the produced ions is an important aspect of these experiments.
Though the ions are initially produced at high internal energies, their trapping in an ICR (Ion Cyclotron
Resonance) cell during a few seconds before exposure to the IR radiation ensures their relaxation and
thermalization at room temperature. This device therefore gives the IR spectroscopy of trapped gas phase
ions at room temperature, close enough to relevant physiological temperatures of biomolecules. See for
instance refs. [17,18] for more information on the subject.

We are thus able to vibrationally probe molecules either in the gas phase or in the liquid phase, at finite
temperature: a direct comparison between the gas phase and liquid phase vibrational patterns can therefore
be conducted, at the same finite temperature. Environmental effects, such as the aqueous hydrogen bonding
to biomolecules, can be directly probed and characterized from this comparison.

Assignment of vibrational modes is an important step in the structural and dynamical interpretation
of the spectral fingerprints. Here is where modelling and computation can be most helpful, in particular
when a full spectrum, including positions, shapes and intensities, can be computed and directly compared
to experimental data. This however necessitates accurate intra- and inter-molecular potentials, able to
both describe the typical intramolecular motions of the molecule under study but also the induced shifts
due to conformational changes or due to the interaction with the environment. Such potential should then
correctly incorporate anharmonic terms and polarisation effects, in particular at finite temperature.

This is in a way exactly the same statement as in the seminal work of Péter Pulay [19] ! Since then,
great progress has though been made on the computation and interpretation of vibrational spectra of
molecules of reasonable size and complexity, such as bio-organic molecules which are of main interest for
many research groups nowadays.

The conventional way of calculating infrared spectra principally involves performing ab initio chemistry
calculations [18, 20]. This is the traditional approach for dealing with small organic molecules. In such a
scheme, geometry optimizations at 0 K are performed and vibrational analyses in the harmonic approx-
imation are subsequently done for each equilibrium conformation. A match between experimental and
calculated IR patterns obtained for the different conformers is generally checked in terms of positions and
relative intensities of IR bands. The bottleneck of such theoretical calculations is mainly the determination
of all the representative equilibrium conformations of the molecule. This is a tremendous amount of work
for flexible and floppy molecules. A small di-peptide already possesses several conformers (representative
of those encountered in larger peptides) which are generally lying within a small energy range. At room
temperature, one can thus expect conformational isomerisation dynamics to take place. In other words,
the peptide does possess enough internal energy to explore different zones of its potential energy surface
(PES), particularly if finite temperature IR-MPD gas phase experiments are involved. Therefore, different
isomeric conformations of the molecule can be accessible at that temperature and will most likely play a
role on the peptide IR spectroscopy. Another limitation (and not the least) of quantum chemistry calcu-
lations is the modeling of the environment surrounding the vibrationally probed solute molecule, water
being the most ubiquitous solvent. Properly characterising the surrounding hydration shells is indeed out
of reach of such calculations, where only a few water molecules that belong to the first hydration shell and
are hydrogen bonded to the main hydrophilic sites of the solute can be incorporated into the calculation.

Taking into account the dynamics of the molecule and its consequences on the measured properties can
only be achieved through molecular dynamics simulations (MD). MD simulations are also the only approach
capable of modeling condensed phase systems, such as homogeneous liquids or a solute immersed in liquid
water (or any other solvent environment). Lately, Density Functional Theory (DFT) based Molecular
Dynamics has proven successful for the computation of vibrational spectra at finite temperature. This
development is the result of the latest advances in density functional theory (DFT) based molecular
dynamics simulation (“Car-Parrinello” [21]), brought about by the implementation of the modern theory
of polarization and the maximally localized Wannier functions. In Car-Parrinello molecular dynamics
simulations the forces acting on the atoms are obtained at each time-step of the simulation by an electronic
structure calculation in the DFT framework. This thus combines accurate description of forces in many
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environments and situations, while providing a description of the structure and dynamics of a system in
its fluctuating environment at finite temperature. Since the pionneering work of Silvestrelli et al. for the
computation of the infrared spectrum of liquid water [22], DFT-based MD has been applied successfully
to the calculation of IR spectra of pure liquids [23,24] or of small biological molecules in aqueous solution
[25–29], molecular crystals [30] or Raman spectra in the condensed phase [31–33]. As we have demonstrated
in recent studies of the IR absorption of uracil [34], N-Methyl-Acetamide [35], and the protonated alanine
peptide [18,36], either in liquid water or in the gas phase, it is now possible to perform a detailed infrared
calculation for models of bio-organic molecules in finite temperature bulk solution with all water molecules
treated at the same level of theory as the solute, as well as in finite temperature gas phase.

An accurate calculation of infrared spectra is one issue to achieve, the assignment of the active bands
into individual atomic displacements or vibrational modes is another one, and this issue is essential to the
understanding of the underneath molecular structural and dynamical properties.

We have recently developped a systematic method for decomposing vibrational spectra as an approx-
imate sum of effective normal mode contributions [37]. We have defined these effective normal modes
from the data of the Fourier Transform of Velocity Correlation Functions so that they can be extracted
directly from the MD trajectory. In this framework, the effective normal modes are linear combinations of
atomic displacements constructed such that the corresponding power spectra is as localized as possible in
frequency. There is no loss of information from this transformation which is just a change of coordinates.

The present paper aims at demonstrating the applicability of ab initio molecular dynamics simulations
(such as the Car-Parrinello approach in the DFT framework) for the calculation of infrared spectra of
bio-organic molecules (in relation to gas phase and liquid phase finite temperature experiments) and our
methodology for the extraction and assignment of vibrational modes in terms of internal coordinates.
We will concentrate on the infrared spectroscopy of peptide models, either in the gas phase or in the
liquid phase, in relation with finite temperature linear IR or IR-MPD experiments. We will begin with a
summary review of static versus dynamics calculations of infrared spectra, presenting the advantages and
limitations of each method. The localization method we have developed will be described next, as well as
a way for the calculation of infrared intensities in our framework. Applications will be presented, mainly
on the N-Methyl-Acetamide molecule, Alanine di-peptides and the octa-alanine peptide chain, in the gas
phase and in the liquid phase. Ongoing further developments will be mentioned at the end of the paper.

2 Static versus dynamic ab initio calculations of infrared spectra

The basic definition of an infrared spectrum calculation lies in the Fermi Golden Rule which states that
the infrared spectrum is calculated through the following expression [38]:

I (ω) = 3
∑

i

∑

f

ρi |〈f |E.M|i〉|2 δ (ωfi − ω) (1)

where E is the applied external field vector, M is the dipole vector of the molecular system, |i〉 and |f〉
are respectively the initial and final vibrational states of the system. These are eigenstates of the system
excluding the radiation. ρi is the density of molecules in the initial vibrational state |i〉. ω is the reciprocal
wave-number (in cm−1) and ωfi is the reciprocal wave-number associated with the transition between the
initial and final vibrational states of the system.

• Infrared spectroscopy with static ab initio calculations

The root of vibrational spectra calculations is solving the Schrödinger vibrational equation [39, 40]. It
is expressed within the harmonic normal mode coordinates qk (k = 1 · · · 3N − 6, where N is the number
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of atoms of the investigated molecular system) in order to be analytically and numerically solvable very
easily. With these coordinates, the kinetic energy T and potentiel energy V that appear in the Schrödinger
vibrational equation are simply expressed as:

T =
1

2

3N−6
∑

k=1

q̇2k V =
1

2

3N−6
∑

k=1

λkq
2
k

where λk is the frequency associated to the normal mode qk,
and the Schrödinger vibrational equation is:

−
h2

8π2

3N−6
∑

k=1

∂2ΨV

∂q2k
+

1

2

3N−6
∑

k=1

λkq
2
kΨV = EV ΨV (2)

where ΨV is the vibrational wavefunction and EV the corresponding energy; h is the Planck’s constant.
Due to the normal modes decouplings, the vibrational energy EV and vibrational wavefunction ΨV can
be decomposed as

EV = E(q1) + E(q2) + · · · + E(q3N−6) ΨV = Ψ(q1)Ψ(q2) · · ·Ψ(q3N−6)

so that equation (2) is satisfied if the following 3N-6 decoupled equations are satisfied

−
h2

8π2

∂2Ψ(qk)

∂q2k
+

1

2
λkq

2
kΨ(qk) = EkΨ(qk) ∀k = 1 · · · 3N − 6 (3)

Solution of the Schrödinger vibrational equation of a harmonic oscillator qk (equation 3) is well-known,
with the vibrational energy Ek = (vk + 1/2)hνk (where vk is a quantum number associated with the
normal frequency νk), and the vibrational wavefunction Ψvk

(qk) = Ckexp(−1/2γkq
2
k)Hvk

(γkqk) where Ck

is a normalising factor, γk = 4π2νk/h and Hvk
(γkqk) is the Hermite polynomial of degree vk in qk. The

harmonic oscillator wavefunctions are orthonormalised, i.e.:

