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Introduction

Aromatic functional groups play an important role for the intermolecular interactions between complex molecules, especially biomolecules. Molecules like toluene, azulene or pyridine have permanent electric dipole moments. Electrostatic and dispersion forces usually are of the same order of magnitude and determine the functional role of these groups in cooperative processes such as recognition, ion transport or the formation of two-or threedimensional regular structures [START_REF] Lehn | Supramolecular Chemistry. Concepts and Perspectives[END_REF][START_REF] Meyer | [END_REF].

Besides the nucleic acids that are information carriers in the very sophisticated recognition machinery of DNA replication, porphyrines are among the most important polar aromatic molecules in biochemistry. For decades they have been subject to research, mainly owed to their outstanding photophysical properties. The metal binding capability and the redox behaviour of these complexes make porphyrines an essential component of larger biomolecular systems that are involved in energy transfer processes (haemoglobin, chlorophyll). There are numerous reports in the literature about linking porphyrines to supramolecular assemblies by different binding strategies: (a) complexation of the central metal atom by substituents at the porphyrin ring, see e.g. in refs [3,4] or (b) hydrogen bonds or non-covalent interactions between substituents, e.g. in ref [5].

The free base porphine 1 is the root compound of all porphyrines. It has D 2h symmetry [6] which has been confirmed with theoretical methods including electron correlation treatment. Hartree-Fock calculations predict a C 2v symmetric structure [7,8]. It is found less often in nature than its metalated derivatives, e.g. in hematoporphyrin. However, it is increasingly used as part of artificial supramolecular systems and nanostructures, e.g in ref [9]. The so-called π-π-stacking between porphine monomer units is often mentioned as one of the interactions that have significant influence on structure formation. For recent reviews on the theoretical treatment of such dispersion dominated interactions using wave function methods see refs. [10,11,12,[START_REF] Tsuzuki | Interactions with Aromatic Rings in Structure and Bonding[END_REF]. Nevertheless, there are no reports about assemblies of porphyrines without the presence of other interactions (between substituents) that bring the aromatic planes into a parallel orientation.

Chemical structure of free base porphine 1

Presently, density functional theory (DFT) is the quantum chemical method that is most applicable for larger chemical systems with sufficient energetic accuracy. Unfortunately, the weak, long-ranging dispersion forces are not recovered by the most popular functionals [START_REF] Kristyán | [END_REF]. One of the problems is that for typical van der Waals distances (> 3 Å) the electron density between the fragments is very small and the density deformations due to bonding are rather unspecific and thus difficult to handle by a density functional.

Several attempts have been made to overcome this deficiency, the most simple of which is the use of a sum of atom-pairwise dispersion terms depending on R -6 ij and element-specific C 6 coefficients. It is usually turned off at short interatomic distances R ij by a damping function [15,16] in order to avoid double counting effects of electron correlation. In the most widely used approach [17], the total amount of dispersion correction (E vdW ) is simply scaled by a parameter (s 6 ) which allows a specific adaption to different density functionals and even semiempirical methods [18]. The DFT-D approach is computationally simple and applicable to a large variety of chemical systems [19] with sufficient accuracy [20].

Although much is known about the physical and chemical properties of free porphine and its metal complexes, only few reports are available about the intermolecular potential of the dimer ((1) 2 ) without a central metal atom. In the solid state structure of 1, a parallel displaced (PD) dimer is found with an interplanar distance of 3.41 Å. It further interacts with its neighbour pairs through additional CH-π contacts. [21,6] A porphine dimer has also been found in a specifically designed cage complex involving π-π interactions with the host [22]. Here the distance between the monomers is found to be 3.51 Å. Figure 1 sketches the orientation of (1) 2 in the solid state and in the mentioned supramolecular complex.

{ Put Figure 1 here } In one early report, attractive intramolecular interactions between two porphine moieties in a macrocyclic ring were found and proven by anisotropy effects of the aromatic system on the second ring. An estimation of the dimer binding energy of (zinc) porphyrine by analysing the thermodynamics of metal complexation vs. stacking interaction gave -11.5

±2.4 kcal mol -1 [23]. The authors predicted a parallel displaced porphyrine dimer as the minimum structure by a combined electrostatic multipole/dispersion model [24]. To the best of our knowledge, a detailed quantum chemical study including analysis of the porphine intermolecular potential has not been published so far. This is the topic of this contribution.

