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) is studied for a p continuous laser in the long wave length(LWL) approximation, i.e. λ 100 Å. Perpendicular to the gas-solid interface the potential, the electron density, and consequently the laser fields, vary at an atomic scale and the LWL approximation does not apply. The vector potential associated to these spatially varying laser fields, written in the temporal gauge U = 0, is obtained by solving Maxwell and material equations. In the present model the material functions entering these material equations dependent on the electron density ρ(z) perpendicular to the surface of the material system and on the bulk material constants. Using these spatially varying laser fields, the photoabsorption spectrum of the surface, the first image and the Fermi states of Al(001) is calculated using the Fermi golden rule. For the first time in the case of a realistic potential, this spectrum is analyzed in terms of the contribution to the photoabsorption yield: the velocity, the surface and the interference terms. All these terms contribute to the yield and the total yield function of the laser frequency below 25 eV compares fairly well with the experiment.

This paper presents a calculation of the surface photoeffect of excitation from the surface and image states and the Fermi level at a planar gas-solid interface in the long wave length(LWL) domain, i.e. λ 100 Å or, equivalently, energies ω 124 eV. At the gas-solid interface the potential and electron density perpendicular to the surface sharply vary at the interface and the LWL approximation does not apply to this case. In this paper we present a model taking into account this sharp variation in the dielectric function of the material system then solving the corresponding Maxwell equations where this dielectric function appears.

In the gas phase the photoelectron spectrum of atoms and molecules show regularities that can be systematized as Rydberg series. These series appear due to the Coulomb potential 1/r having a long range tail. Because of the small size of the molecules relative to the Rydberg electron mean radius, the main trends of the Rydberg spectra of atoms and molecules are the same, only the detailed structure differs. At a gas-solid interface the image states, and possibly the surface state as a first member, also form Rydberg series. The independent variable in the gas phase Rydberg series is r and the potential function is 1/r. At the surface the independent variable is z, the coordinate normal to the surface, and the image potential function is 1/4z. A Rydberg electron of an atom populates an orbit of large r but can not leave the atom. A surface or image state electron fly freely above the surface at a mean height z but again can not escape to the vacuum. In metallic clusters of about a hundred of atoms [START_REF] Rinke | Image states in metali clusters[END_REF] the image states are present with a different analytic form of their potential, namely 1/r and 1/r 4 respectively near the cluster border and asymptotically. In a metallic tube of radius R t [START_REF] Rinke | Image states in metali clusters[END_REF], the image potential decays asymptotically as 1/[r R t ln(r/R t )] and again Rydberg series are present. In summary the Rydberg series are present in gas phase, at surfaces, in clusters, and for nearly one dimension objects like nano tubes. The beauty of the Rydberg series is their simple analytic formula for the energy E n = C/(n -δ) 2 , where the constant C depends on the nature of the system, n is the principal quantum number and δ is the quantum defect.

Christian Jungen and coworkers developed a scattering theory based on a generalization of the Rydberg formula called multichannel quantum defect theory or MQDT [START_REF] Greene | Molecular Application of Quantum Defect Theory[END_REF][START_REF] Jungen | Molecular applications of quantum defect theory[END_REF]. They first applied this theory to the interaction between the Rydberg series and the electronic continuum in the diatomic molecules then extended their theory for other asymptotic potentials of the electronic and the nuclear motion of small molecules. The MQDT divide the geometrical space in two regions: the inner region where the interaction potential between the particles is The prerequisite for the MQDT, that then obtains the spectrum for large energy domains, are the quantum defects of the channels and the interactions between them. In literature [START_REF] Lippmann | Surface states in crystals[END_REF][START_REF] Echenique | Theory of image states at metal surfaces[END_REF][START_REF] Plummer | More than skin deep[END_REF][START_REF] Gauyacq | Lifetime of excited states at surfaces: CO-(2π) resonance on Cu(111) and Cu(100) surfaces[END_REF][START_REF] Echenique | Decay of electronic excitations at metal surfaces[END_REF], the surface and image states have been studied in detail by other methods and they can furnish the input parameters of the MQDT. As discussed in detail in a review by Onida et al. [START_REF] Onida | Electronic excitations: density-functional versus many body green function approaches[END_REF], these states have also been studied using density functional theory or DFT with several exchange-correlation functionals. These results can also be used as an input for the MQDT.