∫

dqkΨ
∗

vk
(qk)Ψv′

k
(qk) = δvkv′

k
(4)

The intensity of a spectral line is the probability of the transition which gives rise to the line: the
coefficient of absorption of light of frequency νvkv′

k
for infrared spectroscopy is given by the Einstein

coefficient [41]

Bvkv′

k
=

8π3

3h2

[

∣

∣µXvkv′

k

∣

∣

2
+
∣

∣µY vkv′

k

∣

∣

2
+
∣

∣µZvkv′

k

∣

∣

2
]

where µX , µY , µZ are the components of the transition dipole moment:

µαV V ′ =

∫

dτΨ∗

V ′µαΨV α = X,Y,Z (5)

with µα the αth (X, Y, Z) component of the electric dipole moment of the molecular system. ΨV and ΨV ′

are the total vibrational wavefunctions for states V and V ′. The integral is taken over the configuration
space of the system.
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By application of the electric harmonic approximation (second harmonic approximation), each µα com-
ponent can be written:

µα = µ(0)
α +

3N−6
∑

k=1

µ(k)
α qk

where µ
(0)
α is the permanent dipole moment of the molecule evaluated at the equilibrium geometry, and

µ
(k)
α =

(

∂µα

∂qk

)

0
is also evaluated at the equilibrium geometry. Equation (5) now reads:

µαV V ′ = µ(0)
α

∫

dτΨ∗

V ′ΨV +

3N−6
∑

k=1

(

∂µα

∂qk

)

0

∫

dτΨ∗

V ′qkΨV (6)

which gives rise to the well-known infrared selection rules of harmonic oscillators (with orthonormalized
wave-functions, eq. 4), i.e. µαV V ′ 6= 0 if vl′ = vl for all vibrational levels except vk′ and vk for which
∫

dqkΨ
∗
vk′
qkΨvk

is different from zero if vk′ = vk ± 1 (absorption or emission of one photon from two

consecutive vibrational levels). The permanent dipole µ
(0)
α does not play any role in the intensity of the

spectral lines.

The absolute intensity of an active infrared transition is given by [39]

κ =
8π3

3ch
νV V ′ (NV ′ −NV )

[

|µXV V ′ |2 + |µY V V ′ |2 + |µZV V ′ |2
]

where NV and N ′

V are the number of molecules per unit volume respectively in the state V and V ′, and
c is the speed of light. In the double harmonic approximation, κ is thus proportional to the sum of the
transition dipole derivatives with respect to the harmonic normal modes, i.e.

κ =
∑

α=x,y,z

3N−6
∑

k=1

∣

∣

∣

∣

(

∂µα

∂qk

)

0

∣

∣

∣

∣

2

δvk′ ,vk±1. (7)

In the double harmonic approximation, the Fermi Golden Rule thus reduces to the calculation of the
normal modes of the molecular system in its equilibrium geometry and to the calculation of the transition

dipole derivatives
(

∂µα

∂qk

)

0
. Normal modes qk give the frequency value at which a vk = 0 → vk′ = 1

transition takes place and the associated atomic movements, while dipole derivatives give the infrared
intensities associated to each mode. The investigated infrared spectroscopy is related to the absorption of
one photon from v = 0 to v = 1 harmonic vibrational transitions.
This is achieved with geometry optimization and harmonic frequency calculations performed with quantum
chemistry calculations. The DFT (Density Functional Theory) framework has the advantage of allowing
the study of molecular systems of tens to hundreds of atoms routinely on most of the computer platforms.
The conventional way of proceeding is to perform a systematic search for the different possible molecular
conformations of lowest energy on the potential energy surface, followed by harmonic frequency calculations
of the different identified conformers and the related transition dipole derivatives. Frequencies are usually
scaled [20]: the main purpose of the scaling is to compensate for the double harmonic approximations
(potential energy surface and dipole moment expression) as well as for the level of the ab initio calculations.
The calculated absorption spectra are finally convoluted with a Gaussian or Lorentzian band profile,
adjusted in agreement with experimental conditions.
Obviously, the main drawbacks of this approach are i) the search for the minima of lowest energy on the
potential energy surface, which can be tricky for floppy molecules, ii) the double harmonic approximations,
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iii) as well as the inherent 0 K temperature associated to the search of the minima on the potential
energy surface. This is in particular a very crude approximation for floppy molecules which can undergo
conformational dynamics at finite temperature, as should occur in the infrared experiments we will be
comparing our calculations to, which are typically performed at temperatures around 300 K. We will come
back on these points later on.

• Infrared spectroscopy with ab initio molecular dynamics simulations

Within Linear Response Theory [38, 42], the Fermi Golden Rule formula (equation 1) can be rewritten
as the Fourier Transform of the dipole moment time correlation function:

I (ω) =
2πβω2

3cV

∫

∞

−∞

dt 〈M(t)·M(0)〉 exp(iωt) (8)

where β = 1/kT , c is the speed of light in vacuum, V is the volume. The angular brackets indicate a
statistical average of the correlation of the dipole moment M of the absorbing molecular system. This
average is taken in the absence of the applied external field. In this formula, we have taken into account a
quantum correction factor (multiplying the classical line shape) of the form β~ω/(1 − exp(−β~ω)), which
was shown by us and others to give the most accurate results on calculated IR amplitudes [34,43,44]. For
a complete discussion on quantum corrections, we refer the reader to refs. [45,46].

Equation (8) gives the whole infrared spectrum of a molecular system with one single calculation, i.e.
the band positions, the band intensities and the band shapes, through the fourier transform of a time
correlation function. There are no approximations made apart from the hypothesis of linear response
theory, i.e. a small perturbation on the absorbing molecular system from the applied electric external field.

This is the standard way used in statistical mechanics for calculating the infrared spectrum of a molecular
assembly of molecules (isolated molecule, liquids, solutes in the liquid phase, solids) [38,47–55]. Molecular
dynamics simulations are adapted to the calculation of the evolution in time of the dipole moment of the
system, and therefore its time correlation. We stress again that the only hypothesis on infrared spectra
calculations through equation (8) corresponds to the linear response theory in which the applied external
electric field is a small perturbation to the absorbing molecular system. In particular, in this kind of
calculation there are no harmonic approximations made, be they on the potential energy surface or on the
dipole moment, contrary to the static calculations previously described.

The main advantages of the molecular dynamics approach for the calculation of infrared spectra can be
summarized as follows.
i) Dynamics simulations are performed at finite temperature; this will mainly be room temperature in
our calculations as they will be compared with experiments typically done at this temperature. At finite
temperature, there can be a conformational dynamics between different isomeric conformations of the
absorbing molecules of interest. All conformations populated when going from one basin to the others
on the potential energy surface are thus taken into account in the calculation of the infrared spectrum.
This population dynamics therefore gives rise to a natural broadening of the calculated IR active bands,
which is essential for the comparison to the experimental spectra. This has been demonstrated by us in the
case of the floppy protonated peptide Ala-Ala-H+ in the gas phase [18,36]. A very good agreement of the
calculated Car-Parrinello infrared spectrum of this molecule with the IR-MPD (InfraRed Multi Photon
Dissociation) experimental spectrum, obtained at a finite temperature of ∼300 K, could be achieved
because the simulated room-temperature dynamics of the gas phase peptide was able to take into account
the continual conformational dynamics between the two major isomers of the molecule. This could not be
achieved with standard static ab initio calculations [18,56]. The main thing is that we found that the most
populated conformations of Ala-Ala-H+ were not the geometries at the bottom wells (identified with static
calculations) but rather all conformations explored in going from the basin of one isomer to the basin of
the other isomer.
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ii) When calculating IR spectra from the dipole time correlation function, all anharmonic effects are
naturally described. This is to be opposed to the two sucessive harmonic approximations usually adopted for
the determination of IR spectra from static ab initio calculations (harmonic approximation of the potential
energy surface at the optimised geometries and electrical harmonic approximation for the transition dipole
moments). Both approximations are released in molecular dynamics, simply because they are not needed.
In fact, the finite temperature dynamics takes place on all accessible parts of the potential energy surface,
be they harmonic or anharmonic. The quality of the potential energy surface is entirely contained in
the ”ab-initio” force field used in Car-Parrinello dynamics, calculated at the DFT/BLYP level in our
works. The good reproduction of the relative positions of the different active bands in our studies (gas
phase [36] and liquid phase [24,34,35] ) is a demonstration that this level of theory is correct. Moreover, the
calculation of IR spectra with molecular dynamics is related only to the time-dependent dipole moment of
the molecule, and it does not require any harmonic expansion of the transition dipole moments. Therefore,
if the dipole moments and their fluctuations are accurately calculated along the trajectory, the resulting
IR spectrum should be reliable too.

