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Paramagnetic relaxation enhancement is a fundamental molecular physical phenomenon, manifested as an acceleration of the relaxation times of a slowly relaxing spin S slow due to the magnetic interaction, dipolar or exchange, with a fast relaxing spin S fast . Here, we examine the general case of the enhancement of T 1 slow due to a fast relaxer S fast with rhombic g-tensor.

using the formalism of Kubo and Tomita we derive the following analytical expression for the dipolar effect on T 1 slow .

[ ] where A ≡ ½(g f 1 +g f 2 ), B ≡ ½(g f 1 -g f 2 ) i.e. B is the g-rhombicity factor and f 0, f 1 , f 2 , f 3 are angular functions of the angles θ, φ and the Euler angles (β, γ).
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Introduction

Fast relaxing electron spins can affect the relaxation properties T s 1 and T s 2 of nearby slow relaxing, electron [1,[START_REF] Hyde | Spin Labling II:Theory and Applications[END_REF] or nuclear [START_REF] Banci | Nuclear and Electron Relaxation[END_REF][START_REF] Sharp | [END_REF][START_REF]In a series of paradigmatic papers Sharp explored the cases of high spin systems and zero[END_REF] spins. This effect has been originally described by Bloembergen [6] and later by Abragam [7] in an NMR context, and later for the case of EPR by Kulikov and Lichtenshtein [1] and Hyde and Rao [8] for rigid systems where no spatial averaging occurs. There are many theoretical aspects of the literature on NMR that are immediately relevant, most of which have been discussed in Abragam's book [START_REF] Abragam | The Principles of Nuclear Magnetism[END_REF]. A point of caution however is that many of the equations in the NMR literature are based on the assumption that ωτ(NMR) <<1, where ω is the radiofrequency and τ the pertinent correlation time. In general in EPR at Xband (~10GHz) or higher frequencies, the inequality is reversed thus ωτ(EPR) >> 1 [START_REF] Hyde | Spin Labling II:Theory and Applications[END_REF][START_REF] Abragam | The Principles of Nuclear Magnetism[END_REF]. The original equations [6,7] have been derived for isotropic g-tensors for interacting spins with S=1/2. The effect of g-anisotropy on the nuclear relaxation enhancement was first addressed by Sterlincht for the case of an axially symmetric electron g-tensor, under the assumption ωτ <<1 for liquids [11]. Further refinements i.e. effects of zero-field splitting, scalar couplings etc., are discussed by Banci et al. [START_REF] Banci | Nuclear and Electron Relaxation[END_REF] and Sharp et al. [START_REF]In a series of paradigmatic papers Sharp explored the cases of high spin systems and zero[END_REF].

In EPR spectroscopy, the dipolar relaxation enhancement on T s 1 in rigid systems has been studied extensively by many groups. The fundamental condition for the dipolar-induced electron spin relaxation in solids is that the spin-lattice relaxation time, T f 1 , is equal or greater than the reciprocal of the dipolar interaction between the fast-and slow-relaxing electron spins. In the opposite case lineshape broadening and/or splittings occur in the EPR spectra [START_REF] Hyde | Spin Labling II:Theory and Applications[END_REF][START_REF] Lee | [END_REF].

During the past decades, the EPR dipolar relaxation enhancement on T s 1 in rigid systems has been exploited fruitfully for the estimation of the spin-spin distance in biological systems and model compounds. Pertinent reviews of the vast literature, are presented in reference [START_REF]Distance Measurements in Biological Systems by EPR in Biological Magnetic Resonance[END_REF]. To name just a few examples, we mention nitroxide spin labels interacting with low spin Fe 3+ studied in detail by Eaton et. al [START_REF] Rakowsky | [END_REF]. Most importantly this method has been applied for distance estimate in complicated biological systems, such as milk Xanthane Oxidase [14], Cytochrome c Oxidase [15], Nitrogenase [16] ubiquinone reductase from Paracoccus Denitrificants [17],

Hydrogenase [18], Spin-Labelled methemoglobin [19] and Ribonucleotide Reductase [20,21]. In Photosynthetic reaction centres this method has been proven particularly useful in efforts to map distances in Photosystem II [22][23][24] and Photosystem I [25] long before any crystal structure become available.