In this paper we study the photoabsorption spectrum of the surface, image and Fermi states of (001) surface of aluminium. Therefore this work can also be viewed as a starting point for a MQDT calculation and analysis. Here we will concentrate on the influence of the spatial variation of the vector potential of the light at the interface mentioned above on the photoabsorption yield. We use the realistic model potential of Chulkov et al. [START_REF] Chulkov | Image potential states on metal surfaces: binding energies and wave functions[END_REF] parametrized from a density functional theory (DFT) calculation.

For the Al(001) surface our results show that the inclusion of the velocity, the surface and the interference contributions to the photoabsorption yield are indispensable for a meaningfull calculation.

Model

For a linearly polarized laser incident to a planar gas-solid interface one defines a plane of polarization or of incidence (POI; here xOz, see figure 1) by the laser incident direction defined by the wave vector q and the direction z normal to the surface. For the present gas-solid system there are two meaningfull coordinate systems: the photon coordinate system defined by the propagation direction of the light q with the photon electric and magnetic fields perpendicular to it and the surface coordinate system defined by the above POI and the plane parallel to the surface. The Coulomb gauge condition ∇ • A = 0 can not be fulfilled simultaneously in the photon and the surface coordinate systems. Here the Coulomb gauge is enforced in the photon Figure 1: Plane of the incidence (POI) of the laser defined by its wave vector q and the normal to the surface z. The p polarized laser is incident at an angle θ i , the vector field A is in the POI and the surface is planar and structureless.

coordinate system and the temporal gauge, i.e. the scalar potential set to zero, is used in the calculations done in the surface coordinate system (see a very pedagogical discussion of the gauges used in physics by Heras [START_REF] Heras | How the potentials in different gauges yeld the same retarder electric and magnetic fields[END_REF]).

Maxwell and material constants equations

We restrict the discussion to the laser p polarization, with the electric field or vector potential in the POI, where the surface photoeffect appears. For this polarization (see fig. 1) the two projections of the field are the standard transverse (x) and the longitudinal or surface (z).

Let us start by writing the Maxwell equation for the classical fields involving the current density

∇ × H - ∂ D ∂t = J, (1) 
where we restrict the discussion to non magnetic materials with the permeability µ = µ 0 and we use the SI or the atomic system of units, i.e. 0 µ 0 = 1/c 2 .

The displacement D and the current J in the above equation can be written in terms of the material equations electron density of the material system itself a function of the depth z. To understand this connection let us consider, for example, the Drude-Lorentz model of metals (see e.g. Wooten [START_REF] Wooten | Optical properties of solids[END_REF])

D = ε b E J = σ E = -i ε c ω E. (2) 
ε b = 1 - ω 2 p ω 2 -ω 2 0 + i ω/τ b ε c = 1 - ω 2 p ω(ω + i/τ c ) (3) 
where τ b and τ c are the lifetimes of bound and conduction electrons and ω 0 is a characteristic frequency related to the excitation of bound electrons. In the above equation, the plasma frequency ω p is a function of the electron density ρ s in the bulk

ω 2 p = e 2 ρ s m ε 0 , (4) 
where e and m are the electron charge and mass. In eq. ( 4) one can now replace the electron density of the solid ρ s by ρ s ρ(z), where ρ(z) is the electron density of the material system at a given z normalized to the electron density ρ s deep in the solid [START_REF] Lang | Theory of metal surfaces: Charge density and surface energy[END_REF],

ρ(z) = 1 ρ s i F ermi i=1 |ψ i ( r)| 2 d x d y = 1 ρ s i F ermi i=1 (k 2 F -k 2 i ) |ϕ i (z)| 2 . ( 5 
)
Here the unperturbed wave functions of the material system read

ψ i ( r) = ϕ i (z) exp(i k x i x + i k y i y) (6) 
and k x i and k y i are the wave vectors of the electron parallel to the surface and

k 2 i = (k x i ) 2 + (k y i ) 2 .
In equation ( 5) the factor k 2 F -k 2 i corresponds to the number of plane wave functions or to the density of states of conduction electrons parallel to the surface in an elementary volume.

