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We present the first implementation for the analytic calculation of polarizability derivatives
using coupled-cluster theory. These derivatives are related to the intensity of bands seen in Ra-
man spectroscopy, and are therefore important quantities which can also be measured exper-
imentally. The required theory of analytic third derivatives is discussed and also connected to
response theory to allow the calculation of frequency-dependent quantities. This work includes
the use of a string-based general coupled-cluster/configuration-interaction program which
makes the calculation of Raman intensities for arbitrary coupled-cluster or configuration-
interaction methods up to the full configuration interaction limit possible. Some demonstrative
examples are given, with some investigation into the importance of higher-order excitations
in the theoretical predictions of Raman intensities.

Keywords: Coupled-cluster theory, analytic third derivatives, Raman spectroscopy,
polarizability derivatives

1 Introduction

Molecules are usually characterized via their geometrical structure, whose com-
putational determination requires the evaluation of the forces on the nuclei. To
efficiently determine them analytic differentiation techniques are used, the first
implementation of which was reported in 1969 by Pulay [1] for Hartree-Fock self-
consistent-field (HF-SCF) wavefunctions. This pivotal work on HF-SCF energy
gradients was soon extended to both higher derivatives of the energy, as well
as to derivatives for electron-correlated approaches (for reviews on these topics
see Refs. [2–4]). In particular, the implementation for analytic second [5–9] and
third derivatives [10–13] enabled the efficient evaluation of vibrational frequencies
and infrared intensities within the harmonic approximation, of anharmonic force
constants, and of Raman intensities. After almost 40 years the field of analytic
derivatives continues to grow, allowing the evaluation of more properties for more
accurate quantum-chemical models (see, for example, Refs. [14, 15]). In this work,
analytic third derivatives of the energy will be reported for the evaluation of Raman
intensities using coupled-cluster (CC) and configuration-interaction (CI) methods.

Fully analytic techniques for the evaluation of Raman intensities requiring geo-
metrical derivatives of the polarizability tensor have, so far, only been implemented
at the HF-SCF level [16, 17], while corresponding electron-correlated calculations
have relied on finite-difference schemes [18–22]. This usually involves numerically
differentiating analytically evaluated polarizabilities with respect to the nuclear co-
ordinates. Such schemes have been applied at the coupled-cluster level using the CC
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singles and doubles (CCSD) [23], as well as the CC3 approximation [24], the latter
including an approximate treatment of triple excitations. Using CC response theory
to evaluate the frequency-dependent polarizability [25,26], it has, in addition, been
possible to investigate the frequency-dependence of Raman intensities [19–22].

In this work, we will present for the first time a fully analytic scheme for the
evaluation of Raman intensities at the CC level and will investigate electron-
correlation effects on Raman intensities using a hierarchy of CC methods up to
the full configuration-interaction (FCI) limit. We will first describe the relevant
quantities required for the calculation of Raman intensities, followed by a brief dis-
cussion of analytic third derivatives within CC theory, necessary for the evaluation
of the required polarizability derivatives. To compute frequency-dependent Raman
intensities, the close relationship between analytic derivatives and response theory
is invoked [14]. Implementation will be reported for the CCSD model (within the
quantum-chemical program package acesii (Mainz-Austin-Budapest version) [27])
and for arbitrary CC models including higher excitations, i.e., CC singles, doubles,
triples (CCSDT), CC singles, doubles, triples, quadruples (CCSDTQ), . . . up to
FCI, using string-based many-body techniques [28, 29] as they have been used in
the general CC/CI package MRCC [30]. To investigate the effect of higher excita-
tions on computed Raman intensities, test calculations are reported for a series of
small molecules (BH, HF, H2O, and N2).

