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Computational modelling of complex systems continues to be an important and active area of research [START_REF]Modern Methods for Multi-Dimensional Dynamics Computation in Chemistry[END_REF]. There are essentially two different broad classes of approach to such modelling.

In the first approach, a molecule or material is not considered to be composed of recognizably distinct atomic, ionic or molecular sub-units, which means that the electronic structure of the entire system has to be computed by some non-empirical technique. This not only has the advantage of avoiding the need to partition the system into sub-units but furthermore can, in principle, be refined to achieve any desired accuracy if a fully ab initio technique is employed. Although the Hartree-Fock method can capture the majority of the covalent or charge-charge interactions, it fails to describe the dispersive attractions which can be crucially important for chemically non-bonded systems such as a liquid, clusters or noble gas atoms or in the prediction of phase transitions. However the Hartree-Fock predictions can be refined both to eliminate this deficiency and to describe further correlation effects by techniques such as Møller-Plesset perturbation theory, the coupled cluster method or full configuration interaction. However, such post Hartree-Fock methods become so demanding of computational resources that they cease to be practical for systems much smaller than those containing around 50 or 100 atoms of interest in the modelling of materials or molecules or ionic crystals encapsulated in carbon nanotubes, topics of current interest [START_REF] Wilson | [END_REF][3][4]. This difficulty provided one of the main motivations for the development of density functional theory (DFT) which, although remaining in the first broad class of approach, is much less computationally demanding than the fully ab initio methods. Furthermore the Hohenberg-Kohn theorem [5], which states that the ground state energy is a unique functional of the electron density, provides the fundamental underpinning for the continuing attempts to improve the functionals that have to be used in this approach. However since the present state of development of these functionals can cause any prediction derived from DFT to depend non-trivially on the choice of functional, this approach, unlike the fully ab initio techniques, cannot be systematically refined to achieve any The limitations just described of approaches, in which the entire material of interest is treated as one large indivisible system, have provided and will continue to strongly motivate the development and use of the second broad class of methods. In these latter, recognizably independent sub-units are identified and the interactions between them derived from either a semi-empirical or an ab initio technique. The much lower computational demands of such methods are likely to ensure that not only will they continue to be widely used but also that they will often be the preferred option on account of the physical insights they afford.

Although purely empirical fitting of the interactions between the sub-units is likely to continue to be useful, the more flexible approach of calculating these interactions using either an ab initio or a non-empirical method is both attractive and likely to prove to be of greater ultimate utility. These methods are most commonly based on a Hartree-Fock description of the short-range or charge-dependent interactions which is augmented by some description of the electron correlation which might contain explicitly introduced dispersive attractions. The approach of Tang and Toennies [6,7] explicitly introduces the dispersive attractions including their damping arising at inter-nuclear separations at which the overlap of the wavefunctions of the interacting species is not negligible. It has, however, been pointed out [8] that the one parameter controlling the damping is determined by fitting to the Hartree-Fock or repulsive part of the potential which implicitly introduces some effects depending on inter-atomic electron exchange. Since the true dispersion does not involve any such electron exchange, it is not clear that the term called dispersion in this approach does not contain effects arising from electron exchange [8]. By contrast, the first application [9] to the noble gas dimers of a DFT method, which was based entirely on the theory of a uniform electron-gas of infinite extent, apparently provided a good description of the binding even though the only correlation term introduced was that occurring in such a gas. However, it was subsequently shown [10][11][12] that this good agreement was at least partly fortuitous and arose because the absence of any explicitly introduced dispersion was compensated by an overestimation of the attractive exchange interaction. These works then demonstrated that, after correcting this latter problem, it was necessary to introduce the dispersion explicitly. Indeed the inter-atomic correlation energy of electron-gas theory is of short-range because it depends explicitly on the overlap of the electron densities and therefore vanishes for inter-nuclear separations sufficiently large that the overlap is negligible. This shows that, at such separations, the dispersion constitutes the only attraction where it assumes its undamped form with the leading term taking the standard 6 6 --R C form. Furthermore, the theoretical analysis of Bohm and Yaris [13] demonstrated that, at intermediate separations where the overlaps of the wavefunctions of the interacting species is not negligible, the correlation contribution to the interaction energy contains a short-range term arising from electron exchange that is entirely distinct from the dispersive attraction.