The unperturbed electron density ρ(z) of eq. ( 5) for the Al(001) surface is displayed in figure with the LDA exchange correlation functional. Using the equations ( 5) and ( 4), the local and scalar complex permittivity ε(z, ω) or susceptibility χ(z, ω) can be written in general as

ε(z, ω) = (ε b (ω) + ε c (ω))ρ(z) = ε s (ω) ρ(z) = (1 + χ s (ω)) ρ(z), (7) 
where here ε(z, ω) = ε(z, ω)/ε 0 is the relative dielectric function, ε(z, ω) and ε 0 are the absolute and vacuum dielectric functions. The scalar and local dielectric functions of the solid (superscript "s") can be either calculated using eqs. (3) for the permittivities of the bound ε b and conduction ε c electrons, using more involved models for the permittivity or taking the experimental values from the tables of Palik [START_REF] Palik | Handbook of optical constants of solids[END_REF]. A dielectric function, similar to our equation ( 7), has been used by Bagchi et al. [START_REF] Bagchi | Effect of refraction of p-polarized light on angle-resolved photoemission from surface states on metals[END_REF] for a W(001) surface and by Apell [START_REF] Apell | On the surface photoelectric effect in aluminium[END_REF] and Georges [START_REF] Georges | Calculation of surface electromagnetic fields in laser-metal surface interaction[END_REF] for a jellium surface.

In the temporal gauge (scalar potential set to zero; U = 0), one defines the vector potential through its relations with the laser fields

E = -∂ A/∂ t µ 0 H = -∇ • A. (8) 
For a planar interface between two media and a continuous laser of frequency ω (notation cw), the vector potential can be expressed in the following form

A(x, z, t) = N ω A(z, ω) exp(i q x x -i ω t) (9) 
where q x is the projection of the photon wave vector in x direction and N ω ∼ (ω) -1/2 a normalization factor.

Now one can derive a system of coupled second order ordinary differential equations (CODE) for a p polarized laser through the following three steps: i) introduce eqs. ( 2), ( 7), ( 8) and ( 9) in eq. ( 1); ii) explicit the vector product in eq. ( 1) in the surface coordinate system and equate the equivalent projections; iii) multiply from the left by exp(-i q x x + i ω t) and integrate over r and t. The resulting system of CODE in one dimension perpendicular to the surface reads

               - d 2 A x (z, ω) d z 2 + i q x d A z (z, ω) d z = ω 2 c 2 ε(z, ω) A x (z, ω) q 2 x A z (z, ω) + i q x d A x (z, ω) d z = ω 2 c 2 ε(z, ω) A z (z, ω). (10) 
Particular solutions for our physical problem are obtained by enforcing the boundary conditions for the vector potential obtained from the laws of optics at the boundary of the gas phase. Then, after the discretization of the derivatives, the CODE are converted to a set of first order coupled differential equations which are then solved numerically using the box method (see e.g.

Zwillinger [START_REF] Zwillinger | Handbook of differential equations[END_REF]; p.532). From now on, when possible, we will withdraw from the notations the z and ω independent variables.

Transition probability and photoabsorption intensity

In the Fermi golden rule approximation, the transition probability between an initial ψ i (z) and a final state ψ f (z) reads 11)

ψ f ( r)|O( r)|ψ i ( r) = ψ f ( r)| e 2m ( A( r) • p 0 + p 0 • A( r))|ψ i ( r) = ϕ f (z)| Ō|ϕ i (z) (
O( r) = e 2 m i A( r) • ∇ + ∇ • A( r)) = e i (2 A( r) • ∇ + { ∇ • A( r)} (12) = e 2 m i 2 A x ( r) d d x + A z ( r) d d z + d A x ( r) d x + d A z ( r) d z = N ω e 2 m i 2 A x (z) d d x + A z (z) d d z + i q x A x (z) + d A z (z) d z exp(i q x x -i ω t)
where p 0 = ( /i) ∇ is the linear momentum operator of the unperturbed system, O( r) is the transition operator and {...} in { ∇ • A} means that the derivative does not act on the wave function. The final states ϕ f (z), being continuum states of the electron, are normalized to the energy by matching to a true continuum function in the vacuum, a plane wave of the electron energy in our case.

