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We present a new method for selectively sampling radial distribution functions and effec-
tive interaction potentials in asymmetric liquid mixtures by a Monte Carlo simulation. We
demonstrate its efficiency for hard-sphere mixtures, and for model systems with more gen-
eral interactions, and compare our simulations with several analytical approximations. For
interaction potentials containing a hard-sphere contribution, the algorithm yields the contact
value of the radial distribution function.

Keywords: Asymmetric liquid mixture; Monte Carlo simulation; Pair-correlation function;
Potential of the mean force

1 Introduction

Liquid mixtures have been studied in the past decades with objectives ranging from
understanding basic theoretical questions to answering questions of technological
relevance. The simplest model of liquid mixtures, binary hard spheres, has been an
important test bed for experimental, analytical and numerical techniques.

binary hard-sphere mixture
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Figure 1. Asymmetric hard-sphere mixture (left), and its effective fluid of solutes (pair interaction Vij

and triplet interaction Vklm shown, right).

In asymmetric binary mixtures consisting of few large particles (solutes) and
many small particles (solvent) (see Fig. 1), one may in principle integrate out all the
degrees of freedom of the solvent, and arrive at an equivalent effective fluid of only
the large particles, with complicated effective interactions involving pairs, triplets,
and, more generally, n-tuples of solutes [1]. Usually, all contributions beyond the
pair interaction are neglected (see for example [2]), but their contribution cannot be
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excluded a priori [3–5]. Moreover, integral-equations or density functional theories
[6], among others, allow to study the mixtures directly. However, many theories
may fail in extended regions of parameter space when the size asymmetry increases
(for problems with the integral-equation theories, see [7]). On the other hand, for
hard-sphere interactions, the pressure can be expressed entirely through the contact
values of the pair-distribution functions. It is therefore important to have reliable
simulation data when one tries to settle empirical equations of state based on ansatz
for the contact values (see for example [8]).

Numerical simulation is thus a crucial tool to validate the above methods.
However it also meets difficulties for asymmetric mixtures. On the one hand,
the displacement of each solute is highly constrained by the surrounding solvent
(see [9]).This strongly slows down both the local Monte Carlo algorithms and the
molecular dynamics method. The standard Monte Carlo Pivot-cluster Monte Carlo
algorithms [10] have partially overcome this problem for hard-sphere models [11]
and for interacting mixtures [12,13], as long as the overall density of the system is
not too high [14]. On the other hand, the difference in size of solutes and of solvent
particles generates a sampling problem for observables such as the pair-distribution
functions, which vary strongly on the very small scale of the solvent. To describe
these observables, one needs many data (generally contained in a histogram with a
fine grid). On close approach of two solutes in asymmetric mixtures, the pair cor-
relation functions rise steeply. Therefore, the contact value of the pair-correlation
function cannot be obtained precisely by extrapolation as is usually done [15].

We introduce in this paper a new selective-pivot sampling algorithm, which allows
us to compute the ratio of the radial distribution functions g(R)/g(R′) for two
arbitrary inter-particle distances R and R′. For hard-sphere mixtures, we compute
the pair-correlation function of the solutes and especially its contact value. We also
determine the potential of the mean force. We finally discuss the extension of the
method to systems with arbitrary pair interactions.

2 Selective-pivot sampling

As mentioned in the introduction, the pivot cluster algorithm allows us to ther-
malize systems with very different length scales, but does not address the sampling
problem which arises from the strong variations of structural quantities on the very
small scale of the solvent. This is the main problem we address in this work. In our
new method, we allow the distance between a pair of tagged particles to take on
only two possible values. While keeping the benefits of the cluster algorithm, this
variant allows us to perform precision calculations of radial distribution functions,
and even of their value at contact.

pivot

2 1

1
′

i

Oi 2 1

1
′

f

Of

Figure 2. Selective-pivot move 1 → 1′ (configuration i, left) and return move 1′ → 1 (f , right). In i, the
distance R12 = Ri, and R1′2 = Rf . All pivots resulting in a new distance Rf lie on a sphere Si with

center Oi and radius Rf /2 (crosses).
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For simplicity, we first discuss selective-pivot sampling for an isolated pair of
three-dimensional hard spheres. To sample the ratio of the pair correlation function
for two arbitrarily distances, Ri and Rf , we consider a configuration i, with a
distance Ri between the two particles, and all moves of one particle (1 → 1′) such
that the new distance is Rf (see Fig. 2). Any such move can be interpreted as a
reflection around a pivot located on a sphere Si with radius Rf/2 and center Oi,
half-way between the two particles. We choose the pivot randomly on the sphere Si

(using Gaussian random numbers, see [9]). The a priori probabilities for proposing
the move i → f and the return move f → i are, respectively,

A(i → f) =
1
Si
∝ 1

R2
f

, A(f → i) =
1
Sf

∝ 1
R2

i

.

