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The pH dependence of the apparent rate constant kTap for O2
-./HO2

. trapping by four 

nitrones was examined. In each case, kinetic curves were obtained after treatment of 

EPR spectra of the spin adduct formed using both singular value decomposition  and 

pseudo-inverse deconvolution methods. Modelling these curves led to evaluate kTap at 

various pH values. Analysis of the pH dependence of kTap permitted the determination 

of the rate constants for the spin trapping of O2
-. and of HO2

. separately. Whatever the 

nitrone, our results clearly show that the EPR signals of the nitrone/superoxide spin 

adducts observed in aqueous media were essentially due to the trapping of the 

protonated species HO2
. 
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1 Introduction 

Since the EPR/spin trapping technique was first introduced [1-3], it has found numerous 

applications in the detection of free radicals produced in chemistry, biology or 

medicine. It has been notably employed for detecting superoxide in aqueous media 

using nitrone spin traps [4-6]. For this purpose, a nitrone must trap rapidly this radical 

and must lead to a long-lived spin adduct. Several reliable methods have been described 

to determine kD, the rate constant for the nitrone/superoxide spin adduct decay [7-13]. 

In contrast, evaluating the apparent rate of superoxide trapping by a nitrone, kTap, is 

more problematic and major disagreements exist regarding the data published in this 

field [11,14-21]. The most popular method used in these studies involves a competition 

between the nitrone and a superoxide scavenger, and implies that the superoxide 

spontaneous dismutation, the spin adduct decay and the consumption of the competitor 

during the course of the experiment correspond to negligible events [11,14-17]. Two 

years ago, we brought evidences of the importance of these three reactions and showed 

that their omission resulted in significantly overestimating kTap [22]. Another method 

based on a competition between the superoxide trapping by the nitrone and the 

spontaneous dismutation of this radical  yielded lower kTap values []18,19]. This 

prompted us to elaborate a new kinetic approach to the evaluation of kTap in buffered 

media [20,21]. It was also based on a competition between the superoxide trapping and 

its spontaneous dismutation, and kinetic curves were obtained after treatment of EPR 

spectra using both singular value decomposition (SVD) and pseudo-inverse 

deconvolution methods before their computer modelling. Whatever the method used, it 

is widely admitted that the kinetic parameters related to the spin trapping of superoxide 

by nitrones are pH dependent. On one hand, nitrone/superoxide spin adducts decayed 
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more slowly in acidic media [7-9]. On the other hand, kTap also greatly varied with pH 

[14,16], owing to the fact that superoxide O2
-. and its protonated form HO2

. were not 

distinguished in these studies, both radicals leading to the same EPR-detectable spin 

adduct in aqueous media. The relative concentrations of HO2
. and of O2

-. depend on pH, 

the pKA value for the acidic dissociation reaction of the hydroperoxyl radical being 

equal to 4.88 [23]. Considering that nitrones react differently with HO2
. and O2

-., this 

justifies the pH dependence of kTap .  

Recently, we have found that three nitrones were particularly efficient for superoxide 

detection: the ethyl 2-methyl-3,4-dihydro-2H-pyrrole-carboxylate 1-oxide 1 (EMPO, 

kTap≈ 11 dm3mol-1s-1 at pH 7.2), the diethyl 3,4-dihydro-2H-pyrrole-2,2-dicarboxylate 

1-oxide 2 (DEPO, kTap≈ 31 dm3mol-1s-1 at pH 7.2), and 1,3,5-tri [(N- (1-

diethylphosphono)-1-methyl-ethyl) -N-oxy-aldimine] benzene 3 (TN, kTap≈ 9 dm3mol-

1s-1 at pH 7.2) [20,21]. Among them, TN is the only lipophilic trap, with an 

octanol/water partition coefficient higher than 300 [24]. By far, DEPO was found the 

fastest at trapping superoxide, but the spin adduct thus formed decayed very rapidly, 

particularly when high nitrone concentrations were used. However, kinetic experiments 

with all these traps were only performed at pH 7.2. To proceed with this study, we have 

examined the pH dependence of the rate constant for the superoxide trapping by EMPO, 

DEPO, TN and have compared the results obtained to that given by the well-known 2,2-

dimethyl-3,4-dihydro-2H-pyrrole 1-oxide 4 (DMPO) (see figure 1). Analysis of the data 

obtained at various pH permitted to evaluate separately the rate constant for the trapping 

of HO2
. and O2

-. by the nitrone considered and to determine which species is actually 

responsible for the formation of the adduct detected by EPR. 

