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A Theoretical Study of the Biselective Double Pulsed Field

Gradient Spin-Echo NMR Experiment

Jean-Marc Nuzillard∗

Institut de Chimie Molculaire de Reims, BP 1039, 51687 REIMS Cedex 2, France.

(xx May 2007 )

The application of a biselective radiofrequency pulse to a coupled homonuclear spin system
produces effets that are exploited in liquid-state NMR experiments. The insertion of such an
RF pulse in a double pulsed field gradient spin echo sequence results in a module for the
biselective production of antiphase magnetization states. Biselectivity is obtained through
cosine modulation of a singly selective pulse profile. A full description of the module behavior
is possible by means of four parameters, among which two are related to a property that
was named ”pulse ellipticity”. The theory is in good agreement with the experimental re-
sults and numerical simulations. It is thus possible to predict how a maximum of antiphase
magnetization can be produced.

Keywords: Liquid state NMR; selective pulses; static field gradients; spin echo

1 Introduction

The simultaneous application of multiplet selective pulses to two mutually coupled
spins is known to produce effects that are different from those observed with non
coupled spins. These effects have been studied in double inversion and double
excitation experiments [1–3]. The underlying theory was first presented by Emsley
et al [1], and then by Blechta et al [3] and Zhou et al in a more general context
[4]. Later, the inclusion of simultaneous selective pulses in pulsed field gradient
spin echo (DPFGSE) experiments [5] led to doubly selective experiments [6]. They
allowed the extraction of two signals from a crowded spectrum if, and only if, they
originate from two scalarly coupled spins. Further spin manipulation led to doubly
selective TOCSY and TOCSY–COSY experiments [6].

In the basic pulse sequence (see Fig. 1), the δ delays are adjusted so that a
maximum of antiphase magnetization is produced just before the last two hard
pulses that act as a double quantum filter. The only detected signals are those that
arise from nuclei pairs whose transverse magnetization is subjected to simultaneous
selective refocusing.

The main goal of this article is to theoretically establish the relationship between
the duration of the δ delays and f(δ), the intensity of the recorded signal of an IS
spin system. The resonance frequency difference of I and S, the value J of their
scalar coupling and the shape of the soft pulses are the parameters of the problem.
The result is validated by the experiment in Fig. 1, carried out on the AX system
of ethylenic protons in cinnamic acid.
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Figure 1. Pulse sequence for the biselective extraction of a coupled spin pair. Thin black bars are all
hard 90◦ pulse. The phase programme is φ = x,−y,−x, y and φR = x, y,−x,−y. The bell shaped curves

are soft pulses that simultaneously refocus the transverse magnetization of the spin pair.

2 Theory

The theoretical part of this article deals with a weakly coupled homonuclear IS spin
system that undergoes the pulse sequence in Fig. 1. The transmitter frequency of
the spectrometer is assumed to be set at the mean of the resonance frequencies
of nuclei I and S. Their difference ∆ν = |νI − νS| is noted 2ν0. Therefore, in
the rotating frame of reference, the angular frequencies of their magnetization
precession ΩI and ΩS are related by:

ΩI = −ΩS = ω0 = 2πν0

The density matrix of the spin system at time t1 is

σ1 = Ix + Sx =
1

2
(I− + S−) +

1

2
(I+ + S+)

The evolution of −1 and +1 quantum states will be simultaneously considered
because they are very closely related. During the δ delays, I− + S− evolves under
the action of the Hamiltonian operator

H0 = πJ2IzSz + ω0(Iz − Sz)

in the -1 quantum space that is spanned by elements in the B− base:

B(−) = {I− + S−, 2I−Sz + 2IzS−, I− − S−, 2I−Sz − 2IzS−}

At time t2, the field gradient pulse spatially labels the sample magnetization so
that only +1 quantum states are recovered after the second gradient pulse. The
spin state σ3 at t3 (at least for the components that finally produce detectable
magnetization) is therefore a combination of elements in the B(+) base:

B(+) = {I+ + S+, 2I+Sz + 2IzS+, I+ − S+, 2I+Sz − 2IzS+}

During the second δ delay, under action of H0, σ3 evolves in the subspace of the +1
quantum states until t4. Between t4 and t5, the event sequence is identical to the
one between t1 and t4. The +1 quantum states are converted back to −1 quantum
states, assuming that the second gradient pair does not bring back magnetization
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Theory of the biselective DPFGSE NMR experiment 3

that was defocused by the first gradient pair. The following development succes-
sively focuses on what happens between t2 and t3, t1 and t4, t1 and t5, and between
t1 and t6.