In all the cited cases the expression used for the estimation of the 1/T s 1 (dipolar) was that developed by Kulikov and Likhtenstein [1] and Hyde et al., [START_REF] Hyde | Spin Labling II:Theory and Applications[END_REF]8], which is valid for isotropic gtensors for the slow as well as for the fast relaxing electron spins, based on the original works [1,[START_REF] Hyde | Spin Labling II:Theory and Applications[END_REF]8]. No expression for 1/T s 1 (dipolar) is available for the general case where the fast relaxer has an anisotropic g-tensor. Due to this lack the usual practice was to use an average g-value in the expression of Kulikov and Lichtenshtein. More recently, the effect of an anisotropic exchange term in conjunction with the g-anisotropy has been discussed in some detail by the groups of Britt and Chan [17]. This work provided numerical solutions of the pertinent equations in graphical form, and consists a significant advancement towards a more complete description of the dipolar relaxation enhancement on T s 1 in rigid systems. However an analytical expression for the 1/T s 1 (dipolar) in the general case has not been derived.

In the present work an analytical solution for the paramagnetic dipolar relaxation enhancement on T s 1 in rigid systems is derived for the general case of a rhombic g-tensor of the fast relaxer. In terms of a practical implication the present work highlights representative cases on the effects of the g-anisotropy on the estimation of the interspin distance. This bears relevance to practical problems of distance estimate based on dipolar relaxation enhancement on T s

1 . An analytical expression for T s 2 can be straightforwardly derived based on the present approach, however, for space reasons, it is out of the scope of the present paper. The case for T s 2 will be discussed in detail in a forthcoming publication. 

Theoretical

The Kubo-Tomita [26] description of spin relaxation leads to the following equation for the enhancement of the relaxation rate of a slow-relaxing electron spin S S caused by dipolar coupling with a fast-relaxing electron spin S f :
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where the spin-Hamiltonian for the dipolar interaction is
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In relations (1) and (2) k s S (1) , k= -1, 0, 1, are the three components of the first-rank tensor
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g s is the g-factor of the slow-relaxing electron spin, which is considered to be isotropic. β is the Bohr magneton for the electron µ o is the permeability of the vacuum and R is the distance between the spins S s and S f . Hereafter we use the index s to denote quantities referring to the The components of the first-rank tensor F (1) are constructed by contracting the tensors G (1) and C (2) [START_REF] Banci | Nuclear and Electron Relaxation[END_REF][START_REF] Sharp | [END_REF][START_REF] Silver | Irreducible Tensor Methods[END_REF]]

F (1) = {G (1) ⊗C (2) } (1) (5) 
where G (1) is the spherical first-rank tensor obtained as the product of the vector S f and the rhombic g-tensor, g f , of the fast-relaxing electron spin, which is considered to be part of the 'lattice'. When written in its principal axis system (PAS) the g f tensor, is
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and, in the same system, the components of G (1) are
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where In equation ( 5) C (2) is the second-rank tensor formed by the polar variables (θ, φ) given by the Racah's normalised spherical harmonics [START_REF] Silver | Irreducible Tensor Methods[END_REF][START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] ) , ( 2
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where q Y 2 ( , ) θ φ are spherical harmonics of second order. Here (θ, φ) specify the orientation of the interspin vector S s -S f in the laboratory frame where the external magnetic field B 0 defines the z axis, see Figure 1. 

m n n l l f n F S C l n m (1) (1) ( ) ( ) ( , ) = -       - =- = - ∑ ∑ 1 3 1 2 1 1 2 1 1 1 2 θ φ (10) 
where l f S (1) are the components of the first-rank tensor composed of the spin variables of the fastrelaxinf spin S f , given in equations (8) and n C ( ) ( , )

2 θ φ are given in expression [START_REF] Abragam | The Principles of Nuclear Magnetism[END_REF]. The pertinent 3j symbols are taken from reference [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF].

The form of F (1) in ( 5) implies that the fast-relaxing spin S f forms part of the 'lattice' undergoing time-dependent fluctuations. In paramagnetic systems in frozen solutions, which is typical for EPR samples, the time dependence of F (1) originates exclusively from the motion of the fast-relaxing electron spin S f . In rigid systems, e.g. frozen solutions or solids, the polar coordinate factors do not fluctuate, in contrast to the NMR case is solution.