2 Theory

Within the harmonic approximation and Placzek’s polarizability theory [31], Ra-
man intensities are related to the geometric derivative of the polarizability tensor.
In this study the system-inherent Raman activity I and the decoherence ratio ρ
are the quantities on which we shall focus and which, for a particular normal mode
Q, are defined as

I = 45α′2 + 7γ′2 (1)

and

ρ =
3γ′2

45α′2 + 4γ′2
. (2)

In Eqs. (1) and (2) the derivatives of the isotropic polarizability α and the
anisotropic polarizability γ are given by

α′ =
1
3
{
ᾱ′xx + ᾱ′yy + ᾱ′zz

}
(3)

(γ′)2 =
1
2

{ [
ᾱ′xx − ᾱ′yy

]2 +
[
ᾱ′xx − ᾱ′yy

]2 +
[
ᾱ′xx − ᾱ′yy

]2
+ 6

[
ᾱ′xy

2 + ᾱ′yz
2 + ᾱ′zx

2
] } (4)

where the derivative of the polarizability tensor with respect to Q is given by

ᾱ′ij =
∂αij
∂Q

(5)
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and αij are the elements of the Cartesian polarizability tensor.
Considering first the frequency-independent (static) Raman intensities, the cor-

responding polarizability derivatives are given by the following third derivatives of
the energy E

α′ij =
d3E

dxidεidεj
(6)

where xi denotes the Cartesian coordinate of one of the nuclei and εp, p = x, y, z
are the electric-field components.

Within CC theory, expressions for the third derivative in Eq. (6) can be obtained
by replacing the energy E by the following energy functional [32,33]

Ẽ = 〈0|(1 + Λ) exp(−T )H exp(T )|0〉 (7)

which can be made stationary with respect to both the cluster amplitudes tp in
the cluster operator T and the Lagrange multipliers λp which constitute the so-
called Λ operator. In this way, it is possible to exploit the usual (2n + 1) [11]
and (2n + 2) rules [32] and to derive expressions for the third derivatives of the
energy which contain at most first derivatives of the wavefunction parameters.
This Lagrangian formulation efficiently deals with the non-variational nature of the
coupled-cluster energy, but another important issue in analytic derivative theory
is that of the response of the reference determinant to the perturbation, known
as orbital relaxation. The functional, Eq. (7), can thus be augmented to yield the
following

Ẽ = 〈0|(1 + Λ) exp(−T )H exp(T )|0〉+
∑
ai

Zaifai+
∑
pq

Ipq(Spq − δpq) (8)

where the last two terms represent the Brillouin and the orthonormality conditions
for the molecular orbitals (MO), and the Lagrangian multipliers Zai and Ipq are
otherwise known as the Z-vector [34] and the energy-weighted density matrix , δpq
is the Kronecker delta symbol, and fpq and Spq are the usual Fock and overlap in-
tegrals. Throughout this work the indices i, j, . . . refer to occupied orbitals, a, b, . . .
to virtual orbitals and p, q, . . . to all orbitals.

To evaluate frequency-dependent (dynamic) Raman intensities, the frequency-
dependent polarizability must be considered in Eqs. (1) to (6), whose evaluation
is possible using response theory [35]. The close relationship between linear re-
sponse theory and analytic second derivatives has already been used to evaluate
frequency-dependent polarizabilities [14], and this can be extended in a straightfor-
ward manner to write down the derivative of the frequency-dependent polarizability
with respect to the nuclear coordinates

α′ij(ω) =
1
2
C±ω

d3{LCC}T
dxidεidεj

; ω = ωj = −ωi (9)

