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A mathematical analysis of several algorithms, for the integration of the differential 

equation associated to the Intrinsic Reaction Coordinate path, is performed.  This 

analysis starts showing that the Intrinsic Reaction Coordinate path can be derived 

from a variational problem, so that it has the properties of an extremal curve.  Then, 

one may borrow the mathematical methods for the integration of extremal curves, to 

formulate new algorithms for the integration of the Intrinsic Reaction Coordinate 

path.  One may use as well this theoretical framework, to recast recently formulated 

algorithms based on direct minimization of an arbitrary curve, such as the Nudged 

Elastic Band Method or String Method.  In this view a new algorithm is proposed.  

Finally, the theory of broken extremals is used to analyze an Intrinsic Reaction 

Coordinate path possessing a valley ridge inflection point. 
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1.  INTRODUCTION 

 

The development and applications of the concept of force and force constants in 

theoretical chemistry are one of the most important contributions of Professor Peter 

Pulay to this field [1, 2, 3, 4].  The use of forces or, equivalently, energy gradients, 

opened the possibility to explore the potential energy surfaces (PES) associated to 

chemical systems.  In the early days, the explorations of the PES merely consisted in 

locating minima and first order saddle points, the latter corresponding to transition 

state structures.  Even though this starting strategy was fairly simple, it already 

triggered, in both theoretical and applied chemistry communities, a major 

breakthrough, since this new tool made it easier to understand the structure of 

chemical systems.  An important achievement in the development of model PESs, 

associated to chemical systems, was the introduction of the concept of reaction path 

(RP) or minimum energy path (MEP) by Fukui [5] as a way to describe in geometrical 

terms the chemical evolution from reactants to products.  The importance of the RP 

concept was evidenced by the fast, continued development of powerful sets of 

algebraic, as well as computational, algorithms to locate the RP on a PES.  Most 

algorithms use the gradients as a basic quantity.  In this article we center our attention 

on a special form of RP or MEP, which will be analyzed from a specific mathematical 

framework. 

From a strictly mathematical point of view, a RP is a curve line in the 

coordinate space connecting two minima through a first order saddle point (FOSP).  

The RP description of a chemical transformation is strictly geometrical, rigorously 

speaking, since it neglects the contribution of the kinetic energy stored in the nuclei.  

However, it is possible to provide RP–based methods to described the temporal 

evolution of the reactive process, i.e. the dynamics.  Actually, it is well known that the 

RP corresponds to a dynamic trajectory for an average of reactive collisions [6].  

Miller, Handy and Adams followed this idea to formulate a reaction path Hamiltonian 

(RPH)  [7, 8, 9], where the RP was used as a distinguished coordinate, the remaining 

coordinates being described by a Taylor expansion up to second order.  Some of the 

present authors went further, and considered running the dynamics strictly on the RP.  

It may be shown that, within this restricted molecular motion, one should recover 

important classical and quantum dynamics effects [10].  On another hand, statistical 
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theories of reaction rates, such as the well-known Transition State Theory, along with 

their corresponding variational versions, are based on the RP model [11]. 

At first glance, it is a secondary matter of interest, which type of curve 

connects the FOSP and the minima of the PES associated to reactants and products.  

This may be the reason why a variety of RP definitions exists.  The different 

definitions of RP correspond to different curve lines on the PES, and the 

parameterization of these lines, t, is the reaction coordinate.  Using the mathematical 

language, if q is the coordinate vector of dimension N, then the RP is represented as 

q(t).  Very often the parameter arc-length of the curve, s, is taken as the reaction 

coordinate.  Generally, one assumes that the MEP is the steepest descent (SD) curve 

connecting the minima of the PES associated to reactants and products from FOSP.  

This particular SD curve in mass weighted coordinates is known as Intrinsic Reaction 

Coordinate (IRC).  At each point of the SD curve, their normalized tangent vector is 

equal to the normalized gradient vector, g(q) = ∇∇∇∇q V(q), of the PES, V(q), at this point 

q, 

t q( )=
dq s'( )

ds'
s'= s

=
g q( )

g q( )( )T

g q( )( )
 (1) 

where, g(q) and t(q) are the gradient vector and the normalized tangent vector 

evaluated at the point of the curve, q = q(s), respectively.  The vector, ∇∇∇∇q, is defined 

as, ∇∇∇∇q
T
 = (∂ / ∂ q1, …, ∂ / ∂ qN), being qi the element i of the vector q.  The superscript 

T means transposed.  According to the autonomous differential equation (1), the SD 

paths and specifically the IRC curve are orthogonal curves to the contour lines V(q) = 

const at each point of the curve.  These contour lines are called equipotencial curves 

or level curves of the PES.  As an important consequence, the IRC path does not take 

into account the character of the curvature of each equipotencial curve of the PES, 

which is transverse orthogonally by this path.  Given a starting point, equation (1) 

determines one and only one SD curve, and this type of curves never bifurcates except 

at the stationary points of the PES, g(q) = ∇∇∇∇q V(q) = 0.  In other words, except for the 

stationary points, one and only one SD curve runs trough each point of the PES.  

From a mathematical point of view, the latter means that the solution of equation (1) 

is unique at each non-stationary point of the PES, or in other words, each SD curve is 

imbedded in the PES, which means that in the neighborhood of the projection of the 

SD curve in the q-space, the PES, V, is a single valued, twice continuously 
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differentiable function with respect to q.  Finally, as noted several times, when in the 

evolution of an IRC path, at a point of this curve, the character of the curvature of the 

equipotencial curve-lines of the PES changes from convex form to concave or ridge 

form, then after this point the IRC is not a real RP.  In the latter assertion it is 

implicitly assumed that the true RP is a pathway connecting reactants and products 

through a valley floor.  This behavior is a consequence of the fact that the IRC does 

not bifurcate.  Due to the continuous way in the change of the curvatures of the levels 

of a PES, when a IRC evolves orthogonally through this set of levels, then a point of 

this IRC curve exists where the path transverses orthogonally a level with null 

curvature, this point is known as valley ridge inflection point (VRI).  Notice that VRI 

points are inherent of the actual PES, not to the curve and we emphasize that IRC 

does not bifurcate at VRI points [12]. 

The parallelism between the SD paths and specifically the IRC curve and the 

Hamilton-Jacobi theory of the calculus of variations is evident if one considers the 

basic and complete picture of this mathematical theory.  This complete picture merely 

consists in a relation between the curves and the contour lines of a surface, the surface 

where the curves are imbedded.  These curves transverse in some way the set of 

contour lines and never are tangent to them.  In the present case the curves are the SD 

lines, specifically the IRC, and the contour lines of a surface are the equipotencial 

curves of PES under consideration.  As noted in references [13, 14] this relation 

permits analyzing the IRC model using the theory of the Calculus of Variations (CV).  

In other words, the theory of Hamilton-Jacobi of the first order non-linear partial 

differential equations is closely connected with the theory of CV and permits 

analyzing the IRC curve model from this point of view [15].  In this way if the IRC 

curve is an extremal curve of some variational problem, then we can use the theory of 

Hamilton-Jacobi to integrate this type of curve.  The integration of a partial 

differential equation is usually a problem more difficult than that of a system of 

ordinary differential equations.  The Hamilton-Jacobi theory achieves an important 

success showing that this relation between these two classes of differential equations 

may be reversed.  Many problems from the CV result in a system of ordinary 

differential equations and these equations may be difficult to integrate by normal 

methods, while the corresponding partial differential equation is easily solvable.  

When the complete integral that satisfies the partial differential equation of the 

corresponding variational problem is known then one solves the associated system of 
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characteristic differential equations by differentiation and elimination.  This procedure 

can be formulated in a simple way by using the envelope theory.  In addition, the first 

order non-linear partial differential equation that appears in the CV can be solved 

through the construction of the Monge cone, which is build from the Monge 

differential equation.  In fact it can be shown that the first order non-linear partial 

differential equation and Monge differential equation are dual to each other in the 

sense of projective geometry.  The solutions of the Monge equation are curves such 

that at each point are tangent to a characteristic curve, the curve solution of the first 

order non-linear partial differential equation, which in turn is related with the 

extremal curve of the variational problem under consideration [15].  Since the IRC 

curve model becomes an extremal curve of a variational problem [14, 16], in this 

article we analyze the existing methods to integrate this type of curve from the above 

point of view based on the Monge cone construction. 

More recently, an alternative way to locate the IRC curve in the PES has been 

proposed consisting in the minimization of a curve integral called the nudged elastic 

band method (NEB) or string method (SM).  The integrand function is the square 

norm of the normal force of an arbitrary curve imbedded in the PES.  The integral 

runs over the domain where the arbitrary curve is defined [17, 18, 19, 20, 21, 22].  