Technical Details

All calculations have been performed with the Turbomole program suite [25], with the additional dispersion correction term in both energy and gradient calculations. [15] A triple-ζ AO basis [26] was used in conjunction with three sets of polarisation functions on all atoms as implemented in the Turbomole basis library (TZV(2df,2dp) or TZVPP).

Detailed convergence studies in refs. [15,17,20,27] have shown that such basis sets provide results quite close to the basis set limit in DFT computations of noncovalently bound complexes.

For the full geometry optimisations we have used B97-D [17], a modified version of Beckes semiempirical GGA functional introduced in 1997 [28]. The parameters of the GGA had been reoptimised in B97-D in the presence of the dispersion correction. B97-D van der Waals complex binding energies are exceptionally good and reach almost CCSD(T) quality [20]. For comparison of the energies with a second functional, the structures have also been optimised with the dispersion corrected B-LYP functional [29,30]. The resolution of identity (RI) approximation [31,32] was used for the DFT calculations with B97-D and B-LYP-D.

The usual counterpoise correction (CP) [33,34] for basis set superposition error (BSSE) has not been included for the DFT-D/GGA binding energies because in our experience, the BSSE is sufficiently small (<5-10% of ∆E) with the triple-ζ AO basis sets used. Furthermore, BSSE effects have been already accounted for in the DFT-D fitting procedure [15].

Energies were then recalculated with the recently introduced double-hybrid density functional B2-PLYP [35], that contains a perturbative (virtual orbital dependent) contribution to the correlation energy. Together with the dispersion correction (B2-PLYP-D, scaling coefficient s 6 =0.55) it yields [36] very accurate energies for non-covalent binding energies (MAD=0.3 kcal mol -1 for the S22 test set of Jurecka et al. [37]), when half of the counterpoise correction energy ∆E CP is added to the interaction energy ∆E.

We also applied the SCS-MP2 model [38], a recently introduced improved version of standard Møller-Plesset perturbation theory in which the correlation energy is partitioned into parallel-and antiparallel-spin components which are separately scaled. It provides significantly improved energetics compared to standard MP2 for a wide variety of chemical systems often reaching QCISD(T) accuracy and also corrects for the systematic overestimation of MP2 for van der Waals interactions in unsaturated systems [38,39,40,41,42].

SCS-MP2 and B2-PLYP-D calculations also used the RI approximation for the perturbative step [43]. The SCS-MP2 energies were CP corrected since these interaction energies include the largest BSSE of all the methods that were used. In the SCS-MP2 and B2-PLYP-D computations we used the optimised B97-D geometries.

In order to understand the intermolecular binding in more detail, we performed energy decomposition analyses (EDA) at the B97-D/TZV(2df,2dp) level of theory to distinguish the various contributions to the total binding energy. The EDA has proven to give detailed information about the nature of chemical bonding [44,45,[START_REF] Bickelhaupt | Sham Density Functional Theory: Predicting and Understanding Chemistry[END_REF] as well as recently for the interactions in DNA base pairs [47]. Besides the dispersion term from the empirical correction, interaction energies are partitioned into contributions from Pauli exchange repulsion (E ER ), electrostatic (E ES ) and induction (E Ind ) interactions, the three terms that comprise the (uncorrected) DFT binding energy E DF T .

Results and Discussion

We were primarily interested in the mutual orientation of the two rings with respect to each other. The conformation of parallel (stacked and displaced) dimers can be described At this point one must of course take into account that hydrogen tautomerisation, converting e.g A → B, is a comparatively fast process that has been studied both in solution and in the solid state [48]. For clarity, we will talk of conformers of (1) 2 throughout the text, although the conformers can also be regarded as tautomers and conformational changes are slower than hydrogen exchange.

The corresponding interaction energies are gathered in table 1 and shown graphically in An EDA analysis of the energy contributions to the binding energy has been performed for all complexes with the B97-D functional. The results are given in table 2 and will also be discussed in the following. It must be pointed out at this stage that none of the complexes is bound at the pure DFT level, i.e., without the dispersion correction. Although for B97-D this may be a misleading finding because the parameters in the functional have been optimised in the presence of the dispersion correction [17], this also holds for B-LYP (data not shown) and very likely for many other GGAs including hybrids. It should also be noted that the contributions found in the EDA analysis are not independent: electrostatic and dispersion contributions are often counterbalanced by higher Pauli exchange repulsion energies. Interpretation of the data in table 2 (and this holds for most other energy partitioning schemes as well) must therefore be done with caution, although the results for a series of different conformations seem to provide meaningful information.