iii) One should also emphasize two more points showing that dynamics (in particular Car-Parrinello
dynamics) goes beyond ab initio static calculations applied currently in the domain. The first point is
connected with the calculation of the infrared spectrum of complex flexible molecules in the gas phase, for
example large peptides and nucleic acids. These complex molecular systems display numerous energetically
equivalent conformations which are difficult to be characterised with geometry optimisation searches.
Dynamics does release this difficulty as the geometry at the minima on the potential energy surface
is not needed. On the other hand, molecular dynamics is the natural method of statistical mechanics
for modeling complex molecular systems immersed in liquids. This is obviously very important when
considering biomimetic molecules which natural environment is liquid water. The characterisation of the
vibrational finger-prints of these molecules should better be performed in the liquid phase if one wants
to get a proper structural information to be compared with the natural environment of the molecule.
Inclusion of a few water molecules hydrogen bonded to the main hydrophilic sites of the molecule is
nowadays commonly performed in ab initio geometry optimisations and harmonic frequency calculations,
though still challenging. Properly characterising the surrounding hydration shells is nonetheless out of
reach of static calculations. Calculations proposed by some authors (see for instance refs. [57–59]) with
up to tens of water molecules clustered around the solute are still not convincing as these clusters do
not possess any temperature. Water clusters surrounding a biomimetic solute at 0 K can not mimick the
’true’ solvation shell of the solute at finite 300 K temperature. There are in particular hydrogen bonds
between the solute and water displayed in solute-water clusters at 0 K that will only exist because there is
no temperature in the molecular system, or because the full solvation shell (i.e. two or three surrounding
shells) is not taken into account in the calculation. This has been shown by us in refs. [34,59] in the case
of the solvated uracil.

3 Generalities on Car-Parrinello molecular dynamics simulations

In ab initio Car-Parrinello molecular dynamics (CPMD) [21], the nuclei are treated classically and the
electrons quantum mechanically within the DFT formalism. CPMD simulations consist in solving Newton’s
equations of motion at finite temperature, with the forces that act on the nuclei deriving from the Kohn-
Sham energy. Plane-waves and pseudo-potentials are used to represent valence electrons. Contrary to
Born-Oppenheimer MD where the Schrödinger equation for the electronic configuration of the system is
solved at each time step of the dynamics (i.e. at each new configuration of the nuclei), the Schrödinger
equation is solved only once at the beginning of CPMD simulations. The wave-function is subsequently
propagated in time adiabatically with the nuclei propagation. This is denoted “the fictitious dynamics
of the electrons”, and relies on the use of a fictitious electron mass. Typical fictitious mass values are
comprised between 100 and 500 a.u. associated with time steps of 1-5 a.u. A detailed presentation of the
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Car-Parrinello molecular dynamics method can be found in refs. [60,61].

The DFT-based Car-Parrinello simulations performed in our work follow the general set-up of ab initio
molecular dynamics simulations that can be found in our previous publications [34,35,62,63]. We use the
Becke, Lee, Yang and Parr (BLYP) gradient-corrected functional [64,65] for the exchange and correlation
terms. The one-electron orbitals are expanded in a plane-wave basis set with a kinetic energy cut-off of
70 Ry restricted to the Γ point of the Brillouin zone. Medium soft norm-conserving pseudopotentials of
the Martins-Trouillier type [66] are used. The core-valence interaction of C, N and O is treated by s and
p potentials with pseudization radii of 1.23, 1.12 and 1.05 au, respectively (taking the same radius for
s and p), while H atoms are treated as a s potential with a 0.5 au radius. We should mention that the
70 Ry energy cut-off is mostly determined by the convergence of the H and O pseudopotentials. Energy
expectations are calculated in reciprocal space using the Kleinman-Bylander transformation [67].
Simulations were performed at constant volume using a fictitious electron mass of 500 au, a time step of
5 au (0.12 femtoseconds). Liquid simulations have been performed within periodic boundary conditions.
Starting configurations have been prepared using classical force field simulations, where we chose the
precise number of water molecules in the simulation cell; this is done in order to fix the correct density of
such a small simulated liquid system. We refer the reader to Ref. [34,63] for more details on the procedure.
Our liquid phase simulations take into account ∼50 water molecules surrounding the solute molecule (N-
methylacetamide presented in the present work), i.e. two complete hydration shells and part of the third
one. For gas phase simulations, we refer the reader to ref. [36] for details on the choice of the cubic box
length, and the use of the decoupling technique of Martyna and Tuckerman [68] in order to eliminate the
effect of the periodic images of the charge density.

The dipole moment of the box cell is calculated with the Berry phase representation, as implemented
in the Car-Parrinello framework [69]. Briefly, in the limit where the Γ point approximation applies, the
electronic contribution to the cell dipole moment Mel

α (where α = x, y, z) is given by [70]:

Mel
α =

e

|Gα|
ℑ ln zN (9)

where ℑ ln zN is the imaginary part of the logarithm of the dimensionless complex number zN =

〈Ψ|e−iGα.R̂|Ψ〉, Gα is a reciprocal lattice vector of the simple cubic supercell of length L (G1 = 2π/L(1,0,0),

G2 = 2π/L(0,1,0), G3 = 2π/L(0,0,1)) and R̂ =
∑N

i=1 r̂i denotes the collective position operator of the N
electrons (or in other words the center of the electronic charge distribution). Ψ is the ground-state wave
function. The quantity ℑ ln zN is the Berry phase, which in terms of a set of occupied Kohn-Sham orbitals
ψk(r) is computed as ℑ ln zN = 2ℑ ln detS with elements of the matrix S given by Skl = 〈ψk|e

−iGα.r̂|ψl〉 [70].
The IR spectra in our work are given as products α(ω)n(ω) expressed in cm−1 (decadic linear absorption

coefficient) as a function of reciprocal wavenumber, ω, in cm−1. The spectra have been smoothed with a
window filtering applied in the time domain, i.e. each term of the correlation function C(t) is multiplied
by a gaussian function exp(−0.5σ(t/tmax)2), where tmax is the length of the simulation, and σ is 10 for
gas phase simulations and 40 for liquid phase simulations.

When interested in the infrared spectrum of a solute immersed in liquid water, we face additional
difficulties, namely separation of the absorption in solute and solvent contributions. Due to the limited
statistics, the substraction method used in experiment is not an option for simulation. The approach,
initiated by Parrinello et al. [69] and that we first applied in the case of a solute immersed in liquid
water in our calculation of the IR spectrum of aqueous uracil [34], is based on a decomposition of charge
density using the Maximally localized Wannier Functions scheme of Marzari and Vanderbilt [71]. This
enabled us to write the total electronic dipole moment M = msolute +

∑

W mW as the sum of the solute
dipole moment (msolute) and the sum of the solvent dipole moments (mW ). As a result, the total dipole
correlation function CMM (t) needed in equation (8) (CMM (t) = 〈M(t).M(0)〉) is resolved into the sum of
three contributions CW/W (t), CW/solute(t) and Csolute/solute(t) which are respectively the water-water dipole
correlation function, the water-solute dipole correlation function and the solute-solute dipole correlation
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function. The IR spectrum of the solute is calculated from only the Fourier transform of the self-correlation
function Csolute/solute(t). As discussed in Ref. [34], one disadvantage of this decomposition is that coupling
with the surrounding solvent molecules is taken into account only through intermolecular polarization. The
cross term CW/solute(t), which includes the remaining IR contributions arising from correlations between the
motion of the solute and the solvent molecules, is ignored. In fact, this term is hard to compute as opposite
positive and negative contributions make it difficult to reach convergence within the short simulation
times of tens of picoseconds. As a last remark, while fully consistent in the sense that the molecular
dipole moments rigorously sum to the cell dipole moment, the use of Wannier function for partitioning
the electron density nonetheless introduces a certain arbitrariness for the definition of molecular dipole
moments in solution.

An alternative approach to achieve a similar, but not necessarily equivalent, decomposition of the ab-
sorption signal is to return to the more fundamental current representation, involving the autocorrelation
function of the total current, j = Ṁ = dM/dt:

n(ω)α(ω) =
2π

3V kBT

∫ +∞

−∞

〈j(0)j(t)〉eiωtdt. (10)

Note again that in this formula we have taken into account a quantum correction factor of the form
β~ω/(1 − exp(−β~ω)). Since in the Born-Oppenheimer approximation the dipole moment of the system
depends only on the atomic positions, one can make use of a chain rule to compute the current j(t) at
time t:

jβ(t) =
∑

i,α

∂Mβ

∂xα
i

(t)
dxα

i

dt
(t) =

∑

i,α

∂Mβ

∂xα
i

(t)vα
i (t). (11)

where M is the total dipole moment of the system, xi is the position of atom i, and
∂Mβ