The integral curve just defined is intimately related with the Weierstrass excess or 

error function that appears in the set of necessary conditions such that any extremal 

curve should satisfy to ensure its minimization (maximization) character of the 

functional integral of the variational problem under study.  This relation has been 

analyzed recently by Crehuet and Bofill [14], however in this article will we study it 

in more detail from a strict mathematical point of view and a new algorithm will also 

be proposed. 

Finally, the IRC curve passing trough a VRI, which in fact connects two 

minima of the PES through two consecutive FOSP’s is analyzed as a broken extremal 

curve, a curve that possesses a corner. 

 

 

 

 

2.  THE NATURE OF THE INTEGRATION TECHNIQUES OF THE 

CALCULUS OF VARIATIONS AND ITS RELATION WITH THE 
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INTEGRATION METHODS OF THE DIFFERENTIAL EQUATION 

CORRESPONDING TO THE INTRINSIC REACTION COORDINATE 

PATH 

 

2.A)  Algorithms based on the Theory of Monge Cone and Characteristic 

Curves: the Hamilton-Jacobi partial differential equation 

 

The SD curve connecting the points of the PES, qR and q, being qR a fixed point while 

q is a variable point, is an extremal curve of the variational problem [14, 16], 

∆VR →q q( )= L q,dq dt( )dt =
t0

t

∫ gTg dq dt( )T
dq dt( )dt

t0

t

∫  (2) 

where t is the parameter that characterizes the curve.  This result means that if a curve 

starting at the point qR and propagating through the PES according to the “speed law 

or continuous slowness model”, v(q(t)) = [(g(q(t)))
T
g(q(t))]

1/2
, arrives at the point q = 

q(t), traveling by extremalization of the potential energy variation, ∆VR → q (q), as 

defined in equation (2), then this curve is a SD path.  It can be shown that this 

extremal curve possesses character minimum, which means that any other type of 

path connecting the points qR and q, increases the value of the function, ∆VR → q (q), 

as defined in equation (2), with respect to the value obtained if this line integral is 

evaluated with the corresponding SD curve, connecting these two points [14].  The 

resulting value of the integral (2) evaluated on an extremal curve, SD line, will be 

denoted by JR(q).  Notice that JR(q) is the stationary value of ∆VR → q (q), the value of 

integral (2) evaluated on the SD curve, an extremal curve, joining the points qR and q.  

This function is called geodetic distance between the points qR and q, which means 

that the present variational problem can be seen as a generalization of the problem of 

finding the shortest curve between two points in space. 

The integrand, L(q, dq / dt), that appears in equation (2) is a homogeneous 

function of degree one with respect to the argument, dq/dt, because it satisfies the 

relation, L(q, dq / dt) = (dq / dt)
T
 [∇∇∇∇dq/dtL(q, dq / dt)].  Substituting this relation in 

equation (2) and assuming that the integral is evaluated on a SD curve, we obtain the 

next relation, 

JR q( )= L q,dq dt( )dt
t0

t

∫ = ∇dq dtL q,dq dt( )[ ]
T

dq
q R

q

∫  (3) 
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The last integral of expression (3), permits both, to consider the geodetic 

distance, JR(q), as a line integral of a total differential, independent of the path of 

integration, and to obtain the corresponding expression for the derivatives.  This is so 

because for this function JR(q) of the position q, the equation 

JR q( )= ∇qJR( )
q= qC

T

dqC

q R

q

∫ = ∇qJR( )
q= qC

T

dqC dt'( )dt'
t0

t

∫ =

∇qJR( )
q= q '

T

dq' dt '( )dt'
t0

t

∫ = ∇dq ' dt 'L q',dq' dt'( )[ ]
T

dq' dt'( )dt'=
t0

t

∫

L q',dq' dt'( )dt'
t0

t

∫

 (4) 

holds, where in the first two integrals the curve of integration between the points qR 

and q is arbitrary with tangent, dqC / dt at the point qC of this curve, and the last three 

integrals are evaluated on the corresponding SD curve, where the symbols, q’ and dq’ 

/ dt’, denote position and tangent vectors, respectively, of this SD curve connecting 

the points qR and q.  Notice again that the last line integral of equation (4) is evaluated 

on the SD curve connecting the points qR and q and only in this case its value 

coincides with the line integral of the total differential form evaluated on a curve 

joining these two points.  The simple form of this integral line is that defined in the 

first integral of equation (4).  From the expressions (2) and (4) we obtain the 

derivative of JR(q) with respect to q at the point q, 

∇qJR q( )= ∇dq dtL q,dq dt( )= v q( ) dq dt

dq dt( )T
dq dt( )

 (5) 

Multiplying equation (5) from the left by, [∇∇∇∇qJR(q)]
T
, we obtain the partial differential 

equation, 

∇qJR q( )[ ]
T

∇qJR q( )[ ]
v

2 q( )
−1 = 0 (6) 

which is the Hamilton-Jacobi equation or eiconal equation for the geodetic distance, 

JR, defined in equation (4), as a function of the end point q [14].  The equation (6) is a 

first-order non-linear partial differential equation of the type, F(q, ∇∇∇∇qJR) = 0, where 

both, the parameter t and JR do not appear explicitly. 

Now, we describe a method to solve the eiconal equation (6), which consists in 

finding a curve such that at each point of this curve the equation is satisfied [15].  

Since this eiconal equation is a function of N independent variables, then from a 

Page 8 of 46

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 
9 

geometrical point of view, the solution of this equation, JR(q), is interpreted as a 

surface, the so-called integral surface in the q, JR-space.  Now, we assume that F(q, 

∇∇∇∇qJR) is continuous function with continuous first derivatives with respect to both 

types of arguments, namely, q and ∇∇∇∇qJR = p, in the region under consideration.  In 

addition should be satisfied that [∇∇∇∇qJR(q)]
T
[∇∇∇∇qJR(q)] ≠ 0.  From a geometrical point 

of view the equation (6) can be seen as follows, at any point (q, JR(q)), the direction 

coefficients, ∇∇∇∇qJR(q), of the plane tangent to an integral surface, JR, in the q, JR-space 

satisfies the equality, F(q, ∇∇∇∇qJR) = 0.  Since this equation is non linear in the ∇∇∇∇qJR(q) 

vector, then the possible tangent planes form a N-1 parameter family enveloping a 

conical surface with the point (q, JR(q)) as a vertex.  This conical surface is called the 

Monge cone.  Notice that we are referring to a conical surface in the small.  In this 

way the Hamilton-Jacobi equation (6) assigns a Monge cone to each point (q, JR(q)) 

in the domain under study.  With these considerations, the problem of integrating the 

eiconal equation (6) consists in finding surfaces such that at each point are tangent to 

the corresponding cone.  Now we represent the Monge cone, F(q, ∇∇∇∇qJR) = 0, 

parametrically by taking the direction coefficients of the tangent plane enveloping it 

as a functions of a parameter τ, ∇∇∇∇qJR(q, τ).  A generating line of the Monge cone is 

the curve line resulting from the intersection of the tangent planes with parameters, τ, 

and τ + ε, respectively, as ε → 0.  This fact permits representing the Monge cone 

through a relation for their corresponding generating curve-lines instead of their 

relation through the tangent planes.  For a given generating curve-line, the set of 

points of this curve, (q, JR(q)), characterized by the parameter t, and taking into 

account that a point of this curve is the vertex of the cone, then the curve satisfies the 

set of equations, 

dJR

dt
= ∇qJR q,τ( )[ ]

T dq

dt
(7.a)

0 =
d

dτ
∇qJR q,τ( )

 

  
 

  

T
dq

dt
(7.b)

 

If we differentiate the equation F(q, ∇∇∇∇qJR) = 0 with respect to τ we get, 

d

dτ
∇qJR q,τ( )

 

  
 

  

T

∇pF q,∇qJR( )[ ]= 0 (8) 

By comparing equations (7) and (8) we have the relations 

dq

dt
= ∇pF q,∇qJR( ) (9.a) 
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dJR

dt
= ∇qJR[ ]

T

∇pF q,∇qJR( )[ ] (9.b) 

The equations (9) are a representation of the Monge cone corresponding to the 

Hamilton-Jacobi equation (6).  These relations of the generating lines of the Monge 

cone are called characteristic directions, and there is a one-parameter family of 

directions at each point.  The curves possessing at each point a characteristic direction 

or characteristic tangent, are known as Monge curves.  The differential equation (9.b) 

is called the strip condition.  Notice that the functions, q(t), JR(q(t)), and ∇∇∇∇qJR(q(t)), 

define both a field of curves and a plane tangent to each curve at every point.  This set 

of functions is called a strip.  For this 2N + 1 functions of t we have an undetermined 

system, since we have N + 1 system of ordinary differential equations (9) plus the 

equation (6).  Now we make the following reasoning, since the integral surface JR(q) 

at every point is tangent to the Monge cone, then it possesses a characteristic direction 

or characteristic tangent and as a consequence a Monge curve.  The field of tangents 

or characteristic directions defines a set of Monge curves and they are the integral 

curves on the integral surface JR(q).  As a consequence we can say that the Monge 

curve is imbedded in an integral surface and vice versa the field of Monge curves 

generates the corresponding integral surface and this fact permits deriving the N 

system of ordinary differential equations for the ∇∇∇∇qJR(q(t)) argument.  Now if we 

differentiate the Hamilton-Jacobi equation (6) with respect to q we get the relation 