Geometry changes of the monomers upon complex formation are negligibly small (< 10 -2 Å). It is thus certainly justified in future studies to employ frozen monomer geometries.

{ Put Table 2 here All three PD isomers are found within an energy range of less than 1 kcal mol -1 with all methods used here -an indication of the very flat energy surface that describes the movement of the projected centre of the second around the centre of the first monomer.

This flexibility is also reflected in the solid state structure (figure 1, left), where the dimer conformation is half-way between the stationary points D and E. Optimisation without geometry restriction (B97-D/TZV(2df,2dp)) starting from the reported dimer geometry in the crystals of 1 gives the dimer E. Thus, the specific packing in the crystal is presumably responsible for the distortion from the 'better' conformation.

The displacement of the monomers against each other is similar for all three PD conformers (1.72-1.80 Å) and leads to the assumption that there is a 'sombrero-hat' potential surface for the shift in the plane. In the solid state, (1) 2 shows a displacement of 1.6 Å, in good agreement with our optimised values.

The monomer-monomer distance is also very similar for the three conformers D-F (3.26- ). It is rather the electrostatic part of the total binding energy that determines the relative energies of the PD complexes: E and F are preferred over D by 0.5 kcal mol -1 in total, E ES for the two former complexes is by 0.9 and 1.3 kcal mol -1 larger than for D.

The T-shaped dimers G and H have a much lower binding energies than the sandwich and PD complexes due to their smaller van der Waals interactions. H with the methine group hydrogens pointing towards the centre of the second ring is preferred (∆E=-9.7 kcal mol -1 ). It has almost half the binding energy of the best PD dimer F. Nonpolar and polar aromatic molecules show opposite electrostatic potentials above the molecular plane and the rim (hydrogen atoms), but there is no large absolute electrostatic and/or induction contribution to the binding energies of the two T-shaped complexes (table 2).

However, the sum of non-dispersion contributions to the bindings energies is larger than for the other complexes, leaving G and H almost bound without the dispersion correction.

This reflects the general tendency of non-dispersion corrected density functionals to prefer CH-π over ππ arranged structures.

Finally, we want to discuss the absolute size of the interaction energies as obtained from different methods (see table 1 and Fig. 3). Note that the relative energies for the different stacked structures and also the absolute values of the T-shape conformers are rather similar with all methods. Thus, our conclusions about the most stable conformations are not affected by the choice of the theoretical method.

As pointed out in several reviews before, the ππ stacked arrangements are most problematic for any theoretical treatment. Although we observe similar trends for the binding energies with different methods here as for e.g. the benzene dimer, due to the much larger size of the porphine dimer systematic errors are strongly amplified. This already explains why the methods differ for the interaction energy of e.g. F within about 6 kcal mol -1 .

Recent studies showed that the B2-PLYP-D method is most accurate for vdW complexes and non-covalent interactions in general [36]. With the suggested 50% counterpoise cor-10 energies have been shown to be of high accuracy (< 3 %) [41,42].

The B97-D and B-LYP-D interaction energies are smaller by about 20% but errors of this size can be expected for large unsaturated π-systems because the atomic C 6 coefficients used are molecule independent.

Conclusions

Dispersion corrected DFT and wavefunction SCS-MP2 calculations have shown that the van der Waals dimer of porphine prefers a stacked, parallel displaced geometry with two monomers rotated against each other by 90 o . The energy surface is flat and would allow movement (single and mutual rotations) of the monomers within a certain displacement range. The measured binding enthalpy for intramolecular dimerisation of two zinc porphyrines is by about 15 kcal mol -1 smaller than our best estimation for the binding energy (-25±3 kcal mol -1 ). However, the solvent effect in the experiments is not covered by our gas phase calculations. As we have shown for the example of anthracene [49], the loss of solvent-solute interactions must be taken into account if self-aggregation is considered for larger aromatic molecules in solution. In any case we suggest the porphine dimer as the next standard test system (the sucessor of the benzene dimer) for quantum chemical methods that accurately try to include all relevant non-covalent interactions. While dispersion contributions are absolutely essential for the binding of all investigated structures, the electrostatic contributions mainly determine the preferred conformations (e.g. displacement and rotation) or preferred tautomers of (1) 2 .

11 [a] Counterpoise corrected (∆E + 1 2 ∆E CP , in brackets uncorrected) energies.