where {LCC}T is the time-averaged quasi-energy Lagrangian [35]. The symmetriza-
tion operator C±ω, which reverses the sign of all frequencies, ensures that only the
real part of the response function is considered. The parametric dependence of the
frequencies ωi = −ωj is a result of the time averaging, which only yields a non-
vanishing result when the sum of all frequencies is zero. The practical implication
of this reformulation is that the perturbed amplitude and Λ equations must be
solved with the inclusion of a frequency-dependent term as described in Ref. [14].
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In the discussion of analytic derivative techniques above, the issue of orbital re-
laxation was mentioned. In the case of frequency-dependent properties this must
be applied with caution as it can lead to unphysical results [35]. The response func-
tion contains poles at certain frequencies corresponding to electronic excitations in
the coupled-cluster wavefunction, but if the reference determinant is also allowed
to respond to the perturbation, an additional unphysical set of poles will be intro-
duced into the response function. To avoid such problems we do not include orbital
relaxation with respect to frequency-dependent properties. It is noted that in the
case of static electrical properties, it has been shown that the inclusion of orbital
relaxation effects does not necessarily provide superior results [36] and that in fact
CC theory implicitly includes some of these effects through the single excitation
operator [37]. In the case of geometric parameters, it is necessary to include orbital
relaxation, and hence in this work the reference determinant is allowed to respond
only to the geometric perturbation, but not the two electrical perturbations.

Starting from the coupled-cluster energy Lagrangian in Eq. (8) we differentiate
three times in total, once with respect to a nuclear coordinate x and twice with
respect to the electric field components εi and εj , to yield the following expression

α′ij(ω) =
1
2
C±ω

{
P (i, j)

∑
pq

(
∂Dpq

∂εi

)(1,1)( ∂2fpq
∂εj∂x

)(1)

+
∑
pq

(
∂2Dpq

∂εi∂εj

)(1,1)
∂fpq
∂x

+ P (i, j)
∑
pq

(
∂2Dpq

∂x∂εj

)(1,1)
∂fpq
∂εi

+
∑
pqrs

(
∂2Γpqrs
∂εi∂εj

)(1,1)
∂〈pq||rs〉

∂x
+
∑
pqrs

(
∂3Γpqrs
∂x∂εi∂εj

)(1,1)

〈pq||rs〉
}

(10)

where Dpq and Γpqrs are the effective one- and two-particle density matrices,
〈pq||rs〉 are the anti-symmetrized two-electron integrals and P (i, j) permutes the
indices i and j. We have used the (2n+1) rule for wavefunction parameters (cluster
amplitudes and MO coefficients) and the (2n + 2) rule for Lagrangian multipliers
(Λ amplitudes, Z-vector and energy-weighted density matrix), and to exploit this
efficiently we have introduced the notation

(
∂nA

∂α∂β . . .

)(kT ,kΛ)

and
(

∂nI

∂α∂β . . .

)(k)

, (11)

subeqn.sty which indicates that the nth derivative of the density matrix A contains
at most the kT th and kΛth derivatives of the T and Λ amplitudes, and that the nth
derivative of the integral I contains at most kth order coupled-perturbed Hartree-
Fock (CPHF) coefficients. For example the second derivative of the Fock matrix in
Eq. (10) is defined by

(
∂2fpq
∂x∂εj

)(1)

=〈p|µj |r〉Uxrq + Uxrp〈r|µj |q〉

+
∑
ν

(
cνp〈

∂ν

∂qi
|µj |q〉+ 〈p|µj |

∂ν

∂qi
〉cνq

) (12)

where µj is the electric-dipole operator, Uxpq are the CPHF coefficients correspond-
ing to perturbation x, cνi are the MO coefficients and ν are the atomic orbitals.
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Due to the (2n + 1) rule, the second derivative of fpq in Eq. (10) contains no
second-order CPHF coefficients.

Expressions for the effective density matrices for different quantum-chemical
methods can be found in the literature [38–41]. In the frequency-dependent case,
the perturbed T and Λ amplitudes used to construct these density matrices are eval-
uated by solving the corresponding response equations, which includes a frequency-
dependent contribution, and this has been described in detail in Ref. [14].