Using the above transition probability, the photoabsorption yield in Fermi folden rule approximation is proportional to [START_REF] Scheffler | Angle resolved photoemission from adsorbates: theoetical considerations of polarization effects and symmetry[END_REF] Y

∼ [ ψ f ( r)|O|ψ i ( r) ] 2 δ(E f -E i -ω) = Y v + Y surf + Y interf (13) 
Y v = δ(E f -E i -ω) ω ϕ f (z) 2 i k x A x (z) + A z (z) d d z ϕ i (z) 2 (14) 
Y surf = δ(E f -E i -ω) ω ϕ f (z) i q x A x (z) + d A z (z) d z ϕ i (z) 2 (15) 
Y interf = δ(E f -E i -ω) ω ϕ f (z) 2 i k x A x (z) + A z (z) d d z ϕ i (z) ( 16 
)
ϕ i (z) i q x A x (z) + d A z (z) d z ϕ f (z) + cc ,
where the factor 1/ω appears as a consequence of the normalization factor of the vector potential N ω ∼ ω -1/2 (see eq.( 9)). In the above expression for the yield we distinguish three contributions:

the standard velocity term Y v , that would appear even for a vector potential A independent of the spatial coordinate z, the term Y surf responsible for the surface photoeffect and the interference contribution Y interf . The contribution of the interference term can be negative so that the total yield, including surface photoeffect, can not be easily inferred.

Results

The model presented in the preceding section is called vector potential from the electron density or VPED. The vector potential of the laser written in the temporal gauge (U = 0) is calculated in the semi-classical approximation. The Maxwell equation of the current density for the classical vector potential (eq. ( 1)) is combined with the material equations (eq. ( 2)) for the scalar and local. These material functions depend on: i) the bulk experimental dielectric constants at the studied laser angular frequency are taken from the tables of Palik [START_REF] Palik | Handbook of optical constants of solids[END_REF]; ii) the unperturbed electron density of the material system, eq. ( 5), calculated from the Schrödinger equation. Practically, one solves the Schrödinger equation in a box of dimension L using the DVR method of Light et al. [START_REF] Lill | Decay of electronic excitations at metal surfaces[END_REF][START_REF] Lill | The discrete variablefinite basis approach to quantum scattering[END_REF]. Reduction of the Maxwell and material to one dimension z perpendicular to the surface generates a system of coupled second order differential equations (eq. 10) or CODE. These coupled equations are solved numerically using the box method (see e.g. Zwillinger [START_REF] Zwillinger | Handbook of differential equations[END_REF]; p.532). The photoabsorption yield is calculated from the excitation probability using the golden Fermi rule. The electronic wave functions of the continuum spectrum are re-normalized to the energy. 13)) and to the contributions detailed in the equations ( 14)- [START_REF] Apell | On the surface photoelectric effect in aluminium[END_REF]. frequency. This total yield is analyzed in terms of its different contributions given in expressions ( 13)-( 16): total, standard velocity Y v , surface Y surf and the interference Y interf terms. In a gas phase calculation the Coulomb gauge is fulfilled and the velocity term Y v is the only term surviving in the yield eq. ( 13). The other terms originate from the presence of the surface and correspond to the surface photoeffect. Analysis of figures 3(b) and 4 show that at low frequency the surface contribution eq.( 15) has the same shape as the total yield whereas the standard velocity term eq.( 14) is partly compensated by the interference term eq.( 16). At high 10 frequency all the terms contribute to the total yield.