The conclusion from the studies of the noble gas dimers that both the dispersion and short-range correlation must both be included firstly raised the question as to whether, at intermediate inter-nuclear distances, the evaluation of the short-range correlation energy using electron-gas theory introduced any partial double counting into the evaluation of the total correlation energy. An argument presented by Rae [11] suggested that there was no significant double counting. Secondly, the question arose as to whether the dispersion needed to be damped. These considerations were thoroughly investigated in studies [14][15][16][17] of the cohesive properties of ionic solids in which a near Hartree-Fock description of the individual ion wavefunctions computed by including a description of their interaction with their environment in-crystal was augmented by both the short range correlation as well as the damped dispersive attractions. In particular, it was shown [14] that the cohesion is underestimated if the short-range correlation was omitted but that it was 5 overestimated if the dispersion was not damped. However, inclusion of both these correlation terms was shown to provide an excellent account of the cohesive properties of a wide range of highly ionic crystals. In particular this approach was able to solve [16,17] the long standing problem [18][19][20][21] of explaining and calculating the difference between the energies of the six-fold and eight-fold coordinated phases of caesium chloride.

The object of this paper is to report further tests of the conclusion that the inter-atomic correlation energy is composed of both the short-range electron-gas term plus the damped dispersive attractions by reexamining the binding in the noble gas dimers. These systems provide a much more sensitive test of the correctness of this approach than the ionic crystals because, for the former, these correlations constitute the only attractions in contrast to the latter where the much stronger coulombic forces with the attendant larger short-range repulsion induced by the smaller separations could possibly partially mask small deficiencies in the description of the correlation terms.

Methodology

The potential energy ) (R V XY of the atoms X and Y when separated by a distance R is given by [START_REF]Modern Methods for Multi-Dimensional Dynamics Computation in Chemistry[END_REF] when measured relative to the sums of the energies of the isolated atoms. Here, ) (R V HF XY is the interaction energy computed from Hartree-Fock theory, the data being taken from the literature references presented in the footnotes to Table 2. These reported Hartree-Fock interaction energies had all been corrected for basis set superposition error. The term ) (R V SC XY is the short-range correlation contribution computed from the free atom Kim [9]. The last term in equation ( 1) is the inter-atomic dispersive attraction, so that the entire approach defined by this equation can be designated the Hartree-Fock plus short-range correlation plus damped dispersion (HFSCDD) method.
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Numerical Hartree-Fock or Dirac-Fock atomic wavefunctions were used to evaluate the short-range correlation contribution. For each interacting pair of atoms, the total correlation energy of the dimer and those of the two isolated atoms were computed by numerical integration performed on the same grid with the difference between the dimer integral and the sum of those for the two isolated atoms yielding ) (R V SC XY . These techniques avoid any possible basis set superposition errors which can arise in computations using a basis set expansion description of the atomic wavefunctions. For all the dimers considered here, both

) (R V HF XY and ) (R V SC XY
were computed using non-relativistic theory. For Xe 2 , results will also be presented from the fully relativistic theories based on the Dirac equation and four component wavefunctions for the individual orbitals.

The theory presented by both Jacobi and Csanak [22] and by Koide [23], which is valid for all internuclear separations, enables the dispersion energy ) (R V disp XY to be expressed as [START_REF] Wilson | [END_REF] when the leading dipole-dipole and dipole-quadrupole terms are retained. Here the values presented in Table 1 for the ) ( 6 XY C coefficients of the homonuclear pairs are those previously presented [14] as the averages of the variety of different determinations cited earlier by Clugston [24]. The dipole-quadrupole dispersion 
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, taken from [25] were derived using the Casimir-Polder integral from values of atomic polarizabilties at imaginary frequencies calculated from trustworthy ab initio computations. The quantities ) ( 
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χ and all the dipole-quadrupole terms subsequently derived [14,15] from the fundamental theory of [23]. Each dispersion damping parameter presented in Table 1 was calculated from the expression (4) provided by the analysis presented by Lassettre [26]. Here, I X , expressed in atomic units, is the ionization potential of the ground state of atom X, whilst ∆E X is the excitation energy (also in a.u.) to the lowest excited 1 
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The predictions of the HFSCDD method