Evaluating the 3-j symbols, in equation [START_REF] Lee | [END_REF] gives the following form for the components of F (1) . 
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Then by using ( 2) and (12a-c) for the dipolar interaction, the correlation functions in the
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The dipole-dipole paramagnetic relaxation enhancement of T 
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Equation ( 14) is the starting point for the evaluation of longitudinal-relaxation-rate enhancement in magnetic resonance. This equation is written assuming that the S s vector is quantized along the external magnetic field B 0 , i.e. along the z axis in the laboratory frame.

Therefore in (14) the components of F (1) are written in the laboratory coordinate frame. For the evaluation of the longitudinal-relaxation-rate enhancement in equation ( 14) we need to evaluate the functions
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Ultimately, as it is

shown below, we have to calculate the correlation functions of the spin operators of the fastrelaxing-spin S f . In the present case these correlation function are calculated in the coordinate system where the g f -tensor is diagonal. In the general case when g f is rhombic, the spin S f is quantized in that system undergoing its precessional motion with respect to the unit vector defined by
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where l → is the unit vector along the direction of the external magnetic field B 0 in the laboratory frame. From ( 15) is seen that in general the direction of u → does not coincide with the direction of B 0 . Only in cases when B 0 is along a given principal axes of the g f -tensor, then the direction of the unit vector u → is along this principal axes.

The components of F (1) can be written in the coordinate frame of the g f -tensor by use of the Wigner rotation matrices (1) ( ) 2.12 from reference 27], where α, β, γ are the Euler angles which effect the transformation of the coordination axes ([laboratory axes system]→[principal axes system of g f ])
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In the following, the Euler angles α, β, γ (which are the arguments of the Wigner transformation matrix) and the polar angles θ, φ (which are the arguments of the spherical harmonics) are omitted for the shake of brevity.

Herein, operators written in the principal axes system of g f -tensor display a superscript caret ; those in the laboratory frame do not. For compatibility our notation here parallels that used in the literature describing paramagnetic relaxation enhancement in NMR [START_REF] Banci | Nuclear and Electron Relaxation[END_REF][START_REF] Sharp | [END_REF][START_REF]In a series of paradigmatic papers Sharp explored the cases of high spin systems and zero[END_REF], with the nuclear spin symbol I replaced by S s .

After transforming components of F (1) according to ( 16), the correlation functions in (14) become
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in a similar manner we may write the expression for
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We then substitute relations [START_REF]Distance Measurements in Biological Systems by EPR in Biological Magnetic Resonance[END_REF] in 17a, 17b, perform the necessary (lengthy although straightforward) calculations, then substitute (7) and finally (14) becomes
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where we define

A≡½(g f 1 +g f 2 ) (18b)
and

B≡½(g f 1 -g f 2 ) (18c) 
i.e. B is the g f -rhombicity factor.

The functions f 0 , f 1 , f 2 and f 3 contain all the angular dependent factors. Their explicit form is 
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We notice that the angle α is absent in expressions ( 19a,b,c). This results directly from the form of the products D (1) q, q' D (1) m, m' in (17a, b).
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H (0) is the static spin-Hamiltonian, which in the g f -coordinate frame has the form
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and describes the precessional motion of the spin S f with respect to the unit vector u → , see (15), due to Zeeman interaction.

For the evaluation of the spin correlation functions we assume: (a) the high temperature approximation, (b) the time-dependent part of H (0) i.e. that describing the coupling of the spin S f with the thermal lattice, gives rise to the relaxation of S f . This is not included in (21) Within these assumptions we have
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where ω n and ω m are the eigenvalues of H (0) associated with m and n .

Combining relations (23) with (22) we have

± = + 1 1 1 0 2 1 3 2 f f f f i T t S S t S S e f S $ $ ( ), ( ) ( ) ( ) m m ω (24a) 0 0 1 0 1 3 1 f f f f i T t S S t S S e S $ $ ( ), ( ) ( ) 
( ) = + - (24b) 
where
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is the transition energy of the fast-relaxing spin 
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which introduces the anisotropy of the resonance energies for the fast relaxing spin.

Substituting (24a-b) in (18a), and integrating over time gives the final result
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and A, B, f 0 , f 1 , f 2 , f 3 are defined in equations 19a-d.

Discussion

Equation ( 25) is the main result of this analysis. For the sake of completeness we examine here some characteristic cases.