∇q∇q

T
JR q( )[ ]∇pF q,∇qJR( )+ ∇qF q,∇qJR( )= 0 (10) 

Since the Monge curve with t as a parameter that characterizes this curve, satisfies 

equation (9.a) then equation (10) can be rewritten as 

d

dt
∇qJR q( )[ ]+ ∇qF q,∇qJR( )= 0 (11) 

Finally, if we assume that the Monge curve is imbedded in an integral surface, then 

the functions q(t), JR(q(t)), and ∇∇∇∇qJR(q(t)) = p, along this curve satisfy the system of 

2N + 1 ordinary differential equations 

dq

dt
= ∇pF q,∇qJR( ) (12.a) 

dJR q( )
dt

= ∇qJR[ ]
T

∇pF q,∇qJR( )[ ] (12.b) 

d

dt
∇qJR q( )[ ]= −∇qF q,∇qJR( ) (12.c) 
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Equations (12) are the characteristic system of differential equations corresponding to 

the Hamilton-Jacobi equation (6).  According to the definitions used in the theory of 

partial differential equations, we say that every solution of the system of equations 

(12) which also satisfies the equation (6), F(q, ∇∇∇∇qJR) = 0, is called a characteristic 

strip, and the curve, q(t), JR(q(t)) bearing such a strip is called a characteristic curve.  

These strips form a 2N – 1 parameter family.  The extremal curve of the variational 

problem (2) is obtained by the projection of the characteristic curve from the q, JR-

space to the q-subspace.  For the present problem equations (12) take the form 

dq

dt
= ∇qJR q( ) (13.a) 

dJR q( )
dt

= ∇qJR q( )[ ]
T

∇qJR q( )[ ] (13.b) 

d

dt
∇qJR q( )[ ]=

1

2
∇qv

2 q( ) (13.c) 

where, ∇∇∇∇qJR = p = g(q), is the gradient vector evaluated at the point of the curve, q = 

q(t), of the SD curve with initial point, qR = q(t0) and initial pR vector.  From the 

Theory of CV just exposed, the above results are the mathematical background of the 

important set of methods used to integrate the IRC curve [23, 7, 24, 25, 26, 27, 28, 29, 

30, 31, 32, 33, 34, 35, 36, 37, 38, 39].  Recently, an algorithm based on the 

simultaneous integration of the above set of differential equations (13) to obtain the 

IRC curve has been proposed, doing the integration through the Runge-Kutta-

Felhberg technique [16].  In the Appendix A we give a proof of the above assertion 

where the well known integrated form of equations (13) for a quadratic PES are 

derived by using the Jacobi method based in the construction of an envelope [15]. 

Finally, we conclude this subsection emphasizing, for posteriors purposes, that 

the solution of the eiconal equation (6), JR(q), defines a field of extremal curves, SD 

curves, all starting from the qR point a stationary point character minimum of the PES.  

As a consequence, each SD curve, or extremal curve, of this field cuts transversally 

the equipotential curves of the PES, each one at a different point.  The IRC curve is an 

SD extremal curve imbedded in this field of extremals curves. 

 

2.B)  Algorithm based on the Theory of Second Variation: minimization of 

the line integral of the Weierstrass E-Function 
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The concept of close neighborhood is important in the analysis and solutions of the 

variational problems in the small [40, 41].  Let us considered a curve, q(t), with 

continuous tangent, dq(t) / dt.  This curve is in the present case a SD curve.  The line 

elements of this curve are determined by the 2N + 1 numbers, namely, (t, q, dq / dt), 

which are points of a 2N + 1-dimensional space.  Now, we consider a second curve, 

qC(t), defined in the same interval of t.  This curve is called a “variation” of the q(t) 

curve, or a “comparison curve”.  The curve qC(t) is continuous in the interval of t but 

only piecewise continuous differentiable, that is, may be possesses a finite number of 

corners.  The comparison curve, qC(t), belongs to a close neighborhood, (ε1, ε2), of the 

curve q(t) if in the desired interval of t, the relations  qi(t) – qCi(t)  < ε1 and  dqi(t) / 

dt – dqCi(t) / dt  < ε2, for ∀ i = 1, …, N, hold.  The latter relation is only applicable at 

the points of t where the tangent vector, dqC(t) / dt, exists. 

Now we assume that the functional, L(q, dq / dt), given in expression (2), is 

defined in the 2N-dimensional space and in addition is a twice continuously 

differentiable function of the q and dq(t) / dt, variables.  The vector, dq(t) / dt, is the 

tangent vector of the extremal curve, the SD curve.  If we expand in Taylor series the 

functional, L(q, dq / dt), in powers of (dqC(t) / dt - dq(t) / dt) and truncate the series 

after the linear terms, and taking into account that L(q, dq / dt) is a homogeneous 

functional of degree one with respect to, dq / dt, we obtain 

L q,dqC dt( )= L q,dq dt( )+ dqC dt − dq dt( )T
∇dq dtL q,dq dt( )[ ]

dq dt

+E q,dq dt ,dqC dt( )
= dqC dt( )T

∇dq dtL q,dq dt( )[ ]
dq dt

+ E q,dq dt ,dqC dt( )

 (14) 

The remainder, E(q, dq/dt, dqC/dt), is the Weierstrass E-function also known as 

excess or error function [40, 41].  This Weierstrass E-function vanishes only when the 

vector (dqC(t) / dt - dq(t) / dt) = 0, that is when the curve with tangent dqC(t) / dt 

coincides with the extremal curve, in the present case the SD curve.  The remainder 

takes the following explicit general form, 

E q,dq dt ,dqC dt( )=1 2 dqC dt − dq dt( )T

× ∇dq dt∇dq dt

T
L q,dq dt( )[ ]

dq dt= dq dt +ϑ dqC dt−dq dt( )
dqC dt − dq dt( )

 (15) 

where 0 < ϑ < 1.  If we integrate equation (14) through the arbitrary path C, 

connecting the points qR = q(t0) and q* = q(t), which possesses piecewise continuous 

tangents and except in the corners, but if this arbitrary curve has corners, and the 
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13 

inequality,  dqi(t) / dt – dqCi(t) / dt  < ε2, for ∀ i = 1, …, N, in both cases holds, then 

after some rearrangements, we get 

E q,dq dt',dqC dt'( )dt'
t0

t

∫ = L q,dqC dt'( )dt'
t0

t

∫ − JR q*( ) (16) 

In the derivation of expression (16) we have used that ∇∇∇∇qJR(q) = [∇∇∇∇dq/dtL(q, 

dq/dt)]dq/dt, and the second equality of equation (4).  Notice that in equation (16), the 

tangent vector, dq / dt, is the tangent of the SD curve, the extremal curve, dq / dt = 

g(q).  The above equation (16) establishes the Weierstrass sufficient condition for an 

extremal curve to be strong relative minimum (maximum) for the functional integral 

like given in equation (2).  Regarding the right hand side part of equation (16), we can 

say that the question about strong relative minimum (maximum) for the functional 

integral is reduced to a comparison of integrands alone.  It can be shown that the 

Weierstrass sufficient condition is related to the second variation of the functional 

integral of expression (2) with respect to the function q(t).  Using this condition, one 

assumes that the extremal curve under study can be imbedded in a field of extremal 

curves, in the present case a field of SD curves, as mentioned at the end of the 

previous subsection.  If this is not possible then the second variation of the integral (2) 

cannot be expressed as a function of the Weierstrass E-function alone in the domain 

under consideration, and as a consequence, it is not correct to conclude whether an 

extremal curve is a strong relative minimum (maximum) taking into account the value 

of equation (16).  We can always imbed an extremal curve, SD curve, in a field if the 

endpoints of the curve are not too far.  A family of extremal curves starting from the 

point, qR = q(t0), a stationary point character minimum of the PES, will constitute a 

field up to its envelope.  In other words, if q(t) is a SD curve starting at the qR point, 

the first point at which this extremal curve is intersected again by other neighboring 

SD curve of this field, is called the conjugate point of qR.  The conjugate point is the 

intersection of the SD curve, q(t), with the envelope.  If the conjugate point is the 

point q(tCP), then the necessary and sufficient conditions given by equation (16) can 

be applied only in the interval, t0 ≤ t < tCP [40, 41].  It can be shown that the IRC 

curve, a SD curve connecting two stationary points character minimum of the PES 

through a first order saddle point, does not possess conjugate point, in all the interval 

[14].  We emphasize that all these conclusions are applied to a field of continuous 

extremal curves, SD curves, with continuous tangent at each point of the curve. 
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If the functional, L(q, dq/dt), given in the expression (2) is substituted in 

equation (14), we obtain the Weierstrass E-function for the SD curve, 

E q,g,dqC dt( )= 1−
gT

dqC dt( )
gTg dqC dt( )T

dqC dt( )

 

 

 
 

 

 

 
 
L q,dqC dt( ) (17) 

According to equation (17), we can say that the Weierstrass E-function for the SD 

curve is always positive, E(q, g, dqC / dt) ≥ 0, and in addition, using equation (16) we 

conclude that the SD curves are extremals of character minimum.  In other words, the 

SD curves make minimum the integral line (2) with respect to other “comparison 

curves”, connecting the same end points, qR, and q*, in the given neighborhood. 