∂xα
i

, α, β = x, y, z,

represent the components of the atomic polar tensor (APT) of atom i. The APT of atom i is thus defined
as the derivatives of the dipole moment of the system with respect to infinitesimal displacements of
atom i [72, 73]. This tensor is directly related to intensities of infrared bands in the double harmonic
approximation [39], as we will show in section 6. Numerous calculations of APT have been performed in
the solid phase or in the gas phase [72–75], and recently, a calculation of the APT of water molecules in
liquid water has been performed [76].
In our applications in liquid water, the APT tensor was calculated for each atom in the solution using
Density Functional Response Theory [73]. This was repeated every 1.2 fs over a ≈ 1 ps interval taken from
the full trajectory in solution. In the gas phase calculations at low temperature, only one APT tensor of
one conformation has been computed. We have used the Putrino et al. [31] implementation of the linear
response to an applied electric field in the CPMD code [77]. In this scheme, the macroscopic polarization
of the periodically replicated cell is defined using the Berry phase approach of Resta [70, 78]. The APT
tensor for the whole system is then obtained from the Maxwell relation:

∂Mβ

∂xα
i

=
∂Fα

i

∂Eβ
=

∂2Etot

∂Eβ∂xα
i

(12)

where E is an applied uniform electric field and Fi the force acting on particle i. This allows for the
calculation of the 3N elements of the system APT tensor through only three linear response calculations
(β = x, y, z) [73].
In order to resolve the infrared spectrum of the whole system into solvent, solute and cross contributions,
the total current of the system was separated into a solvent and a solute term:

jβ(t) = jβwater(t) + jβsolute(t) (13)
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by restricting the sum in eq. (11) to atoms of the solvent or the solute only. This natural decomposition
of the current then provides a decomposition of the infrared spectrum which is different from the one
obtained through the maximally localized Wannier orbitals. The infrared spectrum of the solute is now
defined as

n(ω)αsolute(ω) =
2π

3V kBT

∫ +∞

−∞

〈jsolute(0)jsolute(t)〉e
iωtdt. (14)

A major argument in favor of the current scheme is that any partitioning of the charge density is thus
avoided.

In our previous works we have shown that DFT-based Car-Parrinello molecular dynamics simulations
(CPMD) yield very accurate infrared spectra of biomimetic molecules in the gas phase or immersed in
aqueous solvent at room temperature, in terms of band-positions, band-shapes and band-intensities [34–36].
In particular, we have shown on the prototype gas phase protonated Ala-Ala-H+ peptide [36] that CPMD
simulations are the proper tool to calculate IR absorption spectra of gas phase molecules undergoing
multiple isomeric conformations at room temperature. This methodology has been applied to the IR
spectra calculations of molecules such as Uracil [34], N-Methyl-Acetamide [35], and the protonated alanine
peptide [36], either in liquid water or in the gas phase. We should mention here that in our applications
we have systematically found that our calculated infrared spectra have to be blue-shifted by 100-120 cm−1

so that the whole calculated bands can be aligned with their experimental counterparts. This holds true
at least in the 800-2000 cm−1 spectral region we have systematically investigated. Therefore, though our
CPMD calculations do not give the proper absolute values of band positions, they do give the proper
account of band-gaps between the different active bands. Among the effects leading to the very good
agreement of our calculated infrared spectra with respect to the experiment (once the global translation
has been applied) is the effective inclusion of the anharmonic effects in our finite temperature molecular
simulations, unlike static ab initio calculations which are being performed in the harmonic approximation.

We stress again that a single shift factor or global translation is applied to the whole spectrum and not
a scaling factor. This empirical finding is in contrast to static ab initio calculations where a scaling factor
is used to correct the theoretical predictions with respect to the observed frequencies. The origin of this
is at the moment unclear to us. Effects of the fictitious mass, which leads to instantaneous Car-Parrinello
forces being different from Born-Oppenheimer ones whatever the fictitious mass value [79,80], is certainly
important and indeed the blue-shift of 100-120 cm−1 can be reduced when performing Car-Parrinello
dynamics with smaller fictitious masses for the propagation of the electronic wave-function. This is though
at the cost of more expensive simulations. However, it has been demonstrated in references [79, 80] that
the Car-Parrinello forces can be brought into good agreement with the BO forces by simply rescaling the
ionic masses. Were it so, this would amount once more to a scaling factor and not a global translation.
Such rescaling of the atomic masses should then be dependent on the vibrational mode considered, in a
way not understood at the moment.

4 Assignment of vibrational modes

An accurate calculation of infrared spectra is one goal to achieve, the assignment of the active bands into
individual atomic displacements or vibrational modes is another one, and this issue is essential to the
understanding of the underlying molecular structural and dynamical properties. In molecular dynamics
simulations, interpretation of the infrared active bands into individual atomic displacements is tradition-
ally done using the vibrational density of states (VDOS) formalism. The VDOS is obtained by Fourier
transformation of the atomic velocity auto-correlation functions:

V DOS(ω) =
∑

i=1,N

∫

∞

−∞

〈vi(t)·vi(0)〉 exp(iωt) dt (15)
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where i runs over all atoms of the investigated system. There are no approximations in this formula. In
addition, the VDOS can be decomposed according to each atom type in order to really get an interpretation
of the vibrational bands in terms of individual atomic motions. This is done by restraining the sum over i
in eq. (15) to the atoms of interest only. The advantage of the VDOS formalism is that all anharmonicities
are taken into account in the calculation.

In the case of a harmonic molecular system though, velocities can be written as q̇k = q̇0k sin(ωk t+ φk),
where q̇0k is the amplitude taken at the initial time, ωk the wave-number of the kth normal mode, and φk

the phase, so that equation (15) can be re-expressed as

V DOS(ω) =
∑

i=1,N

∑

k,l

Zik Zil

∫

∞

−∞

< q̇k(0) q̇l(t) > eiωt dt

where ẋi =
∑

k Zikq̇k is the transformation between cartesian and harmonic normal mode velocities, and
< q̇k(0) q̇l(t) > is the correlation function between these harmonic velocities. Decoupling of harmonic
modes leads to the following expression for the VDOS of a harmonic system:

V DOS(ω) =
∑

i=1,N

∑

k

Z2
ik

< q̇0k >

2
δ(ω − ωk) (16)

where < q̇0k > is taken as an ensemble average over the initial conditions of the dynamics. The VDOS of
each individual atom (restraining the sum

∑

i=1,N in equation 16 to one atom at a time) is therefore a
sum of dirac functions which are localized at the wave-number of each normal mode ωk, in the case of a
strictly harmonic molecular system. This function is weighted by the amplitude Z2

ik which quantifies the
participation of atom i into the normal mode k. Atoms that do not participate in a certain normal mode
k thus make no contribution to the spectral signature of the VDOS.

It is mandatory to note here that VDOS spectra correspond to the vibrational density of states of the
investigated molecular system, representing all its vibrational modes. However, only some of these modes
will be infrared active or Raman active, so VDOS spectra can by no means substitute for IR or Raman
spectra. They are used to interpret and assign vibrational modes which are active in IR or Raman spectra.
Finally, when a solute is immersed into a solvent, the decomposition into individual atomic contributions
of the VDOS can be interpreted as the contributions of the atoms of the solute on the one hand, and the
contributions of the atoms of the solvent on the other hand. It is therefore easy to assess the couplings
between solute and solvent atoms and their contributions to the VDOS spectral features of the solute
molecule.

This methodology is illustrated in figure 1 in the case of the Car-Parrinello molecular dynamics simulation
of N-Methyl-Acetamide in the gas phase at 20 K. We have reported the VDOS of the system as calculated
through equation (15) at the bottom of the figure, and the individual VDOS associated with each atom
type on top. We only report here the individual contributions of the four peptidic atoms (H, N, C, O)
to the VDOS of N-Methyl-Acetamide. This is illustrated in the 1000-2000 cm−1 domain where the active
bands can still be interpreted by simple combinations of stretching and bending movements of the atoms.
Hence, one can note that the four atoms participate to the vibrational band located at ∼1600 cm−1, while
the oxygen atom does not contribute to the ∼1480 cm−1 band. Again, the ∼1200 cm−1 band can be
decomposed to indicate the contributions of the C, N and H atoms, while the ∼1100 cm−1 band displays
contributions arising only from N and H atoms. One can thus infer that these bands are respectively
related to C=O stretch and N-H bending (1600 cm−1), N-H bending and N-C stretch (1480 cm−1), N-H
bending and N-C stretch (1200 cm−1), and N-H bending (1100 cm−1). Nonetheless, the amplitudes of the
individual peaks can not be interpreted per se, so that we clearly can not conclude on the relative weight
of each movement on each vibrational mode. Moreover, contributions arising from the methyl groups have
to be considered in order to make a definitive statement on the assignment and interpretation of each
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vibrational band. For a complete discussion on N-Methyl-Acetamide, see our ref. [35].

As can be seen from this example, analysis of the vibrational density of states is not so convenient and
becomes rapidly fastidious as soon as the number of atoms in the molecular system increases. This analysis
becomes basically unreachable for molecules that contain more than 10 atoms, N-Methyl-Acetamide being
one of the more complex molecules on which this approach can be easily applied. One main bottleneck
of this analysis is that VDOS signatures of each individual atom are spread all over the spectrum, which
makes the interpretation and assignment of the vibrational bands relatively difficult. Last, but not least,
VDOS do not provide a direct analysis in terms of stretches, bends and torsions, as we need for the
interpretation of spectroscopic features of molecules. As we saw before, these motions can be inferred from
simple molecules, even of the size of N-Methyl-Acetamide, but this is not true anymore when the size and
complexity of the molecule increase. The same argument holds when we assign bands in the far-IR region
where movements become more complicated, with couplings of torsional modes. Moreover, a quantitative
analysis of the couplings between the movements that participate to the vibrations is out of reach with
this approach. Another approach and formalism is required in order to answer to these questions.