The structure of relation (25) implies that the 1/T 1dipolar will be determined by the angular dependent terms f 0 , f 1 , f 2 , f 3 and the spectral densities 
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which are also angle i.e. θ, φ, dependent through the angular dependence of the transition frequency ω f of the fast relaxing spin.

In the following, the relative importance of these terms will be discussed quantitatively through the investigation of representative cases. To keep things at a concise level, all the calculations have been carried out for one set of T f 1 , T f 2 and R values i.e. T f 1 =100ns, T f 2 =10ns

and R=10Å. The value ω s was 5. 
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In Figure 2 we display representative calculations for the dipolar relaxation enhancement 1/T 1dipolar, the spectral density factors J(ω s ), J(ω f ± ω s ) and the angular functions f 0 , f 1 , f 2 and f 3 for an axially symmetric tensor g f = [3.0, 3.0, 2.0] for β=0 0 . In the case of β=0 0 there is no dependence on the angle φ. A close inspection of Figure 2 shows that the profile of 1/T 1dipolar is determined by the profile of J(ω f -ω s ) and the angular factor f 2 . β=0 0 , T 1fast =100nsec, T 2fast =10nsec, v slow =9.4 GHz, interspin distance R=10Å. The dashed line is the 1/T 1dipolar calculated by using an isotropic g average = [g f 1 +g f 2 +g f 3 ]/3=2.67. (Right) Angular dependence of the spectral density factors J(ω s ), J(ω f ± ω s ) (upper panel), and f 0 , f 1 , f 2 and f 3 (lower panel). However, in general the effect of J(ω f -ω s ) is what determines the angular dependence profile of 1/T 1dipolar . This can be more clearly seen in Figures 3 and4, for β=30 0 and β=90 0 respectively. In all cases the other spectral density terms, J(ω f +ω s ) and J(ω s ), contribute to a less significant degree than J(ω f -ω s ), see Figures 2, 3 and4. In addition, angle φ becomes important for β>0 0 . At β =90 0 the effect of angle φ is maximal for theta angles near 90 0 . 25), for a fast relaxing spin with an axial g f tensor coupled to a slow relaxing spin with isotropic g s =2.0 (solid line) as a function of the polar angles θ and φ. Calculation parameters β=90 0 , other parameters as in Figure 2. The dashed line is the 1/T 1dipolar calculated by using an isotropic g average = [g f 1 +g f 2 +g f 3 ]/3=2.67. (Right) Angular dependence of the spectral density factors J(ω s ), J(ω f ± ω s ).
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In Figures 2, 3 and4 we have superimposed for comparison the 1/T 1dipolar values calculated by (25) assuming an isotropic g f value equal to the numerical average of the principal values of the g f , see dashed lines in Figures 2,3,4. This comparison can be helpful for the cases where one uses the average g-value instead of the exact principal g f -values. This is a practical approach, adopted in the past by many researchers including ourselves [25]. We observe that in certain cases the 1/T 1dipolar (g ave ) do not deviate by much from the exact 1/T 1dipolar i.e. for certain angles θ, φ depending on β.

Probably one of the most important issue with regard to the numerical values of 1/T 1dipolar is the interspin distance estimate [START_REF] Hyde | Spin Labling II:Theory and Applications[END_REF]8,[START_REF]Distance Measurements in Biological Systems by EPR in Biological Magnetic Resonance[END_REF]. In saturation recovery experiments on powder EPR spectra the analysis of the experimental recovery of the magnetization usually involves integration over θ of recovery curves weighted by the factor sinθ [START_REF]Distance Measurements in Biological Systems by EPR in Biological Magnetic Resonance[END_REF][START_REF] Rakowsky | [END_REF][14][15][16][17][18][19][20][21][22][23][24]. The sinθ term will diminish terms with contribution from 1/T 1dipolar for θ 0 0 while terms originating from θ 90 0 would be fully accounted for i.e. since sinθ 1 for θ 90 0 . This means that the deviations observed between 1/T 1dipolar (using g ave ) vs 1/T 1dipolar (using g f ) will be minimal in cases of β<<90 0 see Figures 2,3. On the other hand in cases of β 90 0 the deviation might be considerable, see This analysis shows that for axial g f -tensors distance estimates based on 1/T 1dipolar (using g ave ) can be made with caution. For an estimate of the error the value of angle β is required. This might be possible, for example by EPR experiments in oriented samples such as biological membranes.