The cohesive energies, D e , and equilibrium inter-nuclear distances, R e , predicted from the HFSCDD method (equation ( 1)) are compared with experiment in Table 2. The experimental value for Ar 2 has been queried, it being suggested [27] from the results of an ab initio computation believed to be of high accuracy that the experimental D e is 4.36 × 10 -4 a.u.. The predictions derived from (1) agree sufficiently well with experiment that it can be concluded that this method does indeed capture the essential physics of the interactions.

The importance of both the short-range correlation and the dispersion can be illustrated by the result for Xe 2 that D e is significantly underestimated with R e overestimated unless both these interactions are included. Thus, D e and R e are predicted to be 5.50 × 10 -4 a.u. and 8.76 a.u. if

) (R V SC XY is omitted from (1) whilst neglect of ) (R V disp XY
yields D e and R e values of 6.22 × 10 -4 a.u. and 9.55 a.u.. For R values in the vicinity of R e , the magnitude of dipole-dipole and dipole-quadrupole dispersion energies are, for the noble gas dimers, typically found to be reduced by about 80% and 50% respectively compared with their undamped values. These fractions increase with increasing atomic number becoming 92% and 75% for Xe 2 . The need for this damping is shown by the typical result that, with the inclusion of ) (R V SC XY and undamped dispersion, the cohesion of Xe 2 is significantly overestimated with calculated D e and R e values of 13.99 × 10 -4 a.u. and 7.85 a.u. respectively. However, this cohesion is underestimated if paper. For Xe 2 , the importance of relativistic effects is shown by the result that the predictions derived from the HFSCDD method using non-relativistic theory are in slightly, but significantly less, good agreement with experiment than the corresponding relativistic results.

) (R V SC XY omitted, even if the dispersion is not
The present investigation of the relative importance of

) (R V SC XY and ) (R V disp
XY is more conclusive than the earlier tests [10][11][12]28] in which not only was the dispersion energy undamped but also the short-range repulsion was derived without considering any modifications of the atomic wavefunctions caused by their mutual overlapping. The latter effect, described by the Hartree-Fock wavefunctions for the dimer, can only lower the energy compared with the repulsion derived from the purely atomic wavefunctions. The actual tests used the electron-gas method in its most satisfactory modification [12]. However, for the noble gas dimers, this was shown to reproduce the repulsion predicted using unmodified atomic wavefunctions [29]. The overestimation of the repulsion predicted using unmodified atomic wavefunctions will tend to cancel that of the magnitude of the dispersion evaluated without damping. The importance of the damping of the dispersion at near equilibrium separations as described in the previous paragraph explains why the previous calculations showed satisfactory agreement with experiment, even though the computation of the individual repulsive and dispersive contributions to the energy can no longer be deemed to be entirely satisfactory.

Comparison of ab initio and HFSCDD predictions

The stringency of the tests provided by the noble gas dimers is shown by the predictions (Table 3) of the results of high level ab initio computations performed both with large basis and extensive treatment of electron correlation. The predictions [30] of Møller-Plesset perturbation theory at both second order (MP2) and third order (MP3) levels with even the largest basis set considered are significantly poorer than those derived from the HFSCDD approach. This comment also applies to a lesser extent to the fourth order Møller- Plesset (MP4) predictions [30] including single, double and quadruple excitations. However another set (QZ-MP4) [31] of MP4 computations using quadruple zeta basis sets but considering only Ne 2 and Ar 2 yielded results slightly better than those derived from the HFSCDD method. These authors also performed MP2 and MP3 computations but did not report the results in detail because they considered that the predictions did not attain a level of agreement with experiment worthy of publication.