Other methods have been proposed in the litterature for assigning or approximating vibrational spectra,
like spectral analysis [81–84], filtering [85–88], instantaneous normal mode analysis and its variants [89–92],
or principal mode analysis (PMA) [93–96] and essential dynamics [97–99], both based on the diagonalisation
of covariance matrices. Instantaneous normal mode analysis requires however many calculations of the
Hessian system which can become quickly prohibitive for DFT-based MD simulation. Due to its simplicity,
PMA has lately attracted attention [94,95,100–102].
Our new general definition for effective normal modes, that we will present in the following section, based
on a localization principle in frequency space, not only leads at zero temperature to the usual normal mode
analysis, but is also consistent with the PMA approach. Moreover, it provides another route to extract an
effective Hessian and effective normal modes at finite temperature, without any computational cost.

5 New methodology for the assignment of vibrational modes: localized modes in terms of internal

coordinates

For the purpose of assigning bands in vibrational spectra, we propose to construct modes qk as (invertible)
linear combinations of the natural coordinates that describe the dynamics of the systems:

ζi(t) = Zik qk(t) ⇔ qk(t) = Z−1
ki ζi(t) (17)

ζ̇i(t) = Zik q̇k(t) ⇔ q̇k(t) = Z−1
ki ζ̇i(t). (18)

In this equation and in the following, the Einstein summation convention will be used.
The coordinates ζi(t) can be either a set of cartesian coordinates xi(t) or a set of internal coordinates

Sj(t) or can also be mass weighted coordinates. As we saw above, since band assignment from VDOS is
limited by the fact that these VDOS are delocalized in frequency we ask here that the mode qk have VDOS
as localized as possible in frequency. Noting P q

k (ω) the power spectrum of mode k:

P q
k (ω) =

∫ +∞

−∞

< q̇k(0)q̇k(t) > eiωtdt (19)

the modes are localized in frequency by minimizing the functional:

Ω(n) =
∑

k

(

β

2π

∫ +∞

−∞

dω |ω2n|P q
k (ω) −

(

β

2π

∫ +∞

−∞

dω |ωn|P q
k (ω)

)2
)

(20)
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with respect to linear transformation Z. This functional is parametrized by the free parameter n. In the
case n = 1, the functional Ω(1) =

∑

k(< ω2 >k − < ω >2
k) is the sum of the spreads of the power spectra

of modes k; in the following we have rather made the choice n = 2.
This minimization criterion however is not sufficient for describing the localized modes qk as the func-

tional Ω(n) can be minimized by setting qk = 0. We thus require a normalisation and orthogonality
criterion:

1

2π

∫ +∞

−∞

dω

(
∫ +∞

−∞

< q̇k(0)q̇l(t) > eiωt dt

)

=< q̇k(0)q̇l(0) >= kBT δkl (21)

where T is the temperature and kB the Boltzmann constant. This constraint then imposes the equipartition
of the energy in the modes while keeping the modes decorrelated at equilibrium. This criterion will also
ensure that the matrix Z is invertible as required. The choice of introducing the temperature in this
equation allows for a definition of the modes independant of T for a truly harmonic system.

To better understand the effect of band localization we can employ the Wiener-Khintchine theorem [103]
to show a Cauchy-Schwartz relation:

P q
kl(ω) ≤

√

P q
kk(ω)P q

ll(ω) (22)

where P q
kl(ω) is a generalization of the power spectra (eq. 19) in a matrix form:

P q
kl(ω) =

∫ +∞

−∞

< q̇k(0)q̇l(t) > eiωtdt (23)

If the power spectra P q
kk(ω) and P q

ll(ω) are well localized in frequency we can hope that for k 6= l their
overlap is very small and as a result the cross-correlation P q

kl(ω) is very small for all ω such that the
modes k and l have very small dynamical correlation. This is indeed expected for effective normal modes
describing the dynamics of the system. Furthermore, we have seen in the preceeding section that in an
harmonic system the normal mode possess delta like VDOS.

Minimization of the localization functional Ω(n) does not require an iterative procedure like steepest-
descent or conjugate gradients. It can be shown [37] that the solution of the minimization problem is
solution of a much simpler linear system. The matrix Z defining the localized modes from the choice of
coordinates ζi is then solution of a generalized eigenvalue problem:

K
(n)
ζ Z−1T

= K
(0)
ζ Z−1T

Λ with the constraint Z−1 K
(0)
ζ Z−1T

= I3N (24)

where Λ is a diagonal matrix; the matrices K
(n)
ζ are defined from the power spectra of the original ζi

coordinates as:

K
(n)
ζ =

β

2π

∫ +∞

−∞

dω |ω|n Pζ(ω) (25)

where the matrix Pζ(ω) is defined similarly as Pq(ω) for the coordinates ζi and β = 1
kBT . The eigenvalues

λ
(n)
k , diagonal elements of the matrix Λ, are equal to:

λ
(n)
k =

∫ +∞

−∞

dω |ω|n P q
kk (26)

and are thus the averages < ωn >k of ωn over the power spectrum of mode k.

The definition of localized modes from their power spectra then appears to be equivalent to a generalized
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eigenvalue problem with the same structure as normal mode analysis at zero temperature. In paper [37]
we have employed cartesian coordinates to construct the localized normal modes and we have shown that
the case n = 2 amounts to a generalization at finite temperature of the usual normal mode analysis where
the Hessian at the optimized geometry is replaced by the average Hessian at finite temperature.

However, the use of cartesian coordinates may not be appropriate for large floppy molecules containing
mobile groups like rotating CH3 groups. This can be circumvented by using internal coordinates. To this
aim we have taken the coordinates ζi as streches, bends, torsions and out of plane angles. In order to build
a complete set of non-redundant internal coordinates we have used the methods devised by Decius [104]
or Pulay [19, 105]. Once these modes are defined, we can construct the Wilson B matrix that describes
the change of internal coordinates with respect to cartesian displacement for each configuration along the
dynamics:

B ≡
∂Sj

∂xi
(27)

This B matrix can then be used to evaluate the time-derivatives of the internal coordinates, needed for
computing the power spectra matrices, from the cartesian velocities simply by applying

Ṡj =
∑

i

∂Sj

∂xi
ẋi (28)

If we further need to compute accelerations of internal coordinates, numerical time-derivatives of the
velocities have been used.

Figures 2 and 3 show the resulting VDOS of the effective normal modes obtained from first-principle
molecular dynamics simulations for N-Methyl-Acetamide (NMA) in the gas phase and solvated in liquid
water, respectively at low temperature and ambient temperature. For NMA, we have defined a complete
set of non-redundant internal coordinates according to Pulay’s definitions and localized modes were con-
structed as linear combinations of these coordinates as described above. In both cases, it can be seen that
all modes are well localized in frequency, each showing mainly one peak with a spread usually less than
100 cm−1. In the case of NMA in the gas phase, some modes have a nearly perfect localization indicating
their harmonic character. In the liquid phase, overlap between bands can be large, as in the case of C-H
stretch bands around 2900 cm−1: these modes are however nearly decoupled from each other, and each
mode still exhibits a high level of localization.

The method can be straightforwardly applied to larger systems and figure 4 shows the VDOS of effec-
tive normal modes calculated from the Car-Parrinello dynamics of a gas phase alanine dipeptide in the
C7eq conformation at 20 K. The first-principle molecular dynamics simulation of this molecule was done
using the same general setup as for NMA. The initial set of non-redundant internal coordinates was also
constructed following Pulay’s prescriptions. At this low temperature, the system is mostly harmonic and
the VDOS of the effective normal modes are all very well localized around each normal mode frequencies
of this system, with very small or even no overlap between localized modes. This suggests that molecular
dynamics simulations at low temperature may be an alternative route for determining normal modes, with
the advantage that a perfect geometry optimization is not required contrary to the conventional hessian
method. This is a net advantage for systems of increasing size and complexity.

Figure 5 illustrates the effect of the localization of VDOS in frequency in the case of the dynamics
of the alanine di-peptide. At the top of the figure, VDOS of the two amide N-H groups of the alanine
dipeptide calculated with the usual definition presented in equation (15) restricted to the N and H atoms
only of each N-H group (see section 4) are shown, while the bottom of the figure illustrates the VDOS
after the localization transformation (see section 5) using non-redundant internal coordinates as defined
by Pulay [19]. In this latter case, the localized modes are identified as Amide III modes. Clearly, top of the
figure exhibits peaks spread over the 1000-1800 cm−1 range, in many different regions of the spectrum, and

Page 49 of 70

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 17, 2007 20:48 Molecular Physics article

15

are thus difficult to use as such to interpret the vibrational spectrum of the molecule. The two effective
normal modes describing the two Amide III modes of alanine di-peptide are however perfectly localized
around 1100 cm−1. One can moreover note the ∼20 cm−1 frequency shift between both modes, indicating
that the two N-H groups do not exhibit equivalent frequency signatures.