(b) Isotropic g f -tensor: In the case of isotropic g f , we may set

g 1 = g 2 = g 3 = g f thus A= g f , B=0 β = γ = 0 o and φ = 0 o
Therefore in the angular functions reduce to 

f 0 = 9 8 2 2 sin θ       , f 1 = 1 4 3 1 2 2 ( cos ) θ -       and f 2 =
            + + +       - - + +       + × +       = θ ω ω θ ω ω θ ω β π µ ο 4 2 2 2 2 2 2 2 2 2 2 1 1 6 2 2 2 4 2 , 1 sin 2 3 ] [( 1 ) 1 cos 3 ( 6 1 ] [( 1 2 sin 4 3 ) ( 1 ) ( ) )( 1 ( 4 1 ) ) S s f S S s f S S s S f s f f dip T T T T T T R g g S S T h (28) 
Formula ( 28) is that originally derived for an isotropic g f by Kulikov and Lichtenshtein [1] which was an adapted version of the original formula derived earlier by Abragam [7] for the NMR case.

Calculated 1/T 1dipolar , spectral densities J and angular functions f are those presented in Figure 2 for g ave .

(c) Rhombic g f In Figure 5 we display representative calculations for the dipolar relaxation enhancement 1/T 1dipolar, the spectral density factors J(ω s ), J(ω f ± ω s ) for a rhombic tensor g f = [3.5, 2.5, 2.0]. In contrast to the case of an axial g f tensor, a rhombic g f tensor causes a dependence 1/T 1dipolar on the angle φ even in the case of β=0 0 , e.g. compare Figures 2 and5. As in the case of an axial g f tensor the profile of 1/T 1dipolar is determined by the profile of J(ω f -ω s ) and the angular factor f 2 . However in general the effect of J(ω f -ω s ) is more determinative on the profile of 1/T 1dipolar. definition. Calculation parameters g f = [3.5, 2.5, 2.0], β=0 0 , T 1fast =100nsec, T 2fast =10nsec, v slow = 9.40GHz, interspin distance R=10Å. The dashed line is the 1/T 1dipolar calculated by using an isotropic g average = [g f 1 +g f 2 +g f 3 ]/3=2.67. (Right) Angular dependence of the spectral density factors J(ω s ), J(ω f ± ω s ).

This can be more clearly seen in Figures 6 and7 for β=30 0 and β=90 0 respectively. For both the axial or the rhombic g f -tensor the other spectral density terms J(ω f +ω s ) and J(ω s ) contribute to a less significant degree that J(ω f -ω s ), compare Figures 234and 5-7. g ave FIGURE 7. (Left) Theoretical dipolar relaxation enhancement 1/T 1dipolar calculated by using expression (25), for a fast relaxing spin with an axial g f tensor coupled to a slow relaxing spin with isotropic g s =2.0 (solid line) as a function of the polar angles θ and φ. Calculation parameters β=90 0 , other parameters as in Figure 5. The dashed line is the 1/T 1dipolar calculated by using an isotropic g average = [g f 1 +g f 2 +g f 3 ]/3=2.67. (Right) Angular dependence of the spectral density factors J(ω s ), J(ω f ± ω s ).

Depending on the orientation of the g f -tensor, the T -1 dipolar might deviate significantly from the T - 1 dipolar estimated by using g average , see dashed lines in Figures 567. In powder EPR spectra the spatial orientation weighting term, sinθ, will magnify deviations at θ angles approaching 90 0 . On the other hand, deviations occurring for θ angles approaching 0 0 will have minimal effect on the T -1 dipolar. In Figures 5,6, 7 this effect is exemplified for β=0 0 , 30 0 and 90 0 respectively. We see that for β=0 0 or 30 0 the T -1 dipolar (g average ), dashed line in Figure 5, is approaching the T -1 dipolar (g f ), for θ > 60 0 . On the other hand for β 90 0 the values T -1 dipolar (g average ) deviate significantly from T - 1 dipolar (g f ), for θ > 60 0 , Figure 7. In real experiments this observation implies that for g f1 , g f2 , g f3 > g s for β 90 0 the approximative values of T -1 dipolar (g average ) will be lower than the real T -1 dipolar (g f ) values. This in turn means, that in cases of distance estimate from T -1 dipolar the calculated distance will be overestimated if one uses the g average instead of g f . 