The Weierstrass E-function can be interpreted geometrically in a very striking 

manner [41].  For this purpose, let us consider the surface defined by the equation, 

L(q, dq / dt) = 1, where the variable is the tangent vector, dq / dt, while the argument, 

q, represents the coordinates of the point at which the tangent vector space is defined.  

The functional, L(q, dq / dt), is that given in equation (2).  For any tangent vector, dqC 

/ dt, issuing from the origin vector, dq / dt = 0, we can find a positive number ξ such 

that L(q, ξ dqC / dt) = 1, and this is possible because the functional L(q, dq / dt) is 

homogeneous of degree one with respect to the dq / dt argument.  Notice that ξ = 

[L(q, dq / dt)]
-1

.  Therefore, any tangent vector issuing from the origin vector 0, will 

intersect the surface, L(q, dq / dt) = 1, once and only once.  This surface is known as 

the indicatrix.  Now, let dq / dt the tangent vector of the SD curve at the point q, and 

dqSD / dt = ξ dq / dt, a fixed point of the indicatrix, such that L(q, dqSD / dt) = 1.  The 

equation of the tangent plane to the indicatrix at this fixed point, dqSD / dt, is 

dq' dt − dqSD dt( )T
∇dq dtL q,dq dt( )[ ]

dq dt= dq SD dt
= 0 (18) 

In equation (18), the arguments, q and dqSD / dt, are fixed, while the argument, dq’ / 

dt, is the variable.  Using both, that the functional L(q, dq / dt) is homogeneous and 

L(q, dqSD / dt) = 1, equation (18) can be rewritten as 

dq' dt( )T
∇dq dtL q,dq dt( )[ ]

dq dt= dq SD dt
=1 (19) 

Let dqC / dt, be tangent vector of the arbitrary curve C at the same point q, and dq’C / 

dt = ξ’ dqC / dt, be another fixed point of the indicatrix.  Notice that ξ’ is computed 

such that the equality, L(q, dq’C / dt) = 1, is satisfied taking as the origin of dq’C / dt 

vector the 0 vector.  Starting at the point, dq’C / dt, we construct a vector parallel to 

the vector, dqSD / dt, such that it meets the tangent plane given in equation (19) at the 
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point, dq’ / dt.  Thus the resulting constructed vector has components, χ dqSD / dt, 

where χ is a real number and takes the value zero when, dqSD / dt = dq’C / dt.  Now 

we want to find an analytical expression for the χ number.  By the construction, the 

vector dq’ / dt, with origin at 0 vector, has components, dq’ / dt = dq’C / dt + χ dqSD / 

dt, and satisfies equation (19), 

dqC

'
dt + χ dqSD dt( )T

∇dq dtL q,dq dt( )[ ]
dq dt= dq SD dt

=1 (20) 

After some rearrangements we obtain, 

χ =1− gTg
dqSD dt( )T

dqC dt( )ξ '

dqSD dt( )T
dqSD dt( )

=1−
dqSD dt( )T

dqC dt( )
dqSD dt( )T

dqSD dt( ) dqC dt( )T
dqC dt( )

=1−
gT

dqC dt( )
gTg dqC dt( )T

dqC dt( )
=

E q,g,dqC dt( )
L q,dqC dt( )

 (21) 

where we have used that the tangent of the SD curve is, dqSD / dt = g.  Expression 

(21) tells us that the Weierstrass E-function is the ratio or proportionality factor 

between the vectors, dqSD / dt, and dq’ / dt – dq’C / dt.  This result is based on the 

Carathéodory’s geometrical interpretation of the Weierstrass E-function [41].  In 

figure 1 we give a graphical scheme where all the above concepts are shown. 

 

[Please insert figure 1 near here] 

 

From the above geometrical point of view of the Weierstrass E-function we can 

reason in the following way, given an arbitrary curve C such that at point q of this 

curve the tangent is dqC / dt, then we can find the SD curve passing through this point 

by minimization of the corresponding Weierstrass E-function of this point. If this 

procedure is applied to a whole curve connecting two given points, say qR and q*, 

then we obtain the SD curve connecting these points.  It is assumed that the arbitrary 

C curve is imbedded in the field of the SD curves.  Finally, if the points qR and q*, 

correspond to two stationary points of the PES with character minimum, associated to 

reactants and products respectively, then the located SD curve is the IRC curve.  With 

this procedure, one achieves to make zero the integral of the left hand side part of 

equation (16), which means that the line integral evaluated on the converged curve is 
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equal to JR(q*), the value of the line integral (2) computed on the SD curve that 

connects the points qR and q*.  To be clear we rewrite equation (16) as 

E q,g,dqC dt'( )dt'
t0

t

∫ =
1

2
2 −

2gT
dqC dt '( )

gTg dqC dt'( )T
dqC dt '( )

 

 

 
 

 

 

 
 
L q,dqC dt'( )dt '

t0

t

∫

=
1

2

dqC dt'

dqC dt '( )T
dqC dt '( )

−
g

gTg

 

 

 
 

 

 

 
 

t0

t

∫
T

dqC dt'

dqC dt'( )T
dqC dt'( )

−
g

gTg

 

 

 
 

 

 

 
 
L q,dqC dt'( )dt'

 (22) 

where equation (17) has been used.  This expression is the basis of the algorithm to 

locate IRC curve on the PES proposed in reference [14].  Notice that the integral of 

equation (22) is zero if the normalized tangent vector of the arbitrary curve C at each 

point is parallel with respect to the normalized gradient vector at this point of the PES, 

or, what is the same, the component of this gradient vector in the orthogonal subspace 

of the tangent vector of this arbitrary curve C is equal to zero at each point of the 

curve, (g – tC tC
T
 g) = 0, being tC = (dqC / dt’) / [(dqC / dt’)

T
 (dqC / dt’)]

1/2
, the 

normalized tangent vector of the C curve at the point q, and g = g(q).  The latter 

reasoning is the basis of the NEB and SM methods [17, 18, 19, 20, 21, 22] and also 

that proposed by Ayala and Schlegel [42] and shows clearly their connection with the 

statement that the minimization until the zero value of the line integral of the 

Weierstrass E-function.  The condition of zero value of the line integral of the 

Weierstrass E-function appears in the set of necessary and sufficient conditions of a 

curve to be an extremal curve, like the IRC path, ensuring that this curve gives the 

minimum value to the line integral (2) with respect to others “comparison curves”. 

Now we outline briefly an algorithm based on the direct minimization of the 

integral given in equation (22) to locate the IRC curve as discussed above. 

 

1. Give a guess path, C, connecting the points qR and q*.  The path C is 

represented by a polygonal curve and assumed to be in a close 

neighborhood of the desired IRC path.  The points qR and q* are two 

stationary points of the PES with character minimum. 

2. Compute at each vertex of the polygonal curve C, the Weierstrass E-

function.  The discretized expressions of both the Weierstrass E-function, 

Edis(gµ, ∆qµ), and the integral given in equation (22) evaluated over the 

polygonal curve C, are 
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Edis gµ ,∆qµ( ) ∆qµ
T∆qµ

µ=1

number of
vertices

∑

= 1−
gµ

T∆qµ

gµ
Tgµ ∆qµ

T∆qµ

 

 

 
 

 

 

 
 

µ=1

number of
vertices

∑ gµ
Tgµ ∆qµ

T∆qµ

=
1

2

∆qµ

∆qµ
T∆qµ

−
gµ

gµ
Tgµ

 

 

 
 

 

 

 
 

T

∆qµ

∆qµ
T∆qµ

−
gµ

gµ
Tgµ

 

 

 
 

 

 

 
 

gµ
Tgµ ∆qµ

T∆qµ
µ=1

number of
vertices

∑

 

   (23.a) 

 where gµ = g(qµ) and ∆qµ = qµ+1 - qµ.  The index µ runs over the number 

of vertices of the C polygonal curve, and each qµ represents the position of 

each vertex.  If the value of equation (23.a) is below a given threshold then 

the current C curve is the IRC curve joining the stationary points qR and q* 

in the PES. 