The coupled cluster computations [30] with single, double and non-iterated triple excitations using their largest basis set, CCSD(T) yielded predictions which are overall less satisfactory than those resulting from HFSCDD calculations, this being especially marked for Kr 2 . However, for the Ne 2 and Ar 2 systems examined [31], the CCSD(T) predictions (QZ-CCSD(T)) derived using quadruple zeta basis sets are more accurate. The CCSD(T) results (QTZ-CCSD(T)) derived [32] using an even larger quintuple zeta basis set for Ne 2 and Ar 2 are marginally more accurate than those derived from the QZ-CCSD(T) method. Although the predictions [33] for Kr 2 afforded by the QTZ-CCSD(T) computations are slightly better than those of the HFSCDD approach, this is not the case for the heteronuclear dimers. The predictions for the binding energies of all three heteronuclear dimers produced by the HFSCDD method are very slightly more accurate than those [32,33] of the QTZ-CCSD(T) approach, as is the case for equilibrium separations of NeAr and NeKr. The computations [27] being performed at just one fixed R are not included in Table 3. For Kr 2 , the total potential
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predicted by the HFSCDD method is compared in Figure 2 with both the QTZ-CCSD(T) potential curve as well as that derived by fitting to experimental data. This figure shows that both the HFSCDD and QTZ-CCSD(T) curves faithfully reproduce that derived by fitting to experimental data. The overall conclusion from the results assembled in Table 3 is that one must use the CCSD(T) approach with a very large quadruple or quintuple zeta basis set before the ab initio approach has been refined to a level at which it can yield results more accurate than those derived from the HFSCDD method.

DFT predictions of noble gas dimer binding

The ability of no less than 18 different variants of density functional theory to predict the cohesion of the noble gas dimers was recently investigated [34]. It was concluded that the variant [35], called B97-1, which uses a hybrid combination of Hartree-Fock exchange and a density functional based on a generalised gradient approximation (GGA) was the most satisfactory. The predictions derived from this method are presented in the first line of Table 4. However, it is hard to understand how this approach can be considered to be satisfactory when several D e values are underestimated by a factor of almost two. Since the performance of the other methods examined [34] was even less satisfactory these results do not need to be reproduced here.

The predictions of some other DFT variants presented in Table 4, not reported in [34], are also presented in Table 4. The results labelled B3LYP+disp. in Table 4, derived combining a B3LYP functional with the van der Waals corrected functional suggested by Andersson, Langreth and Lundqvist [37], are also seen to be unsatisfactory. The predictions presented in the third and fourth rows of Table 4 derived from two different gradient corrected approximations [38] not only differ significantly from each other but, also, neither of the two sets of results agrees with experiment. Furthermore the GGA-PW91 approach predicts that the dissociation energies of all six dimers lie within the same 0.11 × 10 -4 a.u. range between 5.26 × 10 -4 a.u. and 5.33 × 10 -4 a.u., thereby failing to reveal any of the experimental trends in the binding energies. The GGA-PBE method experiences exactly the same difficulty with all the binding energies lying between 2.13 × 10 -4 a.u. and 2.43 × 10 -4 a.u. . The last two lines of results in Table 4 show the independent predictions of two 12 groups [30,35] of the mPW1PW91 functional described in [30]. Not only do these two sets of results differ significantly, but again neither set is in agreement with experiment. Furthermore the second set of predictions, like those of the two GGA methods, fails to reveal any of the trends in the binding energies, all of which are predicted to lie between 0.80 × 10 -4 a.u. and 1.1 × 10 -4 a.u. .

Conclusion

Potential energy curves for the noble gas dimers have been constructed as the sum of the Hartree-Fock term for the dimers augmented with both a short-range correlation energy derived from the theory of a uniform electron-gas and a dispersive attraction damped according to the theory of Jacobi and Csanak. The very small size of the binding energy in these systems coupled with the absence of any attractive forces other than those arising from electron correlation cause these dimers to constitute a very severe test of any theory.

The very satisfactory agreement with experiment shown by the binding energies and equilibrium inter-nuclear separations predicted from this HFSCDD method confirm the previous conclusions from the study of ionic crystals that this approach captures the essential physics.

Table 5 presents the root mean square percentage errors (σ ) in both the dissociation energies and equilibrium separations predicted by all the methods considered in this paper for which there are results for more than two dimers. All the methods considered, excepting the QTZ-CCSD(T) approach, perform better for the heteronuclear than for the homonuclear dimers as shown by the HET σ values being slightly smaller than those of HOMO σ .