2.1 Between t2 and t3

The Hamiltonian operator that acts between times t2 and t3 is

H1 = H0 + Hrf

with

Hrf = ω1(t)(Ix + Sx)

and

ω1(t) = 2ωm
1 (t) cos

(

ω0

(

t−
τ

2

))

= 2ωm
1 (t) cos

(

ω0t
′
)

where ωm
1 (t) defines the shape of the single site selective pulse from which the

two-site selective pulse is defined. The time variable t′ is introduced so that t′ =
0 corresponds to the middle of the soft inversion pulse. The shape of the pulse
envelope, ωm

1 (t), is assumed to be symmetrical. The cos(ω0t
′) factor creates the

excitation sidebands at offsets +ω0 and −ω0 that simultaneously affect the I and

S nuclei. The expression of Hrf can be split into two terms:

Hrf =
[

ωm
1 cos(ω0t

′)(Ix + Sx) + ωm
1 sin(ω0t

′)(Iy − Sy)
]

+
[

ωm
1 cos(ω0t

′)(Ix + Sx) − ωm
1 sin(ω0t

′)(Iy − Sy)
]

The second bracketed term describes a radiofrequency field that rotates at fre-
quency −ω0 for the I nucleus and at +ω0 for the S one. The hypothesis

|ωm
1 | ≪ 2ω0

is made to ensure that the radiofrequency sideband at the frequency of the I reso-
nance does not affect the S nucleus, and vice versa. Consequently, the Hamiltonian
operator that drives the evolution of the system between t2 and t3 can be trans-
formed to H1:

H1(t) = πJ2IzSz + ω0(Iz − Sz)

+ ωm
1 (t)

[(

cos(ω0t
′)Ix + sin(ω0t

′)Iy
)]

+ ωm
1 (t)

[(

cos(ω0t
′)Sx − sin(ω0t

′)Sy

)]

in which the spin operators of I and S are separated, with the exception of for their
shared coupling interaction.

The expression of H1(t) is made independent of ω0 by means of the similarity
transformation [1, 7] that is defined by the unitary operator U(t):

U(t) = eiω0(Iz−Sz)t′
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4 J.-M. Nuzillard

The evolution of any initial state σ(0) to the final state σ(τ) by application of
H1(t) is calculated in three steps :

σ(0) −→ σr(0) = U(0)σ(0)U−1(0)

Hr

−→ σr(τ)

−→ U−1(τ)σr(τ)U(τ) (1)

in which

Hr = UH1U
−1 − iU

dU−1

dt
= πJ2IzSz + ωm

1 (t)(Ix + Sx)

Hr is still time-dependent if ωm
1 (t) is not constant. However, the selective pulse is

implemented as a series of N constant field strength subpulses of length ε = τ/N
during which the spin state evolution can be calculated at times τ1, τ2, . . . τN = τ .

σr(τ) = e−iHr(τN )ε . . . e−iHr(τ1)εσr(0)e+iHr(τN )ε . . . e+iHr(τ1)ε

If σ(0) is a −1 quantum state, so is σr(0). The evolution of the state of an IS spin
system under the action of the constant Hamiltonian operator

Hk = πJ2IzSz + ωm
1 (τk)(Ix + Sx)

during a time ε is fully described in references [3] and [4]. The relevant results are
reported hereafter.

The spin states independently evolve in four subspaces that are spanned by four
sets of base elements:

B(2) = {Ix − Sx, 2IySz − 2IzSy}

B(3) = {Ix + Sx, 2IySz + 2IzSy, 2IzSz − 2IySy}

B(4S) = {Iy + Sy, 2IxSz + 2IzSx, Iz + Sz, 2IxSy + 2IySx}

B(4A) = {Iy − Sy, 2IxSz − 2IzSx, Iz − Sz, 2IxSy − 2IySx}

In these bases, the matrices of the superoperator Ĥk that is defined by

σ(τk) = e−iHkεσ(τk−1)e
+iHkε = Ĥk(σ(tk−1))

are R
(2)
k , R

(3)
k , R

(4S)
k and R

(4A)
k :

R
(2)
k =

[

cos(πJε) − sin(πJε)
sin(πJε) cos(πJε)

]

(2)

R
(3)
k =





a2 + b2 − c2 −2ac 2bc
2ac a2 − b2 − c2 −2ab
2bc 2ab a2 − b2 + c2



 (3)