The figure 5 presents the excitation from the surface state and Fermi level compared with the experiment of Levinson and Plummer [START_REF] Levinson | The surface photoeffect[END_REF]. The agreement is fair with the bulk plasmon minimum at 15 eV present in both spectra. At low frequencies, the theoretical spectrum is shifted towards the smaller energies and it is maximum at the threshold whereas the experiment presents a maximum at around 12 eV. The reason for the difference between these spectra is now discussed. In our model calculations the free motion of the electrons parallel to the surface can not be excited by the laser. Moreover our yield (see eq. ( 13)) corresponds to the integrated over the half plane photoabsorption yield. The experimental yield of Levinson and Plummer [START_REF] Levinson | The surface photoeffect[END_REF] counts only the electrons emitted normal to the surface. This can be a possible reason for the discrepancy between the theory and the experiment. Another explanation of this discrepancy can be related to the inappropriate opening of the different channels or to inappropriate implicit inclusion of the threshold law in our calculation. this paper, the shape of the power density absorption spectrum is dominated by the Landau resonance appearing at about 20 eV. In that work [START_REF] Raşeev | Surface photoelectric effect using maxwell equations in local and scalar approximation[END_REF] we have also calculated the number of the electrons reaching the surface, following the excitation at a mean depth ζ in the solid.

Once excited the number of electrons is attenuated in an exponential way ( exp(-z/ ζ). The number of electrons reaching the surface depend on the mean excitation depth: a small depth enhance the number of electrons of low energy whereas a large depth the number of escaped electrons of high energy. Equivalent calculations for the photoabsorption yield of the initial states considered here are nearly insensitive to the mean depth of the excitation and therefore are not presented here. For the surface and image state this can be related to the location of these states near the surface.

Discussion and conclusion

The old problem of the contribution of the surface photoeffect to the photoabsorption spectrum at surfaces is discussed in this paper in the case of the excitation from the surface, the image and the Fermi states. To calculate the photoabsorption yield (eq. ( 13)) one uses local and scalar material functions and, because of the sudden variation of the electron density at the interface, obtains the laser fields function of the spatial coordinate. The VPED-CODE model we have developed is semi-classical since the electron density entering the dielectric function is obtained by solving the Schrödinger equation whereas the Maxwell equations are solved for classical fields.

Our method is coherent since the same wave functions, solution of the Schrödinger equation, enter in the evaluation of i) the electron density (eq.( 5)) used to obtain the permittivity and the vector potential; ii) the transition probability (eq. ( 11)). Of course our result corresponds to a low perturbation order since the electron density and the wave functions are of zero order.

Finally, the photoabsorption spectrum calculated with the semi-classical VPED-CODE model includes contributions from the velocity, surface and interference terms. electron is excited at this depth and then it escapes to the surface the initial yield being attenuated by an exponential function.

From the point of view of this calculated yield one wonders why it is necessary to model precisely the spatial dependence of the laser fields at the interface. The physical observables are written in terms of integrals, (see e.g. eqs. ( 11) and ( 13)), that are mainly proportional to the overlap between the initial and final states. But, our photoabsorption yield [START_REF] Lang | Theory of metal surfaces: Charge density and surface energy[END_REF] shows that in fact not only the integrands are modulated by the laser field or its derivative but also that the interference terms appear further modifying the resulting photoabsorption. Figures 3 and4 have been analyzed in the preceding section with the conclusion that for an accurate photoabsorption spectrum all the contributions are significant including the interference term.

As explained in the preceding section our initial and final state wave functions are very simple being the solution of the Schrödinger equation using the DVR method. More elaborate wave functions using, for example, the augmented-plane-wave approach of Krasovskii et al.

[ [START_REF] Krasovskii | Angle-resolved photoemission from surface states[END_REF][START_REF] Krasovskii | Augmented-plane-wave approach to scattering of Bloch electrons by an interface[END_REF] in a calculation of the yield with our transition operator in eq. ( 11) could be used instead.