The overall errors (Table 5), derived by considering all six dimers, show that ab initio computations have to be taken to the level of coupled cluster theory with single, double and perturbative triple excitations and very large quadruple or quintuple zeta type basis sets before the predictions can become more accurate than those of the HFSCDD method. Ab initio computations at the QTZ-CCSD(T) level of sophistication are quite impractical for large systems containing at least several tens of atoms. Furthermore, for these weakly bound systems where the dispersive attractions are important, both the results presented in Table 4 and the large percentage errors appearing in Table 5 show the shortcomings of DFT as presently implemented.

Consequently, the approach of suitably partitioning large systems into sub-units whose mutual interactions are calculated according to the HFSCDD scheme is to be recommended as the most accurate and physically transparent approach to studying such cases.
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χ is taken from [22] whilst the remainder were derived elsewhere [14,15] from the fundamental theory of [22] (note the errata in [15] to the relations in [14]).

For the homonuclear (XX) dimers, the damping functions reduce to the following: 
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The heteronuclear (XY) functions, however, are more complicated and involve some polynomials Krypton -Krypton interaction potential V KrKr (R) (10 -4 a.u.)

Q n . [ ] [ ] 2 2 2 10 4 2 2 9 2 2 1 1 5 ) ( ) , , ( ) , , ( ) , , ( ) , , ( 1 ) 
( R d X Y R d Y X X Y Y X Y X R d X Y R d Y X X Y Y X Y X DD XY Y X Y X e R d d Q e R d d Q d d d d R d d e R d d Q e R d d Q d d d d d d R - - - - - - -         - +           -         - + = χ [ ] [ ] 2 
( R d Y X R d Y X Y X X Y Y R d Y X R d Y X Y X X Y DQ XY Y X Y X e R d d Q e R d d Q d d d d R d e R d d Q e R d d Q d d d d R - - - - - - -         - +           +         - + = χ [ ] [ ] [ ] ) , , ( ) ( ) , , ( ) , , ( 1 ) 
x R y x Q         - - - + + + - - = - - - - - - - [ ] ( ) ( ) 6 
QTZ-CCSD(T) results from reference [33] 'Expt' best empricaly fitted potential (HFD-B) from reference [41] citing reference [46] -10 a See notes a and c to Table 2 c Reference [30] d Reference [32] (Ne 2 , Ar 2 , NeAr), otherwise Reference [33] e Present work f Reference [34] g Reference [38] h Reference [30] 

  accuracy. Furthermore this technique, in its current state of development, does not capture the dispersive attractions.

  density functional theory of a uniform electron gas as implemented byGordon and 

  functions each of which depends only on R and two dispersion damping parameters d X and d Y that are determined solely by the properties of the atoms X and Y respectively. Each damping function is unity for R sufficiently large that the overlap of the wavefunctions of X and Y is negligible and decreases with decreasing R, thereby reducing the magnitude of the undamped energy where this overlap ceases to be negligible. For the homonuclear case, the sum of the two dipole-quadrupole terms in (2) reduces to 8 damping the dipole-dipole term in a homonuclear pair, derived by Jacobi and Csanak[23] is presented in the Appendix, together with those for both the heteronuclear function ) ( ) (

  damped, as shown by the Xe 2 D e and R e predictions of 7.76 × 10 -4 a.u. and 8.30 a.u.. For Kr 2 , the contributions of the SCF repulsion, short-range correlation energy and damped dispersion are depicted as a function of internuclear separation in Figure1. These results are typical of those for the systems studied in this
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  Figure 1Components of the Kr-Kr interaction potential
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Table 1

 1 Parameters for the evaluation of the dispersion energy (atomic units) a

	Page 19 of 24							
	Pair (XX) C 6 (XX)	C 8 (XX)	d X	Pair (XY)	C 6 (XY) C 8	(DQ) (XY) C 8	(QD) (XY)
	Ne 2	6.93	64.8	1.855	NeAr	18.4	205	120
	Ar 2	68.5	1522	1.623	NeKr	25.7	362	168
	Kr 2	139	3909	1.540	ArKr	96.7	1371	1077
	Xe 2	301	13078	1.438				
	a see text for sources of data					
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Table 2