(d) g f i component lower than g s [g f i < g s ].
The existence of g f i values lower than the g s affects significantly the spectral density functions's angular dependence as well as the 1/T 1dipolar (g f ). This is exemplified in Figure 8. 

g 3 =2.1 =2.1 =2.1 =2.1 φ φ φ φ =30 ο φ φ φ φ =90 ο φ φ φ φ =60 ο g ave 1/T 1dipolar (KHz) theta (deg) φ φ φ φ =0 ο FIGURE 8
. Theoretical dipolar relaxation enhancement 1/T 1dipolar calculated by using expression (25), for a fast relaxing spin with an axial g f tensor coupled to a slow relaxing spin with isotropic g s =2.0 (solid line) as a function of the polar angles θ and φ. Calculation parameters g f 1 =3.2, g f 2 =3.2, g f 3 varies as indicated, β=30 0 , other parameters as in Figure 5. In each panel the dashed line is the 1/T 1dipolar calculated by using an isotropic g average = [g f 1 +g f 2 +g f 3 ]/3.

In Figure 8, we notice that (a) for an increasing g f 3 -g s difference the angular dependence of 1/T 1dipolar shows multiple peaks whose exact position depends on the value of g f When this occurs for θ > 60 0 the spatial orientation weighting term, sinθ, will result in T -1 dipolar (g f )< T -1 dipolar (g average ), see Figure 8. In this case the approximative values of T -1 dipolar (g average ) are higher than the real T -1 dipolar (g f ) values. This means, that for g f i < g s in cases of distance estimate from T -1 dipolar the calculated distance will be underestimated if one uses the g average instead of g f .

(e) The influence of T 1fast , T 2 fast : The role of the T 1fast and T 2 fast influences the relative importance of the spectral density functions J(ω f ±ω s ) and J(ω s ) which in turn will determine the dipolar relaxation 1/T 1dipolar . A characteristic limit for very fast relaxing metal spin is the case where the value T 2 f is determined or "driven by" T 1 f . In this limit T 2 f =T 1 f [START_REF] Hyde | Spin Labling II:Theory and Applications[END_REF][START_REF] Abragam | The Principles of Nuclear Magnetism[END_REF][START_REF]Distance Measurements in Biological Systems by EPR in Biological Magnetic Resonance[END_REF].

Representative cases for T 2 f =T 1 f are highlighted in the following. In Figure 9 for an axial g ftensor and β=0 0 , we observe that the value of T 2 f =T 1 f has a strong influence on the 1/T 1dipolar which depends on θ. For θ values lower than ~54 0 i.e. where the dipolar contribution is minimized, the 1/T 1dipolar is decreasing for shorter T 2 f =T 1 f values approaching the limit where w s T 1 f ~ 1 i.e. T 1 f ~ 0.017nsec in the present calculations. On the other hand, for θ values >54 0 the 1/T 1dipolar is enhanced for shorter T 2 f =T 1 f values. Shortening of the T 2 f =T 1 f values appears to suppress the angular dependent terms, thus the 1/T 1dipolar profile for the anisotropic g f -tenor resembles that for g f average , i..e. see dotted lines in Figure 9. 

β β β β = 0 = 0 = 0 = 0 ο ο ο ο FIGURE 9.
Comparison of the effect of the T 1 fast and T 2 fast on the 1/T 1dipolar or T 1fast =T 2fast =1nsec, 0.1nsec, and 0.01nsec respectively. Calculation parameters g f = [3.0, 3.0, 2.0], β=0 0 , , v slow =9.4 GHz, interspin distance R=10Å. In each case the dashed line is the 1/T 1dipolar calculated by using an isotropic g average = [g f 1 +g f 2 +g f 3 ]/3=2.67.

In Figure 10 for an axial g f -tensor and β=30 0 , the angular dependence becomes more complicated, however that same trends are observed. For all the phi-angles, for θ values lower than ~54 0 , the 1/T 1dipolar is decreasing for shorter T 2 f =T 1 f values approaching the limit where w s T 1 f ~ 1 i.e. T 1 f ~ 0.017nsec in the present calculations. In Figure 10, for θ values >54 0 the 1/T 1dipolar is enhanced for shorter T 2 f =T 1 f values.