In order to describe the resulting effective normal modes in terms of internal motion, it is necessary to
quantitatively determine the contribution of an internal coordinate in an effective normal mode. To this
end, we employ a method derived from the Potential Energy Distribution as used in standard normal mode
analysis [106–108]. PED is based on the contribution of each internal coordinates to the potential energy
of an effective normal mode.

The eigenvectors Z obtained after diagonalisation of the matrix K(2) satisfy:

Z−1 K(2) Z−1T
= Λ ⇔

∑

k,l

ZT
ik K

2
kl Zlj = λij δij

from which we deduce the normalization condition:

∑

kl Zki K
2
kl Zli

λii
= 1

Then, the matrix Pij that defines the contribution of the internal coordinate i to the normal mode j, can
be expressed as [108]:

Pij =

∑

l Zji K
2
jl Zli

λi
(29)

We have used here an alternative definition [107] of the PED as a slight variation of Morino’s approach.
Constructing the matrix P(k) indexed by the normal mode k as:

Pij(k) =
Zik Zjk K

2
ij

λk
,

it has been recognised that the contribution of the internal coordinate i in this effective normal mode can
be evaluated in two ways: either as a sum of the ith row (or ith column as the matrix is symmetric) - this
is McCarthy’s proposal - or as considering only the diagonal terms of P(k) which are necessarily positive:

Pii(k) = Pik =
Z2

ik K
2
ii

λk
(30)

The resulting contributions need then be normalized and are generally expressed in percentage.

Table 1 shows the PED decomposition of some of the most important modes of NMA in the gas phase
at 20 K, in both Cis and Trans conformations, and of Trans-Nma immersed in liquid water at 300 K.
In the gas phase, three modes can be clearly identified as the three amide modes with Amide I being a
nearly pure C=O stretch. In the liquid phase, this mode appears as a mixing of C=O stretch and N-H
bend. Comparison of the gas phase and liquid phase for Trans-NMA shows that the C-N stretch and N-H
bend are blue-shifted while the C=O stretch is red-shifted in the liquid phase. The resulting overlap of the
C=O strecth and NH bend then leads to Amide modes which are mixed. These shifts are compatible with
a picture where the zwitterionic form of the peptide bond is favored in solution, presumably due to the
large dielectric constant of water and to hydrogen bonds formed between NMA and the surrounding water
molecules. In this zwitterionic form, the CO bond acquires a more important single bond character, less
stiff than in the neutral form, while the C-N bond acquires a double bond character. Table 1 also shows
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that the other modes localized in this region of the spectrum mostly involve motion of the two terminal
methyl groups displaying symetric and anti-symetric bends as defined by Pulay’s non redundant internal
coordinates [19].

Here again, concepts from the normal mode analysis are straightforwardly generalised to effective normal
modes extracted from MD simulations and can thus help in the band assignments as well as in comparing
results, at finite temperature, in the gas phase and condensed phase.

Another way of describing the calculated effective normal modes is simply by visual inspection of the
atomic displacements associated with each mode. These displacements are defined as:

δxi(k) =
∂xi

∂qk
(31)

and can be obtained through the chain rule:

∂xi

∂qk
=
∑

j

∂xi

∂Sj

∂Sj

∂qk
(32)

in which the matrix ∂Sj

∂qk
is simply the matrix Z defining the effective normal modes. The first term, ∂xi

∂Sj
is

obtained from Wilson’s B matrix defined as:

B ≡
∂Sj

∂xi
. (33)

This matrix however is (3N − 6)× 3N and is thus not invertible to obtain the needed ∂xi

∂Sj
terms. This can

however be achieved by further requiring that the displacements δxi(k) satisfy the six Eckart conditions,
i.e. no net translation nor rotation of the investigated molecular system. There also, we follow the general
prescription of normal mode analysis in internal coordinates from Crawford and Fletcher [109] which
results in:

∂xi

∂Sj
≡ B− = M−1 BT (BT M−1 B)−1 (34)

where B is the Wilson’s matrix and M is the matrix of atomic masses. It is then possible to express the
atomic displacement vector corresponding to mode k as:

δxi(k) =
(

B−Z
)

ik
(35)

Figure 6 displays some of the effective normal modes of NMA solvated in liquid water. On these figures,
as on the PED reported in table 1, one can identify the participation of C=O stretch, NH bend and C-N
stretch to the three Amide modes, while the two other modes displayed whose frequencies are in the same
range as the Amide bands are deformations of the terminal methyl groups. See table 1 for the precise
assignment of the modes.

We are thus able to extract effective normal modes from molecular dynamics simulations performed at
finite temperature, either in the gas phase or for a solute immersed in the condensed phase. These modes
are effective in the sense that they include temperature, all anharmonicities of the dynamics (potential
energy surface anharmonicities, dipole anharmonicities), and dynamical isomerisation along the dynamics.
From the effective normal mode localization, a PED analysis can be applied. These two steps are strictly
similar to the analyses conducted in static ab initio calculations, with the net advantage of an underneath
molecular dynamics simulation.
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6 Infrared intensities

The localization of modes in frequency is very helpful for assigning observed bands in IR spectra. However,
not all the computed modes may be observed in the spectra because their IR intensity is low. Sometimes
many bands may be present in the same frequency domain and only a few may have significant IR intensity
to be observable. Thus for the purpose of assigning IR spectra bands, it is of great interest to also have at
disposal the IR intensity associated with each effective normal mode motion. This is the purpose of this
paragraph.

Starting from the expression of the infrared spectrum as the Fourier-transform of the autocorrelation
function of the dipole or its time derivative (current), see eq. (11), we can re-write the current in the newly
introduced effective normal modes qk as:

jβ(t) =
∑

k

∂Mβ

∂qk
(t)
dqk
dt

(t) =
∑

k

∂Mβ

∂qk
(t)q̇k(t) (36)

to re-express the infrared absorption as:

IR(ω) = n(ω)α(ω) =
2π

3V kBT

∫ +∞

−∞

∑

k,l

〈

(

∂Mβ

∂qk
q̇k

)

(0)

(

∂Mβ

∂ql
q̇l

)

(t)〉eiωtdt (37)

In this equation the velocity q̇k of the kth effective normal mode is obtained as:

q̇k(t) =
∂qk
∂St

∂St

∂xi
ẋi (38)

from the internal coordinates definition. The APT tensors expressed in effective normal mode coordinates
is a vector ∂Mβ

∂qk
analogous to a time-dependent transition dipole vector. It can be calculated in a similar

way using the chain rule:

∂M

∂qk
=
∂M

∂x′i

∂x′i
∂St

∂St

∂qk
(39)

where the first term, ∂M

∂x′
i

is the APT tensor in the laboratory frame, the second term is the generalized
inverse of Wilson’s matrix B which we have already introduced, while the third term is the matrix transform
between effective normal modes and the internal coordinates. The first two terms are time-dependent and
need to be calculated on the fly along the dynamics with an inversion of the B matrix for each configuration.

The first approximation to this otherwise exact formula for the infrared spectrum is to assume that the
effective normal modes are decorrelated from each others, which gives:

IR(ω) = n(ω)α(ω) ≈
2π

3V kBT

∫ +∞

−∞

∑

k

〈

(

∂Mβ

∂qk
q̇k

)

(0)

(

∂Mβ

∂qk
q̇k

)

(t)〉eiωtdt (40)

as suggested by the definition of the effective normal modes that should minimalize the overlap between
their respective power spectra. In this approximation, the infrared spectrum is decomposed as a sum of
effective normal modes contributions that can be computed in order to interpret the spectrum and assign
observed IR bands. The rest of the paragraph is devoted to further approximations that allow to assign
an intensity to each effective normal mode.

The next approximation to this sum of modes is to assume a kind of rotation-vibration decorrelation
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assuming that the terms ∂Mβ

∂qk
are decorrelated from the mode velocities, so that:

〈

(

∂Mβ

∂qk
q̇k

)

(0)

(

∂Mβ

∂qk
q̇k

)

(t)〉 = 〈

(

∂Mβ

∂qk

)

(0)

(

∂Mβ

∂qk

)

(t)〉〈q̇k(0)q̇k(t)〉 (41)

and

IR(ω) = n(ω)α(ω) ≈
2π

3V kBT

∑

k

∫ +∞

−∞

〈

(

∂Mβ

∂qk

)

(0)

(

∂Mβ

∂qk

)

(t)〉〈q̇k(0)q̇k(t)〉eiωtdt (42)

Noting that ∂M/∂qk is a vector which we can write as a norm times a unit vector: ∂M/∂qk =
|∂M/∂qk|u(t), and further assuming decorrelation between the two, we can write:

IR(ω) =
2π

3V kBT

∑

k

∫ +∞

−∞

< |
∂M

∂qk
(0)|.|

∂M

∂qk
|(t) > < uk(0).uk(t) > < q̇k(0)q̇k(t) > eiωtdt (43)

which is our expression for the IR spectrum including mode decoupling and complete rotation-vibration
decorrelation.