3. At each vertex µ, the derivative of the above expression (23.a) with respect 

to qµ is computed according to the formula, 

 

∇q µ
Edis gν ,∆qν( ) ∆qν

T∆qν
ν =1

number of
vertices

∑
 

 

 
  

 

 

 
  

= ∇q µ
Edis gµ ,∆qµ( ) ∆qµ

T∆qµ + Edis gµ−1,∆qµ−1( ) ∆qµ−1

T ∆qµ−1( )
= −Hµ

∆qµ

∆qµ
T∆qµ

−
gµ

gµ
Tgµ

 

 

 
 

 

 

 
 

∆qµ
T∆qµ −

∆qµ

∆qµ
T∆qµ

−
gµ

gµ
Tgµ

 

 

 
 

 

 

 
 

gµ
Tgµ

+
∆qµ−1

∆qµ−1

T ∆qµ−1

−
gµ−1

gµ−1

T gµ−1

 

 

 
 

 

 

 
 

gµ−1

T gµ−1 = eµ

 

  (23.b) 

 where, Hµ = H(qµ), is the Hessian matrix evaluated at the point qµ.  The 

new point vertex, qµ’, is found by minimization of the potential energy, 

V(qµ), in the direction given by vector of the equation (23.b), 

 V qµ + eµαµ( )= V qµ( )+ gµ
Teµαµ +1 2eµ

THµeµαµ
2  (23.c) 

 The minimization is stopped when both, V(qµ) – V(qµ + eµ αµ) and | αµ |, 

satisfy some criteria.  The trust radius technique is used to find the 
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appropriated minimization step [43].  Once αµ is obtained the new vertex is 

computed through the equation, qµ’ = qµ + eµ αµ. 

4. If the new set of vertices, { qµ’ }µ�
number of vertices

, does not define a curve 

satisfying the requirements of regular curve then a parameterization of the 

curve is needed.  After the parameterization is done, the new set of vertices 

define the new curve C’.  Doing C’ → C, the process is started again at the 

step 2. 

 

Now we comment the just outlined algorithm to find IRC curves, to justify the 

procedure with the explained mathematical elements of the theory of CV.  The guess 

curve and the set of intermediate curves generated by the algorithm, labeled by C, are 

curves of the type “comparison curves” introduced in the first paragraph of the 

present subsection.  The convergence criteria of step 2, is justified since this implies 

that at each vertex of the current C curve, the equality ∆qµ���	∆qµ
Τ ∆qµ


����gµ���	gµ
T
gµ)

1/2
, for 

µ = 1, …, number of vertices, is satisfied which is nothing more that the discretized 

form of equation (1), the tangent equation of the IRC curve.  In the sub arc of the 

current curve C such that the energy of the PES decreases according to the defined 

direction of the curve then the set of vectors, ∆qµ���	∆qµ
Τ ∆qµ


��
, associated to the vertices 

of this sub arc are changed of sign.  The minimization of the PES at each vertex of the 

current curve, as explained in step 3, ensures that the procedure will not converge to a 

SD curve with conjugate points.  As discussed above, the IRC curve is a SD curve 

free of conjugate points, otherwise the curve does not satisfy the set of sufficient 

conditions to minimize the integral (2) between the points qR and q*.  A SD curve, 

connecting two points character minimum of the PES, possesses a conjugate point if a 

point of this curve is a stationary point with character of order higher than one [14].  

Since stationary points of the PES with character of order higher than one possess 

values of V that are higher to the values of V of the corresponding stationary points 

with character first order (FOSP), then in order to satisfy the above requirement we 

force the minimization process at each vertex of the current discretized curve C, 

ensuring in this way that the curve does not possess a conjugate point.  After the 

minimization is completed for all vertices of the current curve as required in step 3, 

maybe the resulting new set of vertices does not define a curve to be an admissible 

“comparison curve”.  This is the reason of the last step 4.  An admissible “comparison 
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curve” is a regular curve [40], which means that q(t) is a single-valued function and 

the derivatives are well defined in the whole interval, t0 ≤ t ≤ tf, being, q* = q(tf).  For 

discretized curves, such as used in the present algorithm, this requirement is obeyed 

first, if the curve shows a monotonic increasing or decreasing behavior, V(qµ-1) < 

V(qµ) < V(qµ+1) or V(qν-1) > V(qν) > V(qν+1), which avoids that the curve be a non 

single-valued.  Second, the consecutive points of the curve should be well separated 

which implies that, 	∆qµ
Τ ∆qµ


��
 ≥ ε3 > 0, and ensures that the tangent vector is well 

defined.  The threshold, ε3, is taken as equal to the quotient between the length of the 

current polygonal curve C and the number of vertices.  The algorithm assumes that 

the initial guess curve is an admissible “comparison curve”.  Finally we say that the 

set of Hessian matrices used in step 3, { Hµ }µ=1
number of vertices

, are updated rather than 

evaluated by using the procedure given in reference [16].  The above outlined 

algorithm is close in its basic philosophy to that proposed by Ayala and Schlegel [42]. 

The behavior of the above algorithm is shown for the location of the IRC curve 

on the Müller-Brown PES [44], joining the two minima labeled as, M1 and M2, with 

coordinates, x = - 0.558 length arbitrary units (lau), y = 1.442 lau and x = -0.050 lau, 

y = 0.467 lau, respectively.  A point of this IRC path is the FOSP labeled as TS1 with 

coordinates, x = -0.822 lau, y = 0.624 lau.  In figure 2 we show the initial guess curve 

C, which is a straight line ending in the points M1 and M2.  The straight line is 

defined by a polygonal curve with ten vertices.  These vertices will move during the 

location process according to the above algorithm, but the two ending points, M1 and 

M2, will remain fixed. 

 

[Please insert figure 2 near here] 

 

Figure 2 shows the eµ vectors associated to each vertex of the polygonal curve C, 

computed according to the equation (23.b).  The eµ vector of a vertex is the gradient 

vector of the Weierstrass E-function with respect to the point location of the vertex, 

qµ.  These vectors are almost orthogonal to the tangent vectors of the straight line, 

except than that correspond to the vertices near to the ridge.  In this case the two eµ 

vectors are quasi orthogonal to the SD curve that follows the ridge. 

 

[Please insert figure 3 near here] 
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As explained in the description of the algorithm, using the eµ vectors and equation 

(23.c) we obtain the new coordinates of each vertex.  This new set of coordinates and 

the associated eµ are indicated in figure 3.  However, the resulting polygonal curve 

defined by this new set of coordinates do not satisfy the requirements of regular curve 

to be a “comparison curve”, since the vertices 6 and 7 have the same value of the 

PES, they do not represent a real decrease of the PES as one moves on the curve from 

the ridge to the minimum M2.  The vertex numbering starts at the first vertex located 

near the minimum M1.  Due to this fact the parameterization of the new curve is 

needed.  In this situation the parameterization consists in the displacement of the 

vertex 6 in the middle of the positions of the vertices 5 and 7.  The resulting set of 

coordinates defines the new curve, not shown in the figure.  With this new curve a 

new iteration begins.   

 

[Please insert figure 4 near here] 

 

In the middle of the localization process, the current curve C approach to the IRC 

curve.  As shown in figure 4, vertices 8, 9, 10, which are near to the minimum M2, are 

located in the IRC curve.  The corresponding eµ vector of these vertices is a null 

vector.  Finally in figure 5 we show the ten vertices located on the IRC curve, which 

means that the process is converged.  Each eµ vector is almost a null vector. 

 

[Please insert figure 5 near here] 

 

 

 

3.  THE THEORY OF DISCONTINUOUS EXTREMALS USED AS 

ANALISYS AND TREATMENT OF THE INTRINSIC REACTION 

COORDINATE PATH PASSING TROUGH A VALLEY-RIDGE-

INFLECTION POINT 

 

As explained in sections 1 and 2, the IRC path at each point transverses orthogonally 

the set of equipotencial curve levels, however in some cases an equipotencial curve 
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possesses null curvature at the point where the IRC cuts it and this point is the VRI 

point [12].  In this section we analyze the IRC path that from a FOSP deeps to other 

FOSP passing through a VRI point using the theory of discontinuous extremals.  The 

theory of discontinuous extremals is an important subject of the full mathematical 

theory of CV.  Notice that we are concerned with the type of VRI points where the 

gradient vector of this point is orthogonal to the eigenvector of zero eigenvalue of the 

Hessian matrix evaluated in this VRI point. 