Calculations at other beta values, can be easily performed by using expression (25),

showing that shortening of the T 2 f =T 1 f values appears to suppress the angular dependent terms, thus the 1/T 1dipolar profile for the anisotropic g f -tenor resembles that for g f average , all cases β=30 0 , other parameters as in Figure 2. For each case, the dashed lines are the 1/T 1dipolar calculated by using an isotropic

g average = [g f 1 +g f 2 +g f 3 ]/3=2.67.
Analysis of the spectral density functions J(w s ), J(w f ± w s ) provides further useful insight on the relative importance of the various terms. In Figure 11 we present J(w s ), J(w f ± w s ) calculated for the case corresponding to the parameters of Figure 9. We notice that at relatively long T 2 f =T 1 f =1nsec, i.e. w s T 1 f >> 1, the spectral density function J(w f -w s ) is the dominant term, which imposes a strong angular dependence, see Figure 11. This is also the case discussed in Figures 2345678for even shorter and dissimilar T 2 f and T 1 f . For T 2 f =T 1 f approaching the limit where w s T 1 f ~ 1

i.e. T 1 f ~ 0.017nsec, terms J(w s ) become comparable with J(w f -w s ). FIGURE 11. Comparison of the effect of the T 1 fast and T 2 fast on the spectral density functions J(w s ), J(w f ± w s ). Other parameters as in Figure 9.

The term J(w s ) is angular independent, therefore its increasing contribution is responsible for the observed smoothing of the angular dependence observed in Figures 9, and similarly in Figure 10, for T 2 f =T 1 f approaching the limit w s T 1 f ~ 1. For T 2 f =T 1 f shorter than 1/w s i.e. see curves for T 2 f =T 1 f = 0.01nsec in Figure 11, all the spectral densities decrease, due to the decoupling of the fast relaxing spin from the slow relaxer.

Overall the discussion at the limit of fast T 2 f =T 1 f reveals that for T 2 f =T 1 f approaching the limit w s T 1 f ~ 1 the term J(w s ) which is angular independent, attains increasing contribution resulting in a smoothing of the angular dependence of the 1/T 1dipolar. 25) by summing over a grid of spatial orientations of the magnetic field relative to the interspin vector i.e. over a grid of angles θ and φ. According to standard notation we assume exponential recovery (2) with an angular weight function sinθ [START_REF] Hyde | Spin Labling II:Theory and Applications[END_REF][START_REF]Distance Measurements in Biological Systems by EPR in Biological Magnetic Resonance[END_REF]20,24). Representative powder saturation recovery curves calculated in this way concern an axial g f -tensor. By comparing the powder saturation recovery for the anisotropic g ftensors with that calculated by using an isotropic g average we observe that for beta values larger than zero the saturation recovery in the powder spectrum can be sensitive to the details of the orientation of the fast relaxing spin. In all cases we observe a fester recovery for β values approaching 90 0 . This is due to the choice of g 3 f value of 2.0. At β 90 0 the spectral density J(w f -w s ) is maximized since the w f -w s difference is diminished. With regard to the effect of the T 1 f and T 2 f we observe that for values approaching the limit of 1/ws, i.e. 0.017nsec in the present calculations, the powder saturation recovery becomes less sensitive to the β value. This stems from the smoothening of the angular dependence of the spectral density J(w f -w s ) and the contribution of the terms J(ws), see Figures 9 and10.

Conclusions

An analytical expression for 1/T 1dipolar , equation (25) has been derived for the general case of a rhombic g f -tensor. Based on this, the present analysis shows that the orientation of the g f plays a significant role. The use of a g average should be treated with caution. On the other hand, however, in any particular experiment where the g f -orientation is not known, one may perform a grid of estimates based on the particular T 1f , T 2f and the g f -values by using the expression (25).

This will provide quantitative estimates of the interspin distance limits. Based on this analysis a practical protocol is suggested :

(a) if g f i >g s (no g f i is lower than g s ) then the use of g average might give underestimated T -1 dipolar i.e. overestimated interspin distance.

(b) if g f i <gs i.e. if some g f i is smaller than g s then the use of g average might give overestimated T - 1 dipolar i.e. underestimated interspin distance. (c) in any particular experiment where the g f -orientation is not known, one must perform a grid of estimates based on the particular T 1f , T 2f and the g f -values by using the expression (25). This would provide limits for the distance estimation based on the dipolar relaxation enhancement.