[b] Counterpoise corrected (∆E + ∆E CP , in brackets uncorrected) energies. 
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 6 three geometric parameters: the distance r between the two molecule planes, the displacement d, the length of the vector between the centres of the monomers, projected on the plane of the (lower) ring, and β, the angle of rotation of the upper monomer around its centre, measured by the angle between the NH-HN lines of both monomers, projected on the plane of one monomer.To proceed in a systematic manner, eight structural motifs have been taken into account (see figure2), derived from the possible dimers of e.g. benzene: (a) sandwich (SW) complexes A-C with d=0 and various rotation angles of the two dimers against each other, (b) parallel displaced (PD) complexes with parallel (D,E) or orthogonal (F) N-H bond directions and (c) T-shaped dimers G and H with one monomer perpendicular to the second.

figure 3 .

 3 figure 3. We discuss mainly the B97-D values which are representative also for other dispersion corrected GGAs (e.g. B-LYP-D) and finally comment on the methodological dependence of the results.

}

  The three sandwich dimers A-C with the second monomer placed directly above the first, are all higher in energy than displaced complexes D-F. Not surprisingly, the fully eclipsed dimer A is the least stable of the three. C is more favourable than the D 2hand D 2d -symmetric SW dimers. A shorter distance(3.42 Å) is found between the two monomers in C. Both eclipsed isomers have longer interplanar distances (A: 3.67 Å, B:3.62 Å), reflecting the smaller attraction between the monomers. This is underscored by the EDA analysis which indicates that although C suffers from a larger exchange repulsion, stabilising electrostatic and dispersion contributions are substantially larger than in A and B. E ER and E vdW increase with opposite sign as the interplanar distance decreases: thus rather the more favourable electrostatic and induction contributions are determining the preference of C over the two eclipsed conformers A and B.Comparing A with B, rotation of one monomer by 90 o around the central axis of A (or H tautomerisation) increases the electrostatic stabilisation despite the also higher dispersion contribution.None of the three sandwich complexes are minima on the intermolecular potential energy surface: displacement of one monomer in small steps (0.1 Bohr) parallel to the second molecule leads to lower energies irrespective of the direction. The presence of a structural motif similar to C in the host-guest complex (figure1, right) has therefore to be explained by geometrical constraints imposed by the rigid cage.Starting from either A or B, parallel displacement of the monomers leads to the two dimers D and E (C 2h -symmetry) or F with C S -symmetry, respectively.
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 116 Figure 1: Dimer motifs of porphine in the solid state of 1 (left) and as guest in a supramolecular complex (right).

  [a] distance between a plane spanned by three nitrogens of one dimer to the centre of the second monomer as defined by the geometric centre of the four nitrogens [b] distance of the second centre to the norm of the plane spanned by three nitrogens of one dimer moved to the centre of the first monomer.
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 2321823323 Figure 2: Investigated porphine dimer motifs A-H.
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  rection, we arrive at final best estimate for ∆E of -25 kcal mol -1 for dimer F with a conservative error estimate of±3 kcal mol -1 (about 10%). This value is in very good agreement with the CP-corrected SCS-MP2 value of -26.0 kcal mol -1 . To the best of our knowledge, corrected B2-PLYP-D and SCS-MP2 binding energies have never deviated by more than 10% from reliable references. At the complete basis set limit, SCS-MP2
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Table 1 :

 1 Binding energies ∆E of porphine dimers with different density functionals and SCS-MP2 in kcal mol -1 (TZV(2df,2dp) AO basis).
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Table 2 :

 2 Energy decomposition analysis (B97-D/TZV(2df,2pd)) of porphine dimers. Given are the Pauli exchange-repulsion, classical electrostatic, induction and dispersion contributions to the binding energy in kcal mol -1 . E DF T denotes the uncorrected DFT interaction energy. Interplanar distances a and displacement length b in Å Dimer E ER E ES E Ind E DF T E disp Total ∆E r dim d

	A	22.1 -6.1 -3.2	12.8 -26.4	-13.6	3.67 0.0
	B	24.2 -8.1 -3.3	12.8 -27.5	-14.7	3.62 0.0
	C	39.4 -16.8 -5.6	17.0 -35.5	-18.5	3.42 0.0
	D	51.7 -24.3 -8.2	19.2 -39.4	-20.1	3.26 1.72
	E	52.5 -25.2 -8.6	18.8 -39.4	-20.6	3.26 1.80
	F	53.0 -25.6 -8.5	18.9 -39.7	-20.8	3.27 1.72
	G	11.9 -6.7 -4.1	1.0	-9.5	-8.5	7.45 0.0
	H	13.6 -6.6 -4.5	2.5	-12.4	-9.9	7.03 0.0