In the theory of CV, by a discontinuous extremal is meant an extremal curve 

having one or more corners.  In such corners the tangent of the extremal curve has the 

ordinary discontinuities.  The first additional necessary condition on extremal curve 

with corners is the Weierstrass-Erdmann corner condition, which says that, for 

homogeneous functional like that given in equation (2), ∇∇∇∇dq / dt L(q, dq /dt), must be 

continuous along the whole extremal curve.  At each corner the above condition takes 

the form 

∇dq dtL q,dq dt( )[ ]
dq dt= dq + dt

− ∇dq dtL q,dq dt( )[ ]
dq dt= dq − dt

= 0  (24) 

where dq-
 / dt and dq+

 / dt denote the tangent vectors of the extremal curve preceding 

and following the corner, respectively [40, 41].  Substituting equation (5) in equation 

(24) we obtain the Weierstrass-Erdmann corner condition for a discontinuous SD 

curve 

ν q( ) dq+
dt

dq+ dt( )T

dq+ dt( )
−ν q( ) dq−

dt

dq− dt( )T

dq− dt( )
= 0  (25) 

Since for the discontinuous SD curve, the tangent vectors preceding and following the 

corner are, dq-
 / dt = dq /dt = g, and dq+

 /dt = g+
, respectively, then equation (25) is 

satisfied only at the stationary points of the PES, where ν(q) = [(g(q))
Tg(q)]

1/2
 = 0.  

The vectors, g and g+
 are not collinear.  In other words, the Weierstrass-Erdmann 

corner condition tells us the very well know fact that the SD curves branch only at the 

stationary points of the PES.  The IRC curve is a SD curve such that emerging from 

the point qR = q(t0), a stationary point of the PES character minimum, arrives at a 

FOSP of this PES and close to this point the tangent vector of this SD curve can be 

expressed as, g = c vTS, being vTS the normalized eigenvector with negative 

eigenvalue of the Hessian matrix evaluated at the FOSP [27].  From all SD curves 

emerging from the qR point, one and only one of these curves, the IRC curve, arrives 

at a FOSP with normalized tangent, vTS.  Since the FOSP is a stationary point of the 
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PES, then for the IRC curve this point is a corner point if we take, following this 

point, other SD curve with tangent vector orthogonal to the vTS vector.  Notice that 

this corner point is an isolated point and does not belong to any curve such that each 

point of this curve is a corner point of each extremal curve of the field of extremals.  

In this way we have constructed a discontinuous SD curve such that starting at the qR 

point, the corner point is a FOSP of the PES.  After following the corner, 

corresponding to the first FOSP, we take the SD curve that arrives at a next stationary 

point with character FOSP and, as before, close to this point its tangent vector is 

proportional to v’TS vector, being v’TS the normalized eigenvector with negative 

eigenvalue of the Hessian matrix corresponding to this second FOSP.  The resulting 

discontinuous SD curve, the sub arc connecting the two FOSPs after following the 

first FOSP, should transverse a set of equipotencial curve lines with negative 

curvature, since the tangent of this sub arc when it emerges from this stationary point 

is, dq+
 / dt = g+

, which is orthogonal to vTS.  On the other hand walking to the second 

FOSP, the SD curve transverses a set of equipotencial curve lines with positive 

curvature.  As a consequence in this sub arc and due to the continuity property of the 

PES, the SD curve transverses at least an equipotencial curve line with zero curvature, 

and the intersection point between this equipotencial line and the SD curve is a VRI 

point.  In this way we have constructed a discontinuous IRC curve, a discontinuous 

extremal curve, which passes through a VRI point and the corner is a FOSP.  Now, 

we have the following question, does the above IRC discontinuous curve, which starts 

at the qR = q(t0) point and ends in the qP = q(tf) point, a stationary point of the PES 

character minimum associated to the products, minimizes the functional integral given 

in expression (2)?  Before answering this question we study the behavior of the 

Weierstrass E-function for a SD curve around a corner point, a stationary point of the 

PES [45].  Taking equation (14) and the homogeneity condition of L(q, dqC / dt) with 

respect to the argument dqC / dt, replacing dqC / dt by dq+
 / dt = g+

, and dq / dt by dq-
 

/ dt = g, the tangent vectors of the SD extremal curve preceding and following the 

corner respectively, and finally using equation (24), we obtain 

dq+
dt( )T

∇dq dtL q,dq dt( )[ ]
dq dt= dq + dt

− ∇dq dtL q,dq dt( )[ ]
dq dt= dq − dt

{ }
= E q,dq−

dt ,dq+
dt( )= E q,g,dq+

dt( )= E q,g,g+( )= 0

 (26) 

According to the expression (26), the Weierstrass E-function of a discontinuous SD 

curve is zero at the corner.  At this point it is interesting to study the variation of the 

Page 22 of 46

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 
23 

Weierstrass E-function preceding and following the corner.  By differentiation 

equation (26) with respect to the parameter t, we find, 

dE q,dq− dt ,dq+ dt( )
dt

= dq−
dt( )T

∇qL q,dq+
dt( )[ ]− dq+

dt( )T

∇qL q,dq−
dt( )[ ]

= −
dE q,dq+ dt ,dq− dt( )

dt

 

 (27) 

Substituting as before, dq
-
 / dt = g and dq

+
 / dt = g

+
, in equation (27), we find that for 

the SD curve, at the corner point, dE(q, g, g
+
) / dt = - dE(q, g

+
, g) / dt = 0.  In other 

words, preceding and following the corner of a SD curve, the two Weierstrass E-

functions, E(q, g, g
+
), and E(q, g

+
, g), the first decreases and the second increases, 

taking the value zero at the corner.  Since for any SD curve the Weierstrass E-function 

is positive definite, E(q, g, dqC / dt) ≥ 0, this conclusion is also extensible to 

discontinuous SD curves, since at the corner points the corresponding Weierstrass E-

function takes the value zero.  As mentioned in the previous section, the Weierstrass 

E-function gives the sufficient condition for an extremal curve to be a strong relative 

minimum for the functional integral like given in equation (2).  However, applying 

this condition one assumes that the extremal discontinuous curve can be imbedded in 

a field of extremals, in this case a field of SD curves.  In order to ensure that this is so, 

we make the following reasoning, the IRC is the only SD curve from all the set of 

curves starting at the qR = q(t0) point that it achieves the FOSP, playing the rule of a 

corner point which does not belong to any corner curve.  A corner curve is defined by 

the set of corner points of the field of discontinuous extremal curves.  In other words 

no conjugate point exists with respect to the qR point when the IRC curve arrives to 

the corner point.  From the corner point, the first FOSP, to the second FOSP only a 

SD curve exists connecting both FOSPs and the minimum qP = q(tf).  Taking into 

account all the domain of the discontinuous IRC curve, t0 ≤ t ≤ tf, we conclude that in 

this domain the discontinuous curve does not posses any conjugate point with respect 

to the qR point and due to this fact the discontinuous IRC curve with endpoints, qR = 

q(t0) and qP = q(tf), can be imbedded in the field of SD curves with starting point, qR 

= q(t0), a stationary point of the PES character minimum.  From the above results, we 

conclude that the discontinuous IRC curve, constructed as explained above, is an 

extremal curve strong relative minimum. 
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We conclude this section by analyzing, from the point of view of the above 

exposed theory of the second variation, the treatment used some times consisting in 

deviating the IRC curve from the original valley floor to other valley floor or 

approximation to it rather than following the ridge when the path finds a VRI point.  

The question is, which is the error produced when one takes this deviation on the light 

of the above analysis?  For this purpose let us denote the VRI point by qVRI = q(tVRI).  

From the point qR = q(t0), a stationary point of the PES character minimum, we 

construct a central field of SD curves.  In this region covered by this field the integral, 

JR(q) = ∆VR → q (q) = V(q) – V(qR), is defined, which again is the value of the first 

two integrals of equation (4) evaluated along any curve defined in this region joining 

the point qR to  the variable point q.  One of the SD curves of this field connects the 

qR point with the FOSP which is taken as a corner and from this corner it leads to the 

next FOSP passing through the VRI point, qVRI.  The just defined SD curve or 

extremal curve is the discontinuous IRC curve.  Now let VVRI the equipotencial curve 

of the family of curves, JR(q) = constant, such that the discontinuous IRC intersects 

with this curve at the point qVRI.  This equipotencial curve, VVRI, also intersects at the 

point qM with the SD curve that emerges from the point qR and follows a valley floor 

or near to it.  Finally, let C a curve obtained from the discontinuous IRC curve by 

replacing the sub arc of this discontinuous IRC from qR to qVRI by the curve joining 

the points qR, qM = q(tM), and qVRI, where the sub arc of the curve C connecting the 

points qR, and qM, is the SD curve that is located in a valley floor or near to it, while 

the curve connecting the points qM, and qVRI, is a sub arc of the equipotencial curve 