Many methods, essentially for a jellium potential, have been developed to calculate the vector potential at the interface and we refer the interested reader to our recent paper [START_REF] Raşeev | Surface photoelectric effect using maxwell equations in local and scalar approximation[END_REF].

Other papers [START_REF] Scheffler | Angle resolved photoemission from adsorbates: theoetical considerations of polarization effects and symmetry[END_REF][START_REF] Mahan | Angular dependence of photoemission in metals[END_REF][START_REF] Feibelman | Photoemission spectroscopy-correspondence between quatum theory and experimental phenomenology[END_REF][START_REF] Zangwill | Physics at surfaces[END_REF] have derived the expression of the photoabsorption yield for a gas-surface or a gas-adsorbate-surface system. After deriving the complete expressions for the photoabsorption yield, these authors usually restrict the vector potential to a simplistic dependence on the coordinate normal to the surface. For example Scheffler, Kambe and Forstmann [START_REF] Scheffler | Angle resolved photoemission from adsorbates: theoetical considerations of polarization effects and symmetry[END_REF] used a step function at the surface. This can be sufficient for bulk states but would be not sufficient for the surface and the image states considered here. In their theoretical calculation, Levinson and Plummer [START_REF] Levinson | The surface photoeffect[END_REF] seem to have used an exact expression for the transition moment but no detailed derivation of the total transition probability and no analysis in terms of different contributions to the yield is provided in their paper.

The choice of clean Al(001) surface was mainly dictated by the free electron nature of Aluminium. Our choice of Aluminium also permits the comparison with the accurate experimental results [START_REF] Levinson | The surface photoeffect[END_REF] and with the model calculations [START_REF] Levinson | The surface photoeffect[END_REF]. This metal can be modelled by a jellium solid and permitted a comparison the calculations of the total power absorption using our VPED-CODE model [START_REF] Raşeev | Surface photoelectric effect using maxwell equations in local and scalar approximation[END_REF] with other theoretical results. Here one can not use such a jellium potential since it does not accommodate the surface and the image states. The availability of a model The total photoabsorption spectrum of the surface state and the Fermi level compared to the experimental data of Levinson and Plummer [START_REF] Levinson | The surface photoeffect[END_REF] is presented in fig. 5. As discussed in the preceding section, the agreement these calculations and the experiment is fair. Levinson and

Plummer [START_REF] Levinson | The surface photoeffect[END_REF] have also published (see their figure 6) a theoretical curve. The agreement of those calculations with the experiment is better than ours but, as mentioned above, the details of the theoretical calculation in that paper are not sufficient to understand the origin of the difference between their and our calculations.

In summary, we have developed a new consistent VPED-CODE semi-classical model calculating the photoabsorption yield from Schrödinger and Maxwell equations for the electron density and a classical vector potential respectively. By separating the contributions of each term to the photoabsorption yield, it has been shown for the first time that none of the contribution to this yield is dominant for a domain of excitation frequencies.

From the above discussion, it appears that the routine calculation of the laser fields dependent on the spatial coordinate in the long wave length domain (λ 100 Å), using a model of the type of VPED-CODE developed here, would qualitatively modify the theoretical results of the observables related to the laser-matter interaction. The example of the surface is the simplest but one can think of thin films, large nano objects deposed on surfaces and multilayer structures. More generally any physical system presenting a significant sharp spatial variation of the electron density will benefit from the use of a model of the vector potential function of the spatial coordinate as the one developed here. 

  region where the potential between two groups of separating particles and the associated wave function are analytic. In principle, the examples enumerated above fulfill the MQDT division of geometrical space and required properties in each region and can be studies using this theory.