The detailed-balance condition connects the stationary probabilities π(i) and π(f)
with the a priori probabilities:

π(i)A(i → f) = π(f)A(f → i).

It follows that the probabilities of the two configurations are biased by a geometric
factor with respect to the constant hard-sphere probabilities,

π(i)
π(f)

=
Sf

Si
=

R2
f

R2
i

. (1)

For spherically symmetric systems, the pair correlation function depends solely on
the distance between particles and reduces to the radial distribution function g(R),
which is linked with the probability π(R) to observe a particle in an infinitesimal
spherical shell of radius R, the other one being at its center, by

π(R) ∝ R2g(R)dR.

The biasing factor in eq. (1) cancels the geometric factor (∝ dΩ) of the radial
distribution function, and the ratio of the probabilities π(i) and π(f) equals the
ratio of the radial distribution functions:

π(i)
π(f)

=
gi

gf
. (2)

The above algorithm and the relation of eq. (2) between the probabilities of observ-
ing the distances Ri and Rf remain valid for two or more solute particles in a box
with periodic boundary conditions, in the presence of other components (solvent).
It suffices to permanently tag two solutes. One Monte Carlo move involves a single
pivot, but may transform many particles (see [9]), including both tagged ones, so
that the distance between them may not change.

3 Applications

To validate the selective-pivot sampling algorithm, and to explore possible appli-
cations, we compute the distribution function of the solutes for asymmetric binary
mixtures, and compare it with simulation data obtained with standard cluster sim-
ulation methods, as well as with analytic approximations. In this system, we also
compute the contact value of the distribution function. This can be done directly,
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without extrapolation. Furthermore, we use the selective-pivot sampling algorithm
to compute the potential of the mean force, that is, the distribution function for
two solutes in a large bath of solvent, approaching the regime of infinite dilution.

3.1 Radial distribution function of solutes

We consider an asymmetric binary mixture of spheres with diameters Ds (small
particles—solvent) and Dl (large particles—solute), and size ratio R = Dl/Ds =
10, at packing fractions ηs = 0.126 and ηl = 0.121, where the cluster algorithm
performs well. The packing fraction of the solvent, ηs, is linked to the number of
solvents Ns in the simulation box of volume V by ηs = π

6 (Ns/V )D3
s , and the packing

fraction of the solutes is simply ηl = π
6 (Nl/V )D3

l . The Pivot–cluster algorithm
performs better when the overall packing fraction is moderate (η ≈ 0.25 for hard
sphere mixtures [11]). But one may hope to obtain data for more dense fluids, when
the solvent packing fraction is not too high. As example, for R = 10, ηl = 0.33
and ηs = 0.016 the Pivot–cluster algorithm is still efficient even if it slows down
because of the size of clusters. The selective-pivot sampling shows obviously the
same limitation.

0

5

10

15

10 10.4 10.8

g ll(r
)

r/D
s

Figure 3. Radial distribution function of the solutes for hard spheres with R = 10, ηs = 0.126 and
ηl = 0.121. Symbols: Cluster algorithm (filled squares: standard sampling method; empty squares:

selective-pivot sampling); full line: density functional theory; dashed line: RHNC-MSA [7]. Simulation
details are given in Table 1.

In Fig. 3, we compare the radial distribution function of the large spheres gll(r)
obtained from selective-pivot sampling and from a standard cluster algorithm and
we find very good agreement between the two methods. As a common use of simu-
lation data, we also compare the pair-correlation function with density functional
theory, which agrees very well [16,17], and with the Ornstein-Zernike integral equa-
tion with the RHNC-MSA closure, which overshoots for small separation [7].

l s l s l s l s
η 0.12 0.08 0.14 0.08 0.1 0.1 0.126 0.121
N 79 52800 92 52800 66 66000 80 82939

Table 1. Number of large (l) and small (s) particles in a cubic box of L = 70Ds used to study hard sphere

mixture with size ratio R = 10. For R = 20, we took L = 140Ds.