R
(4S)
k = R

(4A)
k =









ad− ce ae+ cd −bd be
−ae− cd ad− ce be bd

bd be ad+ ce −ae+ cd
be −bd ae− cd ad+ ce









(4)
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Theory of the biselective DPFGSE NMR experiment 5

with

ω2
eff = ωm

1 (τk)
2 +

(

πJ

2

)2

a = cos (ωeffε)

d = cos
πJε

2
b =

ωm
1 (τk)

ωeff
sin (ωeffε)

e = sin
πJε

2
c =

πJ

2ωeff
sin (ωeffε)

(5)

The matrices R(2), R(3), and R(4) = R(4S) = R(4A) of the global superoperator Ĥr

that act between t2 and t3 are the products of the subpulse matrices:

R(l) = R
(l)
N R

(l)
N−1 . . . R

(l)
2 R

(l)
1 with l = 2, 3, 4S, 4A (6)

The R
(2)
k matrices all describe a 2D rotation of angle πJε. Therefore:

R(2) =

[

cos(πJτ) − sin(πJτ)
sin(πJτ) cos(πJτ)

]

. (7)

As a consequence of the structure of the R
(4)
k matrices, it is useful to notice that a

product of such matrices, such as R(4), satisfies the

R
(4)
11 = R

(4)
22 and R

(4)
12 = −R

(4)
21 (8)

matrix element equalities. Moreover,

R
(3)
12 = −R

(3)
21 (9)

because the shape of the pulse envelope is symmetrical.
The two state evolutions of interest between t2 and t3 are the ones that transform

−1 quantum states into +1 quantum states and vice versa. The corresponding state
bases B(−) and B(+) can each be split into two subbases, one for the symmetrical
and the other one for the antisymmetrical base element combinations:

B(−S) = {I− + S−, 2I−Sz + 2IzS−}

B(−A) = {I− − S−, 2I−Sz − 2IzS−}

B(+S) = {I+ + S+, 2I+Sz + 2IzS+}

B(+A) = {I+ − S+, 2I+Sz − 2IzS+}

so that

B(−) = B(−S) ∪ B(−A) and B(+) = B(+S) ∪ B(+A).

Any linear combination of elements in B(−S) is also a combination of elements
in B(3) ∪ B(4S). It is transformed by Ĥr into another combination of elements
in B(3) ∪ B(4S). The projection of this state in the B(+)-generated subspace, as
achieved by the gradient pulse at time t3, is a combination of elements from B(+S).
A similar deduction indicates that a spin state from the B(−A)-generated subspace
is transformed into a linear combination of elements in B(+A). This means that the
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6 J.-M. Nuzillard

matrix of Ĥr and of the gradient pulse pair has a block–diagonal structure, when
written from base B(−) to base B(+).

M (+−) =

[

M (S) 0

0 M (A)

]

The elements in M (S) and M (A) are easily deduced from those in R(2), R(3), and
R(4):

2M (S) =

[

R
(3)
11 −R

(4)
11 i(R

(3)
21 +R

(4)
21 )

−i(R
(3)
21 +R

(4)
21 ) R

(4)
11 −R

(3)
22

]

(10)

2M (A) =

[

R
(2)
11 −R

(4)
11 i(R

(2)
21 +R

(4)
21 )

−i(R
(2)
21 +R

(4)
21 ) R

(4)
11 −R

(2)
11

]

(11)

using properties 7, 8 and 9. The matrix M (−+) of the same transformation, but
expressed from base B(+) to base B(−) is the complex conjugate of M (−+):

M (−+) =
(

M (+−)
)∗

To fully describe what happens between times t2 and t3 to transverse magneti-
zation it is also necessary to write the transformation matrices of

σ −→ U(0)σU−1(0) and σ −→ U−1(τ)σU(τ)

in the B(−) and B(+) bases (see Eq. 1). Indeed, these transformations are the same
because

U(0) = e−iω0(Iz−Sz) τ

2 = U−1(τ)

The superoperator Û that is defined by

Û(σ) = U(0)σU−1(0)

acts independently in bases B(−) and B(+). More precisely, it acts independently
in the B(−0), B(−z), B(+0) and B(+z) bases that are defined by:

B(−0) = {I− + S−, I− − S−}

B(−z) = {2I−Sz + 2IzS−, 2I−Sz − 2IzS−}

B(+0) = {I+ + S+, I+ − S+}

B(+z) = {2I+Sz + 2IzS+, 2I+Sz − 2IzS+}

so that

B(−) = B(−0) ∪ B(−z) and B(+) = B(+0) ∪ B(+z)