 2 Comparison of the HFSCDD method with experiment a,b

						Molecular Physics	Page 20 of 24
		Ne 2		Ar 2		Kr 2		Xe 2 rel
		Theory	Expt c	Theory	Expt c	Theory	Expt c	Theory	Expt d
	D e	1.546	1.338	4.268	4.536	5.943	6.372	9.595	8.940
	R e	5.761	5.841	7.207	7.099	7.750	7.574	8.283	8.244
		Xe 2 non-rel	NeAr		NeKr		ArKr	
		Theory	Expt d	Theory	Expt e	Theory	Expt e	Theory	Expt e
	D e	8.125	8.940	2.08	2.140	2.16	2.267	5.37	5.754
	R e	8.513	8.244	6.62	6.593	6.92	6.843	7.46	7.330

a Energies for potential well depths are given in 10 -4 Hartrees and bond lengths in atomic units b Hartree-Fock repulsion energies taken from

[39] 

(Ne 2 ),

[40] 

(Ar 2 , Xe 2 ),

[41] 

(Kr 2 ),

[42] 

(NeAr, NeKr, ArKr) c Reference

[43] 

d Reference

[44] 

e Reference

[45] 
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Table 3

 3 Comparison of other ab initio predictions with experiment a Reference[32] (Ne 2 , Ar 2 , NeAr), otherwise Reference[33] 

	ArKr

a See notes a, c, d and e to Table

2

b Reference

[30] 

c Reference

[31] 

d URL: http://mc.manuscriptcentral.com/tandf/tmph Molecular Physics F o r P e e r R e v i e w O n l y

Table 4

 4 Comparison of selected DFT predictions with experiment a

	Page 23 of 24					Molecular Physics						
		Ne 2		Ar 2		Kr 2		NeAr		NeKr		ArKr	
		D e	R e	D e	R e	D e	R e	D e	R e	D e	R e	D e	R e
	B97-1 b	1.98	5.79	2.95	7.43	3.57	8.07	2.29	6.63	2.42	6.97	3.20	7.76
	B3LYP+disp. c	0.88	5.76	1.15	7.39	-	-	-	-	-	-	-	-
	GGA-PW91 d	5.26	5.68	5.22	7.84	5.26	8.10	5.29	6.54	5.33	6.86	5.22	7.91
	GGA-PBE d	2.06	5.83	2.24	7.61	2.43	8.23	2.13	6.60	2.20	6.93	2.28	8.04
	mPW1PW91 (1) e	1.72	6.05	7.65	8.69	7.33	9.45	-	-	-	-	-	-
	mPW1PW91 (2) b	1.10	6.48	0.84	8.79	0.80	9.51	1.02	7.50	1.04	7.75	0.83	9.18
	Expt	1.338	5.841	4.536	7.099	6.372	7.574	2.140	6.593	2.267	6.843	5.754	7.330

a See notes a, c and e to Table

2

b Reference

[34] 

c Reference

[36] 

d Reference

[38] 

e Reference

[30] 
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Table 5

 5 Percentage root mean sqaure errors (σ) in predicted binding energies and bond lengths a,b

	Method						
		σ HOMO	σ HET	σ ALL	σ HOMO	σ HET	σ ALL
	MP2 c	15.4	-	-	2.2	-	-
	MP3 c	28.5	-	-	3.5	-	-
	MP4 c	27.9	-	-	3.5	-	-
	CCSD(T) c	10.9	-	-	3.5	-	-
	QTZ-CCSD(T) d	3.7	7.3	5.8	0.8	1.2	1.0
	HFSCDD e	9.7	5.0	8.0	4.9	1.2	3.8
	B97-1 f	43.0	26.2	35.6	4.7	3.6	4.2
	GGAPW91 g	169.8	115.5	145.2	7.4	4.6	6.2
	GGAPBE g	55.7	34.9	46.5	6.5	5.6	6.1
	mPW1PW91 h	69.8	65.8	67.8	21.1	18.3	19.8
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Appendix : The dispersion damping functions

The damping functions were all derived from the theory of Jacobi and Csanak [22]. The explicit result for ) (