  Here ε b and ε c are the dielectric function of the bound and the conduction electrons and σ the conductivity. In our model the local and scalar permittivities ε b and ε c are function of the
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 2 Figure 2: Electron density of the Al(001) surface calculated using Chulkov et al. [10] potential.
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 25 It has been obtained from the one dimension discrete wave functions ϕ i (z) solution of the Schrödinger equation using the Chulkov et al. [10] potential itself fitted from a DFT calculation
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  The standard DVR method enforces zero amplitudes of the wave function at the boundaries of the calculation box. The size of the box is allways a multiple of a s , the periodicity of the Chulkov et al. potential[START_REF] Chulkov | Image potential states on metal surfaces: binding energies and wave functions[END_REF], and therefore this potential is zero at the box border in the solid. In such a finite box the energy spectrum of the continuum is discretized and the number of energy points in the electronic continuum is function of the size of the box. The spectrum calculated for the different sizes of the calculation box presents small oscillations of high frequency called noise (see figure3(a)). Changing the size of the box simultaneously shifts the position of all these oscillations by an arbitrary phase. Therefore we think that this noise is spurious being related to the DVR procedure that imposes the zero amplitude of the wave function at the boundaries of the calculation box. In a method with unconstrained non zero boundaries, the excitation probability would be a continuous function of photon energy with no noise. In the present paper we unravel the exact nature of the excitation yield by the convo-excitation yield with a Gaussian function of 0.28 eV width. The non convoluted and convoluted yield from the surface state function of photon frequency is presented in the graphs (a) and (b) of figure3. All the remaining graphs of the present paper are obtained using such a convolution recipe.

Figure 3 :

 3 Figure 3: Photoabsorption spectrum of the surface state of Al(001) for p polarized laser incident at θ i =45 • function of photon frequency ω. The curves correspond to the total photoabsorption spectrum (eq. (13)) and to the contributions detailed in the equations (14)-[START_REF] Apell | On the surface photoelectric effect in aluminium[END_REF]. Figure(a) 
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 9 Figure (a) direct calculation; Figure (b) calculation convoluted with a Gaussian function of 0.28 eV width.We are studying the electron excitation of an Al(001) surface from the surface and the image states and from the Fermi level by a p polarized continuous laser incident at 45 • on the Al(001) surface. Recall that these calculations are performed using the model potential of Chulkov et al.[START_REF] Chulkov | Image potential states on metal surfaces: binding energies and wave functions[END_REF], parametrized from a DFT calculation of the n-electron system with a LDA exchange-correlation functional. Therefore, the model parametrization of Chulkov et al.[10] included the complicated electron-electron and electron-hole interactions and contains the effective parameters depending on the particular surface cut studied. Because the size of our calculation box is slightly different from the one used by Chulkov et al.[START_REF] Chulkov | Image potential states on metal surfaces: binding energies and wave functions[END_REF], the position of the surface and image (n=1) states is -2.59 and -0.96 eV instead of their -2.6 and -0.88 eV, respectively relative to the Fermi and vacuum levels. The photoabsorption spectrum of the and of the Fermi level can be obtained from a one photon excitation whereas the photoabsorption spectrum of the unoccupied first image state can be obtained only through a two photon excitation, for example using an experimental set-up similar to the one used by Wolf et al.[START_REF] Wolf | Direct and indirect excitation mechanisms in two-photon photoemission spectroscopy of Cu(111) and co/Cu(111)[END_REF]. In this paper one neglects the preparation step of the image state calculating the yield of the final step of excitation only.
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 43 Figure 4: Photoabsorption spectrum of the Fermi (a) and the first image (b) states of Al(001) convoluted with a width of 0.28 eV. For the image state (b) the frequency ω do not include the preparation step. Same settings as in figure 3 but with the yield normalized to its maximum value.
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 51121 Figure 5: Experimental and theoretical photoabsorption spectrum from the surface state (a) and Fermi level (b) of Al(001). Same parameters as in figure 4.
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 1221 Our calculations has been restricted to the direct excitation probability and the quality of the results depends on the electron-matter interaction potential used. For several metallic surfaces one can use the one dimension potential of Chulkov et al.[START_REF] Chulkov | Image potential states on metal surfaces: binding energies and wave functions[END_REF] parametrized from a DFT/LDA calculation. Such a potential includes the electron-electron and electron-hole interactions but neglects the electron-phonon interaction and the final state effects. The final state effects have been taken into account through a mean excitation depth in the solid. The

  photoabsorption spectrum and therefore have not been displayed in the figures.
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