In both B(−0) and B(−z) bases, the matrix of Û is S(α0/2) in which the angle α0
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Theory of the biselective DPFGSE NMR experiment 7

and the matrix function S are defined by:

α0 = ω0τ

S(ϕ) =

[

cosϕ i sinϕ
i sinϕ cosϕ

]

Therefore, the matrix of Û in B(−) is

U (−−) = S(α0/2) ⊗ I2

in which I2 is the 2 × 2 identity matrix. In a similar way, the matrix of Û in B(+)

is

U (++) = S(−α0/2) ⊗ I2 =
(

U (−−)
)∗

With these results, the matrix of the spin state transformation between times t2
and t3, R

(+−), can be expressed from base B(−) to base B(+) by

R(+−) = U (++)M (+−)U (−−) = (S(−α0/2) ⊗ I2)M
(+−) (S(α0/2) ⊗ I2)

This expression is simplified by the indroduction of the M (0) and E matrices:

M (S) = M (0) + E M (A) = M (0) − E (12)

It must be noticed that, in general, M (S) 6= M (A). This means that E 6= 0 and
therefore that I−+S− in not transformed between times t2 and t3 in the same way
as I− − S−. The matrix E characterizes a sort of ellipticity in the behavior of the
soft pulse, hence its name. Using the matrix function A:

A(ϕ) =

[

cosϕ i sinϕ
−i sinϕ − cosϕ

]

M (+−) is rewritten as

M (+−) = I2 ⊗M (0) +A(0) ⊗E

Then

R(+−) = I2 ⊗M (0) + (S(−α0/2) ⊗ I2) (A(0) ⊗ E) (S(α0/2) ⊗ I2)

= I2 ⊗M (0) +A(α0) ⊗ E

because

S(−ψ)S(ψ) = I2 and S(−ψ)A(ϕ)S(ψ) = A(ϕ + 2ψ)

As usual, the transformation matrix of +1 quantum states to −1 quantum state,
is the complex conjugate of R(+−):

R(−+) = U (−−)M (−+)U (++) =
(

R(+−)
)∗
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2.2 Between t1 and t4

The action of H0 during the δ delays can be divided into two commutating parts,
one related to nuclei offsets and the other to their mutual coupling. The former
achieves the transformation

σ −→ e−iω0(Iz−Sz)δσeiω0(Iz−Sz)δ

that can be merged with the similarity transformation by replacing α0 by α:

α = α0 + 2ω0δ = ω0(τ + 2δ) = ω0∆/2

The coupling operator acts identically in B(−S) and B(−A), as well as in B(+S) and
B(+A). The corresponding superoperator is respectively expressed in B(−) and B(+)

by the matrices

D(−−) = I2 ⊗ S(β/2) and D(++) = I2 ⊗ S(−β/2) =
(

D(−−)
)∗

in which the β angle is defined by

β = 2πJτ

Therefore, the matrix R(+−)(δ) of the superoperator that acts between times t1
and t4 from B(−) to B(+) is:

R(+−)(δ) = (S(−α/2) ⊗ I2))
(

D(++)M (+−)D(−−)
)

(S(α/2) ⊗ I2)) (13)

Considering that both the M (0) and E matrices look like

M =

[

u iv
−iv w

]

u, v and w being three real numbers and that

M = CI2 + FA(θ)

with C =
1

2
tr(M)

z =
u− w

2
+ iv

F = |z|

and θ = arg(z)

the matrices M (0) and E can be rewritten as

M (0) = C0I2 + F0A(θ0) and E = CeI2 + FeA(θe). (14)

Indeed, tr(M (0)) = tr(E) because the M (A) matrix is traceless, according to Eq. 11.
The C0 and Ce coefficients are therefore equal and simply noted C. Consequently,

S(−β/2)M (0)S(β/2) = CI2 + F0A(β0) (15)

S(−β/2)ES(β/2) = CI2 + FeA(βe) (16)
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Theory of the biselective DPFGSE NMR experiment 9

with

β0 = β + θ0 and βe = β + θe.