In a final approximation, we can assume that the term < q̇k(0)q̇k(t) > describing the modes dynamics
varies much more rapidly than the two other terms, which thus can be evaluated at time t = 0 only. The
infrared spectrum is therefore simply written as:

IR(ω) =
2π

3V kBT

∑

k

Ak

∫ +∞

−∞

< q̇k(0)q̇k(t) > eiωtdt (44)

where the Ak’s are the mode intensities:

Ak =< |
∂M

∂qk
(0)|2 > . (45)

In this form, the infrared spectrum is a weighted sum of the effective normal modes power spectra, whose
intensities are obtained from the Atomic Polar Tensor or transition dipole vectors in a similar way as
in the double harmonic approximation. In the examples below, the intensities Ak are obtained using the
APT calculated on one single configuration only of the system instead of a true configuration average
< |∂M

∂qk
(0)|2 >, this allows for a rapid estimation of band intensities for the purpose of assigning bands.

This is however not necessary in our framework, as upon the change of coordinates made to introduce
the effective normal modes, all information about the system dynamics is still retained at this stage and
the IR spectrum can still be calculated exactly as in eq. (37) or with a minimal approximation, eq. (40)
that still allows for a decomposition of the total spectrum in a sum of effective normal modes contributions.

In the following, we will be presenting calculations of IR intensities following equation (42) with the
APT tensor and correlation calculated over one pico-second of the dynamics, or using equation (44) in
which only one APT tensor is calculated for the first configuration of the dynamics.

6.1 Applications

Comparisons between the infrared spectrum calculated through the Fourier transform of the dipole cor-
relation function (equation (8)) and the Fourier transform of the localized normal modes (equation (44))
making use of APT tensors is presented in figures 7 and 8. Comparisons are presented for the Trans-NMA
molecule in the gas phase (Car-Parrinello dynamics at 20 K) and immersed in liquid water (Car-Parrinello
molecular dynamics simulation at 300 K). The whole spectrum is presented in the gas phase, while only
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the 1000-2000 cm−1 domain is presented in the liquid phase. In both cases, it can be seen that the infrared
spectrum of Trans-NMA calculated through equation (44) captures the main features of the exact infrared
spectrum calculated through equation (8). Moreover, the result is not sensitive to the choice of the APT
tensor as can be concluded from the condensed phase calculation in figure 8, be it sampled over part of
the dynamics (here one pico-second) or fixed from the first configuration of the dynamics. In particular,
structural deformations taken into account in the APT tensors calculated over one pico-second of the
trajectory do not give substantial further informations to the infrared intensities and band widths. In the
gas phase, both spectra are similar, with mainly an underestimation of the intensity of the Amide I band
at ∼1600 cm−1 and of the C-H stretching band above 2000 cm−1 when equation (44) is applied. The N-H
stretching band above 2000 cm−1 is overestimated. In the liquid phase calculation, one can see that the
three main Amide bands are present in all calculations, though the Amide II band located at ∼1400 cm−1

is merged with the Amide I band in the calculations done through the APT tensors. The disappearance of
the Amide II band in the APT calculation of the IR spectrum could be due to the choice of definition of the
molecular current from the APT tensor, which gives a completely different decomposition of the density in
comparison to the Wannier orbital decomposition. Note here (see our paper [35]) that the Car-Parrinello
spectrum, calculated with the Wannier orbital decomposition, gives an IR spectrum of NMA immersed in
water which is in very good agreement with the experiment.

Figure 9 reports the 1000-1800 cm−1 frequency domain of the calculated infrared spectrum of Trans-
NMA obtained from our Car-Parrinello trajectory at 20 K (dashed black line) and its decomposition into
its fundamental normal mode contributions as described with our formalism of the IR intensities. The
intensities of the bands are reported in table 1. The band located at ∼1595 cm−1 clearly comes solely
from the Amide I mode (stretching C=O as from 95%, red line). The broad band roughly located between
1300 and 1500 cm−1 can be nicely decomposed into three contributions. The 1440 cm−1 shoulder on the
upper frequency part is due to the Amide II mode (bending N-H as from 42%, N-Terminal methyl symetric
stretching as from 17% and stretching C-N as from 10%, blue line); two modes take part in the central
part of the broad band, respectively coming from the C-Terminal asymetric methyl C-H bendings (85%,
purple line) and the N-Terminal symetric methyl C-H bendings (77%, black line); the lower frequency
part is due to the C-Terminal symetric methyl C-H bendings (95%, orange line). Features arising from the
symetric and asymetric C-H bendings can thus be nicely separated over the whole infrared spectrum, as
well as the contributions arising from each of the terminal methyl groups. Finally, the ∼1180 cm−1 band
results from the Amide III mode, which is a composition of C-N stretching (32%), N-H bending (30%)
and C=O stretching (12%) in our calculation.

The same 1000-1800 cm−1 frequency domain decomposition is presented in figure 10 in the case of the
calculated infrared spectrum of Trans-NMA from our Car-Parrinello molecular dynamics trajectory in
aqueous water at 300 K (black dashed line). The intensities of the bands are reported in table 1 and the
transition dipole moments are shown as red arrows in figure 6. As can be easily seen, the 1400-1600 cm−1

active band is composed of the Amide I mode (now interpreted as 54% of C=O stretching and 38% of
N-H bending) on its upper frequency part and of the Amide II mode (intrepreted as 48% N-H bending,
24% C-N stretching and 13% N-Terminal C-H symetric stretching) on its lower part. Both modes thus
merge into a broad band in the liquid phase, while both modes are now composed of more mixing between
C=O and N-H motions. The active band located at ∼1230 cm−1 is only composed of the Amide III mode
(interpreted as 38% stretching C-N, 35% bending N-H and 12% stretching C=O, which is very similar to
the gas phase interpretation). The band located at ∼1350 cm−1 is a merging of the methyl symetric C-H
bending motions, the C-Terminal methyl being at the upper frequency part and the N-Terminal methyl
at the lower frequency part.

Another illustration is presented in figure 11 in the case of the gas phase Car-Parrinello trajectory of the
octa-alanine peptide chain at ∼20 K. As can be seen again (top of figure 11), the approximated infrared
spectrum (calculated through equation (42)) is very close to the exact infrared spectrum (calculated
through equation (8)), the biggest discrepency arising again from the intensity of the C-H stretching
modes at ∼2800 cm−1. The three main bands obtained in the 1000-1800 cm−1 frequency domain can
be nicely decomposed into individual contributions as proposed at the bottom of figure 11. The band
at ∼1570 cm−1 is composed of the Amide I C=O stretching modes, arising from the different carbonyl
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groups along the octa-peptide chain, the band at ∼1420 cm−1 results from the Amide II N-H bending
modes of the different amide groups along the octa-peptide chain, while the ∼1130 cm−1 band comes from
the Amide III modes. For each Amide band, one can see that each decomposed sub-band is peaked at a
different absolute position value, the sum of which giving rise to the broadening of the resulting final band.

7 Discussion–Conclusions

We have reviewed here Car-Parrinello molecular dynamics simulations for the calculation of infrared spectra
of complex molecular systems, either in the gas phase or in the condensed phase, like here immersed in
a liquid environment, at finite temperature. Although first-principle simulations have proved powerful for
this aim, interpretation of the resulting vibrational spectrum is often not straighforward, based on the
study of VDOS for selected coordinates as illustrated here in the case of N-Methyl-Acetamide. We have
here presented a new formalism in order to extract localized effective normal modes from the trajectories
in order to interpret and assign the active vibrational bands of the IR spectra. This method is quite general
and can be applied in gas, solid or liquid phase. The effective normal modes thus constructed can be written
as linear combinations of linear coordinates, being more adapted to solid state or stiff molecules [37], and
we have introduced here effective normal modes as linear combinations of internal coordinates. This is
better adapted to situations were part of the system/molecule is floppy.

Our methodology has been illustrated on the N-Methyl-Acetamide (NMA) molecule, on the alanine
dipeptide molecule and on the more complex octa-alanine peptide chain. The effective normal modes
were constructed here in terms of individual internal coordinates (taken as non-redundant as defined
by Pulay [19]). We have shown that our formalism is able to localize effective vibrational modes in the
frequency domain, allowing for a clear separation of the different modes.