3 Implementation

The required third-derivative framework for the calculation of Raman intensities
has been built upon the existing second-derivative scheme [8] available in the
Mainz-Austin-Budapest version of acesii [27]. This is particularly convenient as
the asymmetric implementation [8,42], which does not adhere to the (2n+ 1) and
(2n+2) rules, requires the solution of both the perturbed first-order amplitude and
first-order Λ equations. No further perturbed wavefunction parameter is required
for third-derivatives. However, whereas in the case of analytic second-derivatives
where perturbed quantities are required only one perturbation at a time, allowing
them to be evaluated sequentially, in the case of third derivatives all perturbed
wavefunction parameters are needed simultaneously for the evaluation of second-
and third-order perturbed density matrices. For Raman intensities, in particular,
the perturbed amplitude and Λ equations are first solved for all electrical perturba-
tions (and frequencies in the frequency-dependent case) and the perturbed T and
Λ amplitudes are then stored to disk. The geometrical perturbations can then be
treated sequentially, i.e., for each geometrical perturbation the perturbed equations
are solved, the required perturbed density matrices are evaluated and contracted
‘on the fly’ with the corresponding integrals, after which the perturbed T and Λ
amplitudes for this perturbation are no longer needed.

This scheme requires the storage of wavefunction parameters for all electrical
perturbations, and in principle for a full third derivative calculation the storage of
parameters for all perturbations would be required. Concerns about the required
amount of disk space are justified, but we take the pragmatic approach, that an
implementation which avoids this, if even possible, would require an unjustifiable
amount of time to implement. Furthermore, such high accuracy calculations are
limited to small systems and hence for the size of system which can be considered,
the disk space requirements are not unreasonable in terms of that available on
modern computers.

In order to include higher than double excitations in the CC expansion, we
have interfaced the third-derivative scheme in acesii with the general-CC code
mrcc [30]. In mrcc a string-based algorithm is exploited to provide an efficient im-
plementation of CC and CI models up to arbitrary levels of excitation [28,29]. This
scheme has already been extended to provide first [43] and second derivatives [9]
of coupled-cluster energies including arbitrary excitations and more recently has
been combined with response theory to calculate frequency-dependent polarizabil-
ities [14] and frequency-dependent hyperpolarizabilities [15]. In this work, the pro-
gram package mrcc is used to solve all amplitude and Λ equations and also to
compute all required density matrices and thus allows, when interfaced with ace-
sii, the calculation of Raman intensities for CCSD, CCSDT, CCSDTQ, etc., as
well as the corresponding configuration-interaction (CI) methods CISD, CISDT,
CISDTQ, etc. up to the FCI limit. We note that for all of the CI methods the last
term in Eq. (10) may be ignored as the third derivative of the two-particle density
matrix vanishes.
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4 Applications

We consider here some small systems to examine the importance of higher ex-
citations in the theoretical prediction of Raman intensities. Due to the compu-
tational expense of some of these calculations, we have had to limit ourselves
to small molecules using small basis sets. With the exception of BH, all calcu-
lations have been performed using the Sadlej basis set [44, 45], a medium sized
basis set parametrized to reproduce polarizabilities, and which has been shown to
provide results comparable to the larger aug-cc-pVTZ [46,47] basis when calculat-
ing Raman intensities, but at a much lower computational cost [19, 48]. For BH
the smaller aug-cc-pVDZ [46, 47] basis set was used to facilitate the FCI calcula-
tions. Frequency-dependent Raman intensities are calculated at a wavelength of
514.5 nm (ω = 0.088559 a.u.), with the exception of BH. All calculations are per-
formed at the equilibrium geometry for the given method and basis set. As we do
not currently have an implementation of analytic Raman intensities using the CC3
method, all CC3 results given have been calculated by evaluating the polarizabil-
ity derivatives by finite difference, using a stepsize of 0.001 a.u. [21]. This allows
comparison with previous results of investigations on diatomic molecules including
triple excitations [21]

4.1 BH

BH is a sufficiently small molecule, such that FCI calculations are possible, although
only for quite a modest basis set, namely aug-cc-pVDZ [46, 47]. Although ω =
0.088559 a.u. (λ = 514.5 nm) is a typical frequency, at which to evaluate dynamic
Raman intensities, in the case of BH, using this basis set, we do not use this value,
as there is a pole in the polarizability in this region (ωexc ≈ 0.11 a.u.) and Placzek’s
theory does not hold in this case. Instead we treat BH as a benchmark case and
calculate for CCSD, CC3, CCSDT, CCSDTQ and FCI the Raman intensities at
the frequencies ω = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05 a.u. to examine the effects of
higher excitations in the static and frequency-dependent cases.