VVRI.  We denote by dqC / dt the tangent vector of this arbitrary curve C.  According to 

this construction, the sub arc of the curve C located between the points, qM = q(tM) 

and qVRI, the tangent vector of this C curve, dqC / dt, is the tangent of the 

equipotencial curve VVRI, which implies that this tangent vector at each point is 

orthogonal to the gradient vector g(q) at this point in this sub arc.  Notice that 

between these points, qM and qVRI, and according to equation (17), the Weierstrass E-

function for the C curve at each point is equal to L(q, dqC/dt).  With all this set of 

definitions and considerations, it is easy to see that the line integral of the Weierstrass 

E-function for this curve C is, 
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E q,g,dqC dt'( )dt'
t0

t f

∫ =
1

2
2 −

2gT
dqC dt'( )

gTg dqC dt'( )T
dqC dt'( )

 

 

 
 

 

 

 
 
L q,dqC dt'( )dt'

t0

t f

∫

= E q,g,dqC dt'( )dt'
t0

t M

∫ + E q,g,dqC dt'( )dt '
t M

tVRI

∫ + E q,g,dqC dt'( )dt'
tVRI

t f

∫

= L q,dqC dt'( )dt'
t M

tVRI

∫ > 0

 (28) 

where equation (22) has been used.  The integrals evaluated in the intervals, [t0, tM] 

and [tVRI, tf], are zero because these two integrals are computed on a SD curve, dqC / 

dt = g(q).  In more detail, the C curve coincides with the SD sub arc that contains the 

points, qVRI = q(tVRI) and qP = q(tf), a sub arc of the discontinuous IRC connecting the 

points, qR = q(t0) and qP = q(tf).  Finally, between the points, qR = q(t0) and qM = 

q(tM), the C curve coincides, by construction, with a sub arc of the SD curve that 

emerges from the point, qR, follows a valley floor or near to it and passes through the 

point qM. 

This result shows that the discontinuous IRC curve connecting the points, qR = 

q(t0) and qP = q(tf), which in some region of its domain passes through a ridge, 

minimizes the integral (2) with respect to any other curve imbedded in this field of the 

SD curves even if this arbitrary curve in all its domain passes through a valley ridge 

or near to it.  As pointed out many times by Quapp and coworkers [46, 47], starting at 

the FOSP, where N – 1 eigenvalues of the eigenvectors orthogonal to the decay 

eigenvector are positive definite, the IRC has the MEP property or in others words is 

the true RP.  Nevertheless, the IRC can lose this property but even in this situation the 

IRC minimizes integral (2) evaluated between the points qR and qP.  We conclude this 

section by analyzing, from the point of view of the above exposed theory of the 

second variation applied to discontinuous extremals, the treatment used some times 

consisting in deviating the IRC curve from the original valley floor to other valley 

floor or approximation to it rather than following the ridge when the IRC path finds a 

VRI point.  In order to be clear with respect to the above concepts, we refer to figure 6 

where a two dimensional representation of the key elements of the following 

discussion is exemplified on the PES used by Quapp in his studies about the VRI 

problem [46]. 
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[Please insert figure 6 near here] 

 

In this example the discontinuous IRC, described by the thin dashed line, can 

start either in the minimum situated in the top left or one of the minima located in the 

bottom.  We start the description of the discontinuous IRC in the minimum located in 

the left bottom with coordinates, x = -1.144 lau, y = -3.070 lau, labeled as qR and 

outside of the figure.  The minimum located at the top left is labeled as qP and is also 

located outside the figure.  The coordinates of the qP point are, x = -11.190 lau, y = 

11.190 lau.  Starting at qR point the IRC curve finds the FOSP, labeled as FOSP1, 

located at x = 0.789 lau, y = -0.789 lau.  This FOSP1 point is also the corner point of 

the discontinuous IRC, since after this point the IRC path takes a new direction which 

is parallel to the eigenvector of the Hessian matrix at this FOSP1 point orthogonal to 

the eigenvector with negative eigenvalue, in other words, dq
+
 / dt |FOSP1 = c v, where 

v is the eigenvector with positive eigenvalue.  When the discontinuous IRC curve 

leads from the FOSP1 it finds a VRI point, qVRI, located at x = 0.0 lau, y = 0.0 lau, 

[46], and finally it arrives at the second FOSP, labelled as FOSP2.  The FOSP2 point 

is located at the point with coordinates, x = -0.849 lau, y = 0.849 lau.  Finally the 

discontinuous IRC curve deeps from the FOSP2 to the qP point.  On the other hand 

the curve C, emerges from the qR point and it follows initially a SD curve near the 

IRC path that emerges also from the same point and arrives at the FOSP1.  This SD 

curve, near the FOSP1 and before arriving to it, changes the direction in a continuous 

way and leads to the point labelled as M, qM, located in the equipotencial curve line 

that contains the VRI point.  The coordinates of the M point are, x = -0.09 lau, y = -

0.09 lau.  The M point is very close to the VRI point.  Notice that the sub arc of the 

equipotencial curve line defined between the points M and VRI is also a sub arc of the 

curve C.  Finally, from the VRI point the curve C leads to the FOSP2 and falls into 

the qP minimum following the same path of the discontinuous IRC curve.  Now, 

taking the distance between the points M and VRI and the norm of the gradient vector 

at the M point, g(qM), we evaluate in an approximate manner the last integral of 

equation (28).  In other words, since the qM point is very close to the qVRI point, then 

the calculation proceeds as follows, 
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E qC ,g,dqC dt'( )dt'
t0

t f

∫ = L qC ,dqC dt'( )dt'
t M

tVRI

∫ ≈ gµ
Tgµ[ ]1 2

∆qµ
T∆qµ[ ]1 2

µ= M

VRI −1

∑

≈ gM

T gM[ ]1 2

∆qM

T ∆qM[ ]1 2

= gM

T gM[ ]1 2

qVRI − qM( )T
qVRI − qM( )[ ]

1 2

=1.420 ⋅ 0.090 = 0.128 eau

 (29) 

where, gµ = g(qµ), ∆qµ = qµ+1 – qµ, and eau means energy arbitrary units.  This is the 

error committed when the curve C asides the VRI point to avoid following the SD 

curve locate in the ridge, which is the sub arc of the correct the discontinuous IRC 

path joining the pints qR and qP. 

 

 

4.  CONCLUSIONS 

 

The mathematical techniques used in the integration of both total and partial 

differential equations that appear in the theory of CV provide the bases of the 

proposed algorithms of the integration of the IRC equation (1).  The reason is due to 

the fact that the IRC path is an extremal curve of a variational problem of the 

functional type, L(q, dq / dt), where this functional is homogeneous of degree one 

with respect to the tangent vector, dq / dt. 

The set of recently proposed algorithms to locate the IRC curve in the PES 

based on the minimization of the normal force to the curve can be seen as 

computational techniques consisting in the minimization, until zero value, of the line 

integral of the Weierstrass E-function.  The Weierstrass E-function represents one of 

the most important elements of the set of necessary and sufficient conditions to 

guarantee that an extremal curve minimizes (maximizes) a functional integral like that 

given in equation (2).  On the other hand, we have proposed an algorithm based on the 

direct minimization of the line integral of the Weierstrass E-function to locate the IRC 

curve.  In addition each step of this algorithm is justified according to the theory of 

CV. 

Finally, the theory of broken extremal curves has been used to analyze the IRC 

path when a point of this path is a VRI point.  The above results clearly show from the 

theory of CV that the IRC curve model can lose the RP character but even in this 

situation and compared with an arbitrary curve constructed in the way that preserves 

the RP character, is the best curve in the sense that it minimizes the integral (2).  From 
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the theory of CV, to look for the curve that satisfies the RP requirements will consist 

in finding the adequate functional of the type, L(q, dq / dt), such that in the resulting 

extremal curve each point of this curve is located in a valley floor of the PES 

connecting two minima through a FOSP. 

 

 

APPENDIX A:  INTEGRATION OF THE PARTIAL DIFFERENTIAL 

EQUATION (6) 

 

We take as a solution of the partial differential equation (6) of the form 

U q,qR( )= JR q( )+ f qR( )= gR

T q − qR( )+1 2 q − qR( )T
HR q − qR( )+ f qR( ) 

 (A.1) 

where, gR = g(qR), HR = H(qR), being H(q) = ∇∇∇∇q∇∇∇∇q
T
 V(q).  We assume that HR is 

independent of q, and, det HR ≠ 0, in a domain around qR, without loss of generality.  