Our method has this advantage that it provides the contact value gll(r = Dl)
of the radial distribution function. For Monte Carlo simulations, it was previously
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obtained only by extrapolation because the probability of observing two solutes
exactly at contact is zero. For moderate size ratios the extrapolation remains pos-
sible (see for example [18] for R = 10/3 or [19] for R = 5). By molecular dynamics,
gll(r = Dl) may be obtained by counting collisions. As example Lue and Wood-
cock [20] computed contact values for R = 10 (see also [21] for additional data at
the same size ratio) but for systems with few solvent particles (total number of par-
ticles N = 10000). Nevertheless, as mentioned above, the different length scales in
the system make those standard methods fail when size ratio and/or packing frac-
tions increase. To illustrate the accuracy of the selective pivot algorithm, we present
data in Table 2. The precision is considerably higher than what was obtained with
standard molecular dynamics performed under similar conditions. For example, at
size ratio R = 10 (ηl = 0.1, ηs = 0.1), we obtain for the contact value 7.1 ± 0.1,
where previous calculations obtained a rough estimate with a 4.45± 25% [22].

ηl, ηs 0.12, 0.08 0.14, 0.08 0.1, 0.1 0.126, 0.121
R = 10 5.712 ± 0.05 6.351 ± 0.05 7.1 ± 0.1 13.03 ± 0.26
R = 20 21.56± 0.5 24.97± 0.5 34.10 ± 1.13 91 ± 30 (a)

Table 2. Contact value of the radial distribution function for hard-sphere mixtures with R = 10 and R = 20.

(a) is inside the fluid–solid coexistence domain. Simulation details are given in Table 1.

3.2 Potential of the mean force

As another application of selective-pivot sampling, we consider the potential of the
mean force obtained from the solute pair-correlation function in the limit of infinite
dilution of the solute particles:

lim
ηl→0

gll

(
r, ηb

)
= exp [−βU(r)] , (3)

where U(r) = ull(r)+Φeff (r) is the total pair interaction between the solutes, ull(r)
the direct interaction, Φeff(r) the solvent-mediated potential of the mean force and
ηb the bulk solvent packing fraction. It should be noted that the computational
effort for calculating the potential of the mean force is much smaller than for
simulating the binary mixture because only the small particles need to be displaced.
However, most simulation methods gives the effective force between the two solutes
and thus direct comparison with analytical result is more difficult.

In the selective-pivot sampling algorithm, one simply puts the two tagged solutes
into a bath of solvent and determines the potential differences for several pairs
Ri, Rf . The size of the bath plays almost no role in this simulation because the
two large particles are kept at two fixed distances, and cannot escape to infinite
separation. The simulation can thus take place in a large box, approaching the
infinite dilution of the two solute particles.

Excellent analytical approaches exist for computing the effective potential of
the hard-sphere model. Comparison with results obtained from these constitutes
thus a stringent test of the accuracy of the method. To illustrate this point, we
computed the potential of the mean force between two hard-sphere solutes in a
bath of hard-sphere solvent with size ratio R = 5 and R = 10. Bulk packing
fractions are fixed to ηb = 0.1 and ηb = 0.2. We considered thus Ns = 5280 and
Ns = 10560, respectively, in a cubic box of L = 30Ds for R = 5 and simply
doubled the size of the box for R = 10. In contrast to other Monte Carlo methods
for computing the effective interaction, this method needs no extrapolation [23] and
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Figure 4. Potential of the mean force for hard-sphere mixture with R = 5 (a) and R = 10 (b); symbols:
Selective-pivot sampling; lines: DFT and RHNC/fundamental measure functional ; circles: bulk packing
fraction ηb = 0.1; squares: ηb = 0.2. DFT result are obtained with the density functional theory presented
in [16,17]. RHNC/FMF are obtained using integral equations with the same bridge functional (see [5]).

has no adjustable parameter [24]. For both size ratios, the Monte Carlo data agree
very well with the potential of the mean force obtained from the Ornstein-Zernike
equation with the Rosenfeld fundamental measure closure [25, 26] (for alternative
closures see for example [27]) and from density functional theory [16,17] which are
barely distinguishable (see Fig. 4). Results of Fig. 4 for R = 10 may be compared
with those presented in Fig. 2 of [28]. Even for ηb = 0.2, the presented DFT
approach did not perfectly reproduce simulation data from [29] near contact and
in the region of the first minimum. The precision of the simulation data from [29]
did not permit to go farther in the analysis. Our simulation data are accurate
enough (precision of the order of the dots in Fig. 4) to allow comparison at a
quantitative level. They confirm that the DFT from [28] slightly overestimates the
attraction at contact while the improved version of the functional [16,17] corrects
this problem. From a technical point of view, our sampling method gives again
higher precision data in reasonable time (a few hours per point on a workstation
for R = 10 and a precision of 1%) compared to what can be obtained with standard
simulation schemes.