The results for BH are summarized in Table 1. It is observed that in this case
higher excitations do not play an important role in the prediction of Raman in-
tensities, and that the CCSD values are within 1% of the FCI numbers, with the
error increasing slowly with increasing frequency.

4.2 HF

The results for the HF molecule are summarized in Table 2. Again we see similar
results to those of BH, in that the inclusion of triples is not essential for a quan-
titative description of the Raman intensities, as has been noted before [20], and
amounts to only ∼ 1%. Excellent agreement is seen between the CC3 and CCSDT
models. For the chosen frequency, at least, the effect of triples is approximately
equal in the static and dynamic cases.

4.3 H2O

This work on H2O is the first time, for Raman intensities, that triple excitations
have been examined in molecules bigger than diatomics and the results are given
in Table 3. Again it is observed that CCSD is seen to be performing well in the
prediction of Raman intensities, with the values deviating from those of CCSDT
by approximately 1%. The importance of triple excitations is more or less equal in
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Table 1. Static and dynamic Raman intensites I (Å4amu−1) and decoherence ratios ρ for BH obtained at

various frequencies ω (in a.u.) and at various coupled-cluster levels up to FCI using the aug-cc-pVDZ basis. All

calculations have been performed at the corresponding equilibrium geometries, bond distances rBH (in a.u.) and

harmonic vibrational frequencies ν1 (in cm−1) are given as well.

CCSD CC3 CCSDT CCSDTQ FCI
rBH 2.36328 2.36540 2.36602 2.36602 2.36602
ν1 2337.24 2328.17 2325.31 2325.42 2325.42
ω = 0.00
I 215.11 214.87 214.34 214.55 214.55
ρ 0.56 0.56 0.55 0.55 0.55
ω = 0.01
I 216.09 215.82 215.28 215.49 215.49
ρ 0.57 0.56 0.56 0.55 0.55
ω = 0.02
I 219.17 218.81 218.24 218.43 218.43
ρ 0.58 0.57 0.57 0.57 0.57
ω = 0.03
I 224.86 224.33 223.68 223.85 223.85
ρ 0.60 0.59 0.59 0.59 0.59
ω = 0.04
I 234.27 233.44 232.65 232.78 232.78
ρ 0.63 0.63 0.62 0.62 0.62
ω = 0.05
I 249.84 248.47 247.46 247.51 247.51
ρ 0.68 0.67 0.67 0.66 0.66

Table 2. Static and dynamic Raman intensites I (Å
4
amu−1) and decoherence ratios ρ for HF obtained at various

coupled-cluster levels up to FCI using the Sadlej basis. All calculations have been performed at the corresponding

equilibrium geometries, bond distances rHF (in a.u.) and harmonic vibrational frequencies ν1 (in cm−1) are given

as well.

CCSD CC3 CCSDT
rHF 1.74850 1.75297 1.75236
ν1 4113.60 4070.61 4076.22
λ =∞
I 43.67 42.80 42.86
ρ 0.12 0.12 0.12
λ = 514.5 nm
I 47.05 46.13 46.20
ρ 0.12 0.12 0.12

both the static and dynamic cases. Although it is possible to compare these values
with experimental values in the literature [18], it has been shown previously [19–21]
that such comparisons are not useful due to the experimental uncertainty and the
approximations inherent to Placzek’s theory.