If JR(q) is a solution of the Hamilton-Jacobi equation (6), depending on N parameters, 

qR, then U(q, qR) is also a solution labeled complete integral, which depends on N + 1 

parameters, namely, the vector qR and the scalar f(qR).  Notice that the N + 1-th 

parameter, f(qR), is additive since only derivatives of JR with respect to q vector 

appears in equation (6).  The determinant condition, det (∇∇∇∇q∇∇∇∇qR
T
 U(q, qR)) = det HR ≠ 

0, is satisfied in the domain of the q, JR-space under consideration.  According to the 

discussion of subsection 2.A, the envelope of an arbitrary N-parameter family of 

solutions is also a solution.  The envelope is obtained from 

∇q R
U q,qR( )= ∇q R

JR q( )+ ∇q R
f qR( )= −gR − HR q − qR( )+ ∇q R

f qR( )= 0  

 (A.2a) 

and eliminating from the equations (A.1) and (A.2a) the vector parameter qR.  Using 

the explanation given in subsection 2.A, for each qR parameter, the intersection of the 

resulting envelope with JR(q) is a characteristic curve.  The envelope corresponds to 

the integral surface introduced in subsection 2.A, and is traced out by allowing that qR 

takes any real value.  We emphasize that the projection of the characteristic curve in 

the q space, given by equation (A.2a), is the equation of the extremal curve, which in 

the present case is the SD curve.  The function f(qR) is arbitrary, using this fact the 

vector, ∇∇∇∇qR f(qR) = ∆gR + gR, can be chosen in an arbitrary manner, then using this 
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fact and that det (∇∇∇∇q∇∇∇∇qR
T
 U(q, qR)) = det HR ≠ 0, from equation (A.2a) we obtain q as 

a function of qR and ∆gR.  Now, from the equation 

∇qU q,qR( )= ∇qJR q( )= gR + HR q − qR( )= p  (A.2b) 

and equation (A.2a), we obtain the p vector as a function of ∆gR. 

In order to prove that the vector functions q and p determined in this way, 

satisfy the differential equations (12), we first differentiate the equation (A.2a) with 

respect to t and the equation (6) with respect to qR, after the substitution of JR(q) as 

that given in equation (A.1).  In this way we have the two equations, 

∇q∇q R

T
U q,qR( )[ ]dq

dt
= ∇q∇q R

T
JR q( )[ ]dq

dt
= HR

dq

dt

 

 
 

 

 
 = 0 (A.3a) 

∇q∇q R

T
JR q( )[ ]∇pF q,∇qJR q( )( )= HR∇pF q,∇qJR q( )( )= HRp = 0  (A.3b) 

Subtracting equation (A.3b) from equation (A.3a), we obtain equation (13.a), since 

det (HR) ≠ 0.  Finally, substituting the p vector as given in the equation (A.2b) we get 

dq

dt
= p = gR + HR q − qR( ) (A.4) 

After integration of equation (A.4) we obtain 

q t( )= qR − I − exp HR t − t0( )( )[ ]HR

−1gR  (A.5) 

where I is the unit matrix.  Equation (A.5) is a very well known expression reported 

many times in the literature on the studies about the IRC path, e.g. see reference [27].  

Now we differentiate equation (A.2b) with respect to t and equation (6) with respect 

to q after being substituted JR(q) function given in equation (A.1).  With these 

operations we obtain, 

∇q∇q

T
U q,qR( )[ ]dq

dt
= ∇q∇q

T
JR q( )[ ]dq

dt
= HR

dq

dt

 

 
 

 

 
 =

dp

dt
=

d

dt
∇qJR q( )[ ] (A.6a) 

∇q∇q

T
JR q( )[ ]∇pF q,∇qJR q( )( )+ ∇qF q,∇qJR q( )( )= HRp −

1

2
∇qν

2 q( )= 0  

 (A.6b) 

Subtracting equation (A.6b) from equation (A.6a), and using equation (A.4) we get 

equation (13.c).  However, in the present case the integrated form for p can be 

obtained by substituting equation (A.5) in equation (A.2b), resulting the well know 

result, 

p t( )= exp HR t − t0( )( )gR  (A.7) 
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From equation (A.7) and equation (A.6b), where, 1/2 ∇∇∇∇q ν2
(q) = HR g(q), we observe 

that, p(t) = g(q(t)) and p(t0) = pR = gR = g(q(t0)).  Finally, substituting equation (A.5) 

in the JR(q) expression given in equation (A.1) we get 

JR q t( )( )=
1

2
gR

T exp HR t − t0( )( )HR

−1 exp HR t − t0( )( )gR −
1

2
gR

T HR

−1gR  (A.8) 

Equation (A.8) is the integrated form of equation (13.b).  We conclude this appendix 

saying that the above procedure is a trivial application of the Jacobi method to 

integrate non-linear first-order partial differential equations [15] like that given in 

equation (6). 
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FIGURE CAPTIONS 

 

Figure 1.  At each variational problem like that given in equation (2) where the 

integrand, L(q, dq / dt), is positive definite we can correspond to each line element, 

(q, dq / dt) a vector with the same direction and parallel to the vector dq / dt with 

components ξ dq / dt such that L(q, ξ dq / dt) = 1.  To be consistent with the main 

text, the vector ξ dq / dt will be denoted as dq / dt.  The equation, L(q, dq / dt) = 1, 

defines a surface in the space of the dq / dt vectors, and depends parametrically of q 

and is called the indicatrix of the variational problem under consideration at the point 

q.  The indicatrix surface is obtained as follows, on each path passing through the 

point q we take a sub arc of this path such that the line integral given in equation (2) 

with L(q, dq / dt) = 1 along this sub arc takes the value dV > 0.  The value dV is the 

radius length of the indicatrix.  The line integral evaluated on the sub arc of the SD 

curve passing through the point q, takes the value, dJ = dV, since is a curve of this 

indicatrix with radius length dV.  The line element of the extremal curve, (q, dqSD / 

dt), which corresponds to the point dqSD / dt of the indicatrix and the tangent plane 

touching the indicatrix at this point dqSD / dt must be tangent to the contour line of the 

PES, V = con2.  The arbitrary path, qC(t), with line element (q, dqC / dt) touches the 

indicatrix at the point dqC / dt.  A perpendicular vector from the point dqC / dt to the 

above tangent plane is build touching it at the point dq’ / dt.  By the construction, the 

resulting perpendicular vector, dq’ / dt - dqC / dt, is proportional to the vector, dqSD / 

dt, being this proportionality factor the Weierstrass E-function, E(q, g, dqC / dt), 

where g = dqSD / dt. 

 

Figure 2.  Equipotencial curve lines of the Muller-Brown PES reported in reference 

[44].  The bold line is the guess polygonal curve C.  Each cross indicates the point 

where the vertex is located.  The arrows are the eµ vectors evaluated according to the 

equation (23.b).  Each eµ vector is the gradient vector of the Weierstrass E-function 

with respect to the position of the vertex. 

 

Figure 3.  Equipotencial curve lines of the Muller-Brown PES reported in reference 

[44].  The crosses represent the position of the vertices that define the polygonal C 

curve.  The position of the vertices is obtained from line minimization, using equation 
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(23.c), of the set of vertices described in figure 2.  This new set of vertices does not 

describe a regular curve to be a “comparison curve”, which implies a new 

parameterization of the polygonal curve C.  See text for more details. 

 

Figure 4.  Equipotencial curve lines of the Muller-Brown PES reported in reference 

[44].  The crosses represent the position of the vertices that define the polygonal C 

curve.  The bold line is the polygonal curve C.  Notice that this polygonal curve 

satisfies the requirements of “comparison curve”.  At this step of the iterations 

process, some vertices are already locate on the IRC curve, the corresponding norm of 

eµ vector is below to a given threshold. 

 

Figure 5.  Equipotencial curve lines of the Muller-Brown PES reported in reference 

[44].  The crosses represent the position of the vertices.  In this case each vertex is 

located on the IRC curve joining the minima M1 and M2.  The bold line is the 

polygonal IRC curve. 

 

Figure 6.  Equipotencial curve lines of the PES reported in reference [46] for µ = 2, 

which corresponds to a valley-ridge symmetric problem.  The thin dashed line draws 

the discontinuous IRC path joining the minima, P, situated at the top left (labeled as 

qP in the main text) and R at the bottom left (labeled as qR in the main text) passing 

through the two first order saddle points labeled as FOSP1 and FOSP2.  The 

stationary point, FOSP1, is the corner point of the discontinuous IRC path.  The bold 

dashed line is the C curve.  A sub arc of this C curve coincides with the IRC curve 

that joins the points R and VRI (labeled as qVRI in the main text).  Other sub arc of this 

C curve joins the points M (labeled as qM in the main text) and the minimum R and 

corresponds to a sub arc of a SD curve that emerges from the minimum R and is 

neighbor to the IRC path that goes from the first order saddle point, FOSP1, to the 

minimum R.  Finally, the enlarged figure shows the sub arc of the curve C connecting 

the points M and VRI lying on the same equipotencial curve.  This sub arc is the 

domain of the curve C where the line integral of the Weierstrass E-function is 

different from zero and its integrand between M and VRI points coincides with the 

functional L(q, dqC / dt). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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