4 Selective-pivot sampling for models with general pair interactions

Our sampling method can be directly generalized to more general interactions,
which can also be handled by the pivot-cluster algorithm (see [12, 13]). As an
illustration we study the effect of solvation forces in a binary mixture of colloids
with size ratio R = 5, and a Yukawa tail for unlike pairs of colloids added to the
hard-sphere interaction:

uls(r) =
{∞ r < Dls

−εls exp{−zls(r −Dls)}/r r ≥ Dls
. (4)

We used a value of 0.5kBT for the depth of the attractive well, which correspond
to ε∗ls = εlsDs/(kBT ) = 3/2, and considered two values for the inverse range of the
attraction force, z∗ls = zlsDs = 10 and z∗ls = 2.5. In Fig. 5 we see that data obtained
from selective-pivot sampling and from standard cluster algorithm agree very well.
As mentioned elsewhere (see [12]), we simply notice here that the contact value of
the radial distribution function decreases when the range of the attraction between
small and large particles increases, because the solvation forces create a thin shell
of small colloids which counterbalances the depletion between the large ones. The
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Figure 5. Pair distribution function of solute particles for R = 5, ηs = 0.11 and ηl = 0.12. Empty
symbols: standard sampling method; filled symbols: selective-pivot sampling; squares: hard-sphere;

circles: Yukawa interaction with z∗ls = 10; triangles: with z∗ls = 2.5.

advantages and the applications mentioned in the previous section carry over. This
method is particularly relevant for models beyond asymmetric hard sphere because
reliable analytical approaches, even for computing the potential of the mean force
(see [26,30]), are still needed.

5 Conclusion

In this paper, we have presented a selective sampling cluster algorithm which allows
to obtain the radial distribution function, including the contact value in a much
more accurate manner than standard sampling method. It also yields the pair po-
tential of the mean force between two solutes due to the presence of the solvent.
The algorithm solves a sampling problem for observables with very rich structure
on a small scale, but does not overcome the remaining limitation of cluster algo-
rithms for liquid simulations, namely the restriction to moderate densities. Even
if releasing this restriction is an important task for the future, we show that the
particular efficiency of our sampling algorithm may help for validating analytical
methods or for studying specific models of asymmetric liquid mixtures.
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S. B. Yuste, and M. López de Haro, J. Chem. Phys. 117, 5785 (2002); C. Barrio and J. R. Solana, J.
Chem. Phys. 119, 3826 (2003).

Page 7 of 14

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 6, 2007 12:26 Molecular Physics selective˙pivot

8

[9] W. Krauth, Statistical Mechanics: Algorithms and Computations (Oxford University Press, Oxford,
UK) (2006).

[10] C. Dress and W. Krauth, J. Phys. A: Math. Gen. 28, L597 (1995).
[11] A. Buhot and W. Krauth, Phys. Rev. Lett. 80, 3787 (1998).
[12] J.G. Malherbe and S. Amokrane, Molec. Phys. 97, 677 (1999).
[13] J. Liu and E. Luijten, Phys. Rev. Lett. 92, 035504 (2004).
[14] J. Liu and E. Luijten, Phys. Rev. E 71, 066701 (2005).
[15] M. P. Allen and D. J. Tildesley, Computer simulation of liquids (Oxford Science Publication, UK)

(1987).
[16] Y. Yu and J. Wu, J. Chem. Phys. 117, 10156 (2002).
[17] R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys.: Condens. Matter 4, 12063 (2002).
[18] M. Barosova, A. Malijevsky, S. Labik and W.R. Smith, Molec. Phys. 87, 423 (1996).
[19] D. Cao, K. Y. Chan, D. Henderson and W. Wang, Molec. Phys. 98, 619 (2000).
[20] L. Lue and L. V. Woodcock, Molec. Phys. 96, 1435 (1999) .
[21] D. Henderson, A. Trokhymchuk, L. V. Woodcock and K. Y. Chan, Molec. Phys. 103, 667 (2005).
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