4.4 N2

The static and dynamic Raman intensities for N2 as obtained at various levels of
coupled-cluster theory are shown in Table 4. In contrast to the previous examples,
the inclusion of triple excitations is essential in this case, with the deviations from
the CCSD results amounting to approximately 30% for CC3 and almost 20% for
CCSDT. Since the polarizability does not show such a strong variation
with increasing levels of theory [36], a similar trend might have been also
expected for their derivative. However, the rather large change of the
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Table 3. Static and dynamic Raman intensites I (Å4amu−1) and decoherence ratios ρ for H2O obtained at

various coupled-cluster levels up to FCI using the Sadlej basis. All calculations have been performed at the

corresponding equilibrium geometries, bond distances rOH (in a.u.), bond angles ∠HOH (in degrees) and harmonic

vibrational frequencies νi (in cm−1) are given as well.

CCSD CCSDT
rOH 1.82780 1.83177
∠HOH 103.83 103.63
ν1 3814.82 3780.52
ν2 1669.61 1659.34
ν3 3933.55 3901.13

I ρ I ρ
λ =∞
ν1 111.90 0.04 110.89 0.04
ν2 1.10 0.71 1.09 0.73
ν3 25.91 0.75 26.13 0.75
λ = 514.5 nm
ν1 124.36 0.04 123.32 0.04
ν2 1.05 0.69 1.04 0.71
ν3 29.01 0.75 29.3 0.75

Table 4. Static and dynamic Raman intensites I (Å4amu−1) and decoherence ratios ρ for N2 obtained at various

coupled-cluster levels up to FCI using the Sadlej basis. All calculations have been performed at the corresponding

equilibrium geometries, bond distances rNN (in a.u.) and harmonic vibrational frequencies ν1 (in cm−1) are given

as well.

CCSD CC3 CCSDT
rNN 2.10828 2.12139 2.11955
ν1 2371.30 2293.93 2308.43
λ =∞
I 21.19 27.34 24.85
ρ 0.07 0.07 0.07
λ = 514.5 nm
I 22.87 29.97 27.13
ρ 0.07 0.07 0.07

polarizability with bond distance and in particular of the contributions
due to higher excitations are responsible for the effect seen here. Thus,
it is not possible to make predictions for the polarizability derivative
based on observations for the polarizability, as the geometric perturba-
tion (with orbital relaxation treated ) shows a different behaviour than
the electrical perturbations (without treatment of orbital relaxation).
We note that previous work by Pecul and co-workers [21] reported the effect of
going to CC3 to be about 10%, but their calculations are all performed at the
same bondlength, whereas we evaluated the Raman intensities at the equilibrium
geometry for each method. Again, no variation in the decoherence ratio is seen.

5 Conclusions

We have presented here, for the first time, a scheme for analytically evaluating
Raman intensities for coupled-cluster methods. Furthermore, we have gone beyond
any previous work by implementing this for general CC/CI methods, allowing the
calculation of Raman intensities at the CCSD, CCSDT, CCSDTQ,. . . ,FCI levels.
This work is not only important for the benchmarking of Raman intensities but also
represents a step towards full analytic third derivatives in coupled-cluster theory,
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which would allow the evaluation of analytic anharmonic force constants, and the
more accurate determination of vibrational spectra. Additionally, the analytic po-
larizability derivatives made available here can be used to evaluate vibrational con-
tributions to electrical properties (via vibrational averaging of polarizabilities [49]
and pure vibrational contributions to hyperpolarizabilities [50]) and provide better
estimates for comparison with experimental data.

In the case of Raman intensities, we see that for singly-bonded molecules the
inclusion of triple effects is not essential, correcting the CCSD result by only about
1%. In multiple-bonded systems, however, triples are essential for an accurate quan-
titative description, with the value deviating significantly from the CCSD value.
Such effects are to be expected in cases where the increasing multiconfigurational
character of the system demands inclusion of higher excitations to compensate for
the inadequacy of the reference function. We would expect that quadruple effects
are also non-negligible in these cases.
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