The insertion of Eqs. 15 and 16 in Eq. 13 gives

R(+−)(δ) = I2 ⊗ (CI2 + F0A(β0)) +A(α) ⊗ (CI2 + FeA(βe)) (17)

This equation is the central and most important result of this article. It shows
that the effect of the single echo sequence between times t1 and t4 depends on
the difference of the resonance frequencies of nuclei I and S, something that is
unexpected from a spin echo sequence. The dependence is introduced through the
transverse magnetization precession angle α, whose value is ω0∆/2, and only in
relation to the soft pulse ellipticity parameters Fe and θe.

As usual,

R(−+)(δ) =
(

R(+−)(δ)
)∗

It should also be noted that R(+−)(δ) and R(−+)(δ) are Hermitian matrices.

2.3 Between t1 and t5

The −1 and +1 quantum states evolve between t1 and t5 according to the double
spin echo transmission matrices T (−−) and T (++):

T (−−) = R(−+)(δ)R(+−)(δ) T (++) = R(+−)(δ)R(−+)(δ). (18)

The only base elements in B(−) that are able to produce double quantum states
at t6 are the coupled states whose indexes in B(−) are 2 and 4. Thus, the terms of

interest in T (−−) are the matrix elements T
(−−)
21 and T

(−−)
41 , index 1 being that of

the I− + S− state. According to Eq. 18 and to the Hermiticity of R(−+)(δ):

T
(−−)
21 =

4
∑

k=1

R
(−+)
2k (δ)R

(+−)
k1 (δ)

=
4

∑

k=1

(R
(−+)
k2 (δ))∗R

(+−)
k1 (δ)

=
4

∑

k=1

R
(+−)
k2 (δ)R

(+−)
k1 (δ)

This shows that T
(−−)
21 is the scalar product of R

(+−)
•1 (δ) and R

(+−)
•2 (δ), the first

and second column in R(+−)(δ):

R
(+−)
•1 (δ) =

∣

∣

∣

∣

∣

∣

∣

∣

(C + F0 cos β0) + cosα(C + Fe cos βe)
−i(F0 sin β0 + cosαFe sin βe)
−i sinα(C + Fe cos βe)
− sinαFe sin βe
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and

R
(+−)
•2 (δ) =

∣

∣

∣

∣

∣

∣

∣

∣

i(F0 sin β0 + cosαFe sinβe)
(C − F0 cos β0) + cosα(C − Fe cos βe)
sinαFe sin βe

−i sinα(C − Fe cos βe)

from which

T
(−−)
21 /i = F 2

0 sin(2β0)

+2F0Fe cosα sin(β0 + βe)

+F 2
e cos(2α) sin(2βe)

T
(++)
21 = −T

(−−)
21

A similar calculation shows that T
(−−)
41 = T

(++)
41 is a real number whose value

is not relevant, as shown hereafter. When taking into account only the antiphase
magnetization that is produced between times t1 and t5, the preceding results are
summarized by:

I− + S− −→ T
(−−)
21 (2I−Sz + 2IzS−) + T

(−−)
41 (2I−Sz − 2IzS−)

I+ + S+ −→ −T
(−−)
21 (2I−Sz + 2IzS−) + T

(−−)
41 (2I−Sz − 2IzS−)

from which the evolution of the initial transverse magnetization

σ1 = Ix + Sx −→ σ5 = T
(−−)
21 /i(2IySz + 2IzSy) + T

(−−)
41 (2IxSz + 2IzSx) (19)

is deduced.

2.4 Between t1 and t6

The second hard pulse of the sequence is only able to convert the first term of σ5

(Eq. 19) into the σ6 double quantum state:

σ6 = (2IySx + 2IxSy) (20)

This state is the only one to be converted back to antiphase magnetization by the
last hard pulse of the sequence. Subsequent evolution during the detection period
yields a signal whose Fourier transform is an antiphase doublet whose intensity is
proportional to

f = T
(−−)
21 /i (21)

where the ”transmission factor” f is the value to be optimized, as a function of the
δ delay .

The analytical expression of f (Eqs. 19 and 21) can be expanded to explicitly
show how it depends on the 4δ and 2τ pulse sequence parameters, on the F0, θ0,
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Fe, θe soft pulse parameters, and on the J and ∆ν spin system parameters.

f(δ) = F 2
0 sin(πJ(4δ) + 2θ0)

+2F0Fe cos(π∆ν(4δ + 2τ)/2) sin(πJ(4δ) + θ0 + θe)

+Fe
2 cos(π∆ν(4δ + 2τ)) sin(πJ(4δ) + 2θe). (22)

The δ value that maximises f(δ) is certainly best obtained by plotting f as a
function of δ. For this purpose a computer programme, named Bisel, is available
at http://www.univ-reims.fr/LSD/JmnSoft/Bisel, even though calculations could,
in principle, be achieved by any spin dynamics simulator that handles static field
gradient pulses.