Finally in another context, he effects of the g f -anisotropy, as highlighted here, are expected to be of particular importance in high-field EPR experiments where orientation selection is enhanced. 
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 1 FIGURE 1: Reference axes systems

  equations (11a) and (11b) the explicit form of the m F(1) components is

89x 10 10

 10 Hz (v = 9.4 GHz). The choice of the particular values do not harm the validity of the conclusions and observations made here. Other values can be tested straight forwardly by using expression(25). a) Axial g f -tensor: In the case of an axial g f -tensor with g 1 = g 2 = g ⊥ and g 3 = g || , we have A= g ⊥ and zero rhombicitry B=0.

FIGURE 2 .

 2 FIGURE 2. (Left) Theoretical dipolar relaxation enhancement 1/T 1dipolar calculated by using expression (25), for a fast relaxing spin with an axial g f tensor coupled to a slow relaxing spin with isotropic g s =2.0 (solid line) as a function of the polar angles θ and φ, see Figure 1 for definition. The curves for various angles φ coincide. Calculation parameters g f = [3.0, 3.0, 2.0],

FIGURE 3 .FIGURE 4 .

 34 FIGURE 3. (Left) Theoretical dipolar relaxation enhancement 1/T 1dipolar calculated by using expression(25), for a fast relaxing spin with an axial g f tensor coupled to a slow relaxing spin with isotropic g s =2.0 (solid line) as a function of the polar angles θ and φ. Calculation parameters β=30 0 , other parameters as in Figure2. The dashed line is the 1/T 1dipolar calculated by using an isotropic g average = [g f 1 +g f 2 +g f 3 ]/3=2.67. (Right) Angular dependence of the spectral density factors J(ω s ), J(ω f ± ω s ).
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 4 Figure 4.

FIGURE 5 .

 5 FIGURE 5. (Left) Theoretical dipolar relaxation enhancement 1/T 1dipolar calculated by using expression(25), for a fast relaxing spin with a rhombic g f tensor coupled to a slow relaxing spin with isotropic g s =2.0 (solid line) as a function of the polar angles θ and φ, see Figure1 for

FIGURE 6 .

 6 FIGURE 6. (Left) Theoretical dipolar relaxation enhancement 1/T 1dipolar calculated by using expression(25), for a fast relaxing spin with an axial g f tensor coupled to a slow relaxing spin with isotropic g s =2.0 (solid line) as a function of the polar angles θ and φ. Calculation parameters β=30 0 , other parameters as in Figure5. The dashed line is the 1/T 1dipolar calculated by using an isotropic g average = [g f 1 +g f 2 +g f 3 ]/3=2.67. (Right) Angular dependence of the spectral density factors J(ω s ), J(ω f ± ω s ).

  3 . (b) the T - average ) might become larger than T -1 dipolar (g f ).

IFIGURE 10 .

 10 FIGURE 10. Comparison of the effect of the T 1 fast and T 2 fast on the 1/T 1dipolar . Calculation parameters (I) T 1 fast=T 2 fast=1nsec (II) T 1 fast=T 2 fast=0.1nsec, (III) T 1 fast=T 2 fast=0.01nsec. In

FIGURE 12 .are displayed in Figure 12 .

 1212 FIGURE 12. Theoretical saturation recovery curves. Calculation parameters (a) Rhombic g ftensor: g f = [3.5, 2.5, 2.0], T 1fast =T 2fast =0.1nsec. (b) as in (a) with T 1fast =, T 2fast = 0.01nsec. (c) Axial g f -tensor:g f = [3.0, 3.0, 2.0], T 1fast =T 2fast =0.1nsec (d) as in (c) with T 1fast =T 2fast =0.01nsec. In all cases g s =2, v slow = 9.40GHz, interspin distance R=10Å. The dashed lines are calculated by using an isotropic g average = [g f 1 +g f 2 +g f 3 ]/3.
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  T 1f , and transverse, T 2f, relaxation times of the fast-relaxing spin respectively. (c) for S f >½, although different transitions of the fast-relaxing spin may have different relaxation times, common T 1f , and T 2f are assumed. The validity of this assumption is discussed in the literature
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  Usually the majority of relaxation measurement experiments are carried out in frozen solution or powder samples. A powder saturation recovery curve can be calculated by using equation (
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