The construction of the effective normal modes is formally only a change of variables and no information
is lost from the dynamics. Only the representation of the dynamics has changed, allowing for an easier band
assignment since, in this representation, the VDOS are as localized as possible; they still have however
a width and possibly complex shape reflecting the complex dynamics in the system. The modes thus
extracted are effective in the sense that they include temperature, all anharmonicities of the dynamics
(potential energy surface anharmonicities and dipole anharmonicities), and a complex dynamics such as
dynamical isomerisation along the time. We have previously shown [37] that this method is close to PMA
for a choice n = −2 and cartesian coordinates, and is a generalization at finite temperature of the usual
normal mode analysis for the choice n = 2. Here, we have also shown that concepts like PED can be
straightforwardly adapted to our approach. We are then able to compute PED contributions in order to
give a proper and precise assignment of each effective mode as illustrated for the gas phase and solvated
NMA.

In this paper, we also introduced infrared intensities calculated for the effective normal modes. These are
very helpful indicators for the assignment of bands in the observed or calculated IR spectra. Different ways
of calculating the IR intensities associated with each effective mode have been devised and we have shown
that they correspond in each case to an approximation of the IR ’exact’ spectrum. In the simplest case,
it amounts to computing the APT tensor in the new set of effective normal mode coordinates, defining a
transition moment similar to the normal mode analysis case first introduced by Pulay [19]. As can be seen
in the illustrations on the peptide models, the reconstructed IR spectra hence computed from the band
intensity and band VDOS compare very well to the exact ones calculated through the Fourier Transform
of the time correlation of the dipole moment.

These intensities, although representing the IR spectra in a simplified way as described above, can be
also useful in providing an approximation to the IR spectrum when a full calculation may be difficult or
costly (calculation of molecular dipoles by orbital rotation or computation of currents). This should be
particularly true for Raman spectra for which the approach presented here can bring a useful approximation
at a minimal numerical cost.

The effective normal mode method discussed here can be seen as fitting the best harmonic model to
the computed dynamics, as we have previously discussed in cartesian coordinates [37]. This suggests that
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the method could be used to reparameterize intramolecular classical force-fields to better represent the
molecular vibrations in a given environment, including anharmonicity in an effective way. It is however also
expected that mode localization will not be very efficient in strong anharmonic situations, as in the case of
a complex molecular dynamics where isomerisation between different isomeric conformations occur. In such
situations, the methodology discussed here can be slightly modified in order to extract the influence of each
isomeric conformation on the effective normal modes computed from the entire dynamics. The velocity
correlations can indeed be weighted by the amount of time spent by the molecule in each of the isomeric
basins, and the localization principle can still be applied for vibrations in each basin. This is current work
in progress to assess the validity of this approach. Another envisioned development for anharmonicity is
the inclusion of higher order terms in the definition of effective modes (e.g. a second order polynomial).

Finally, one of the biggest advantages of first-principle molecular dynamics for the computation of vibra-
tional spectra is the explicit description of the electronic system. This allows, in principle, the prediction
of other type of vibrational spectroscopy than infrared spectra, like Raman spectroscopy or vibrational
circular dichröısm.
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Mode Freq. Intens. Contributions from PED
(cm−1) (km/mol)

gas phase cis-NMA
Amide III 1255 58.9 C1 sym.bend.:47%, st.C2-N:22%, b.N-H:7%
C1 sym.bend 1322 217.5 C1 sym.bend.:98%
Amide II 1365 0.9 b.N-H:42 %,st.C=O:32%
Méthyl def. 1396 22.3 C1 asym.bend.:61%, C3 sym.bend.:28%
Méthyl def.2 1413 20.7 C1 asym.bend.:46%, C3 asym.bend.:39%
Amide I 1598 451.4 st C=O: 92%, b. N-H: 4%

gas phase trans-NMA
Amide III 1179 63.7 st.C2-N:32%, b.N-H:30%, st.C=O:12%
C1 sym.bend. 1320 33.0 C1 sym.bend.:95%, C1 asym.bend.:3%
C3 sym.bend. 1363 36.7 C3 sym.bend.:77%, b.N-H:11%
Méthyl bend. 1394 40.2 C1 asym.bend.:85%, b.N-H:4%
Amide II 1420 37.6 b.N-H:42%, C3 sym.bend.:17%, st.C2-N:10%
Amide I 1596 330.7 st.C=O:95%, b.N-H:2%

solvated trans-NMA
Amide III 1243 124.8 st.C2-N:38%, b.N-H:35%, st.C=O:12%,
C1 sym. def. 1349 47.3 C1 sym.bend.:93%
C3 sym. def. 1374 99.2 C3 sym.bend.:79%, b.N-H:6%
Amide II 1493 478.9 b.N-H:48%, st.C2-N:24%, C3 sym.bend.:13%
Amide I 1515 235.9 st.C=O:54%, b.N-H:38%

Table 1. PED and IR intensities of localized modes between 1100 and 1700çm−1 for gas phase Cis- and Trans-NMA and solvated Trans-

NMA,extracted from first-principle Molecular Dynamics simulations at 20 K (gas phase) and 300 K (liquid phase). Effective modes are defined

using Pulay’s non redundant internal coordinates [19]. st: stretch, b: bend, sym bend: symetric bend, asym bend: asymetric bend.

Page 59 of 70

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 17, 2007 20:48 Molecular Physics article

25

Figure 1. Vibrational density of states (VDOS) of isolated Trans-NMA (N-Methyl-Acetamide) obtained in a Car-Parrinello molecular
dynamics at 20 K. The total VDOS is displayed at the bottom of the figures and the various contributions from individual atoms of the
peptidic group (H, N, C, O) are given above. C and O respectively stand for the carbonyl carbon and oxygen atom of NMA, N and H

for the amide nitrogen and hydrogen atoms.
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Figure 2. Power spectra of the localized modes for gas phase Trans-N-Methyl-Acetamide at 20 K.

The effective normal modes are computed with the formalism described in section 5 using non-redundant
internal coordinates as defined by Pulay [19].
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Figure 3. Power spectra of the localized modes for solvated Trans-N-Methyl-Acetamide at 300 K.

The effective normal modes are computed with the formalism described in section 5 using non-redundant
internal coordinates as defined by Pulay [19].
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Figure 4. Power spectra of the localized modes for gas phase alanine di-peptide in the C7eq conformation, from the gas phase
Car-Parrinello dynamics at 20 K. The effective normal modes are computed with the formalism described in section 5 using

non-redundant internal coordinates as defined by Pulay [19].
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Figure 5. Top: VDOS of the two amide N-H groups of an alanine dipeptide calculated with the usual definition in equation (15)
restricted to the N and H atoms only of each N-H group, see section 4. One N-H group is identified with the black line, the other with
the dashed black line. See text for the related discussion. Bottom: Power spectra of the effective normal modes associated to the N-H
Amide III modes after the localization transformation presented in section 5 using non-redundant internal coordinates as defined by

Pulay [19]. See text for the related discussion.
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Figure 6. Atomic displacements (orange arrows) for some selected effective normal modes of solvated Trans-NMA. For each mode, the
transition dipole as defined by eq. 39 is also shown as a red arrow.
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Figure 7. Comparison between the infrared spectrum calculated through the Fourier transform of the dipole correlation function
(equation (8), black line) and the Fourier transform of the localized normal modes (equation (44), red line) making use of APT tensors
(APT tensor calculated at the first configuration of the dynamics). Comparison presented for the Car-Parrinello molecular dynamics of

Trans-NMA in the gas phase at 20 K.
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Figure 8. Comparison between the infrared spectrum calculated through the Fourier transform of the dipole correlation function
(equation (8), black line) and the Fourier transform of the localized normal modes (equation (44), red and green lines) making use of
APT tensors (red: APT tensor sampled over one pico-second trajectory, green: APT tensor calculated at the first configuration of the

dynamics). Comparison presented for the Car-Parrinello molecular dynamics of Trans-NMA immersed in liquid water at 300 K.
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Figure 9. Decomposition of the infrared spectrum intensity of Trans-NMA from the 20 K simulation in the gas phase. Decomposition
into the different contributions arising from the Amide normal modes in the 1000-1800 cm−1 frequency domain: Dashed Black: total IR
spectrum; Red: Amide I mode; Blue: Amide II mode; Orange, black and purple: methyl groups C-H bending; green: Amide III mode.
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Figure 10. Decomposition of the infrared spectrum intensity of Trans-NMA solute from the 300 K aqueous Trans-NMA simulation.
Decomposition into the different contributions arising from the Amide normal modes in the 1000-1800 cm−1 frequency domain: Dashed

Black: total IR spectrum; Red: Amide I mode; Blue: Amide II mode; Orange and black: methyl groups C-H bending modes,
respectively from the C-Terminal side and N-Terminal side of the molecule; green: Amide III mode.
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Figure 11. Gas phase octa-alanine at 20 K. Top: Comparison between the infrared spectrum calculated through the Fourier transform
of the dipole correlation function (equation (8), black line) and the Fourier transform of the localized normal modes (equation (44), red

line) making use of APT tensors (APT tensor calculated at the first configuration of the dynamics). Bottom: Decomposition of the
infrared spectrum intensity into the different contributions arising from the Amide normal modes in the 1000-1800 cm−1 frequency

domain: Dashed Black: total IR spectrum; Color curves: individual effective normal modes.
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