3 Experimental

Spectra were recorded on a Bruker DRX spectrometer operating at 500.13 MHz for
the 1H nucleus. The pulse sequence in Fig. 1 was applied to a sample made of 10 mg
of cinnamic acid dissolved in 0.7 mL of deuterated chloroform. The two ethylenic
protons at 7.86 and 6.53 share a single scalar coupling of intensity J = 15.96 Hz.
Their resonance frequency difference ∆ν = 669.2 Hz was high enough relatively to
J to consider that theses nuclei form an AX spin system. For each pulse sequence
a set of 512 FIDs was recorded, in which 4δ was regularly incremented from 0
to 1/J . The duration of the hard 90◦ and soft 180◦ pulses were 10.1 µs and 50
ms, respectively. Each FID was recorded by co-adding 8 transients separated by 5
seconds relaxation delays. The soft pulse envelope was a 1 % truncated Gaussian
that was amplitude modulated to achieve the desired double refocusing profile.
Gradient pulse strenghs G1 and G2 were 38 and 10 G.cm−1. Each gradient pulse
lasted 1 ms and was followed by a 100 µs recovery delay.

Raw data Fourier transformation was achieved without any apodization. All spec-
tra were identically phase corrected to present pairs of pure absorption antiphase
doublets. Experimental transmission factors were extracted by integration of the
highest frequency peak of the spectra.

The simulation of the sequence in Fig. 1 by the Bisel computer programme used
Eqs. 2 – 6, 10, 11, 12, 14 and 22.

4 Results and Discussion

The experimental result in Fig. 2a is in very good agreement with the theoretical
one (from Eq. 22), as visible in the graphical representation of the f function in
Fig. 2b. The antiphase magnetization production factor f is the sum of three slow
oscillating terms, all of frequency J/2 if the length of the total additional delay 4δ is
taken as the time variable of interest. The second and third terms in the expression
of f are modulated by high frequency oscillations. The modulation frequency of
the second term is ∆ν/4, while the one of the third term is ∆ν/2. The amplitude
of the rapid oscillations increases with the ellipticity parameter Fe.

The behaviour change of such a spin echo sequence according to the difference
of nucleus resonance frequency ∆ν was unexpected at the time this work was
undertaken. This phenomenon was not previously reported. It is clearly related to
the existence of non-identical transformation rules for I−+S− and for I−−S− states
by action of Ĥr between t2 and t3 (see Eq. 12). This means that a I− state alone
evolves to produce a S− state, or, in other words, that the biselective refocusing
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Figure 2. Plots of antiphase magnetization intensity as a function of 4δ, expressed in 1/J units. (a)
Experimental values. The vertical scale is in arbitrary units but was chosen to roughly match the vertical

scale in Fig. 2b. (b) Theoretical prediction, according to Eq. 22 and the Bisel computer programme.

pulses are able to induce a magnetization transfer between coupled nuclei. Such a
transfer is conceptually not far from a homonuclear Hartmann–Hahn transfert [8].
The latter is caused by a radiofrequency field that is simultaneously applied to the
transverse magnetization of a set of coupled spins, a situation that is similar to the
present one.

The cinnamic acid example that is described here leads to

F0 = 0.916 θ0 = 110◦

Fe = 0.275 θe = 20◦

parameter values, as calculated by the Bisel computer programme. In this context,
δ = 0 ensures a theoretical signal ”yield” of 91% with minimal signal loss through
transverse relaxation.

Obviously, the pulse sequence in Fig. 1 was not designed to be applied solely to
an isolated AX spin system. Numerical simulations show that passive couplings of
I or S do not dramatically change the appearance of the graph of the f(δ) function.
Multiplet widening causes signal loss but the slow and rapid oscillations occur at
the same frequencies. Therefore, simulation of the pulse sequence according to the
two-spin model offers a good starting point for more complex experiments.

5 Conclusion

The spin dynamics behind biselective gradient enhanced double spin echo NMR
experiments is not as simple as it appears. The creation of antiphase magnetisation
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does not follow a simple law like sin(4πJδ + φ) — the first term in Eq. 22 — but
depends on the difference of nucleus resonance frequencies, in a way that can be
analytically described. New applications of biselective pulses will be reported in
the near future and their optimization will certainly benefit from this theoretical
study.
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