[Insert figure 1 about here] 
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In this whole study, the spin adduct detected by EPR after trapping either O2
-. or  HO2

. 

with a nitrone N in aqueous media will be denoted N-O2H. With the aim of simplifying 

the notation, the term ‘superoxide’ will first be used to designate both superoxide and 

hydroperoxyl radicals as a whole in the part of this work devoted to the study of the pH 

effect on kTap. Similarly, the symbol ‘O2
-.’ in the kinetic model [equations (1)-(4)] as 

well as in the rate equations (5)-(8) will represent either protonated or non-protonated 

forms of the radical. In a second part of this study, the two species will be considered 

separately to evaluate each individual contribution to the formation of N-O2H. 

 

2 Experimentals 

2.1 Materials 

The nitrones EMPO 1, DEPO 2 and TN 3 were synthesised and purified according to 

procedures described previously [24-27]. DMPO 4 (Sigma-Aldrich Co.) was purified by 

vacuum distillation before use. Diethylenetriaminepentacetic acid (DTPA), 3-carboxy-

2,2,5,5-tetramethylpyrrolidin-1-oxyl 5 (3CP), xanthine and xanthine oxidase were 

obtained from Sigma-Aldrich Co. Buffer solutions,  were stirred gently for six hours in 

the presence of a chelating iminodiacetic acid resin to remove trace metal impurities. 

 

2.2 Achievement of experimental kinetic curves 

All experiments were made in 0.1 mol dm-3 phosphate buffer (pH range: 6.2-9.3). 

Superoxide was produced using a xanthine-xanthine oxidase system. In a standard 

experiment, the medium contained a nitrone N (3-200 mmol. dm-3), 1.6 mmol.dm-3 

xanthine, 3 mmol.dm-3 diethylenetriaminepentacetic acid, 3CP (0.5-1.1 µmol dm-3) used 

as internal standard, and  0.04 unit.cm-3 xanthine oxidase. Air was bubbled into the 
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medium for one min. before addition of xanthine oxidase. A part of the EPR signal 

showing at least one line of the superoxide adduct N-O2H and one line of 3CP spectra 

was recorded every 42 s. Noise was reduced using the SVD procedure, and the kinetic 

curves (adduct concentration  vs. time) were obtained after deconvolution of the signal 

using the pseudo-inverse method, according to procedures extensively described 

previously [20]. These calculations were achieved with the help of a home-made 

computer programme written in FORTRAN, using subroutines given in Numerical 

Recipes [28]. At each pH value and for each nitrone, three experiments were performed 

at three different nitrone concentrations, one of which was set high enough to trap out 

most of the superoxide produced. In the case of DEPO, the procedure was modified as 

described previously [20,21], because the spin adduct decays too rapidly at high nitrone 

concentrations. EPR essays were carried out at 20°C in capillary tubes by using a 

Bruker EMX spectrometer operating at X-band with 100 kHz modulation frequency. 

General instrument settings were as follows: microwave power, 20 mW; modulation 

amplitude, 0.1-0.18 mT; receiver gain, 2  105 - 2  106; time constant, 164 ms; scan time, 

21 s; scan width, 1.5 - 6 mT; 2 scans. 

 

2.3 Determination of the apparent rate constant kTap 

At a given pH, the kinetic model considered can be described by equations (1)-(4),  

X 
kX  O2

-.      (1) 

2 O2
-. + 2 H+ 

kdis   O2 + H2O2 (2) 

 O2
-.  + H+ + N 

kTap
  N-O2H (3) 

 N-O2H  
kD   Y   (4) 
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where kX and kD are the rate constants for the generation of superoxide and for the 

decay of the spin adduct N-O2H, respectively, Y representing EPR silent products and X 

an intermediate derived from xanthine [20]. The apparent rate constant for the second-

order trapping reaction is denoted kTap. The rate equations (5)-(8) can be written from 

this kinetic model: 

 d[X]/dt = -kX [X]     (5) 

 d[O2
.-]/dt = kX [X] – kTap [N] [O2

-.] – 2 kdis [O2
-.]2 (6) 

 d[N-O2H]/dt = kTap [N] [O2
-.] – kD [N-O2H]  (7) 

 d[N]/dt = - kTap [N] [O2
-.]     (8) 

The term ‘superoxide’ and the symbol ‘O2
-.’ designate here the protonated and non-

protonated forms of the radical indiscriminately. The apparent rate constant for the 

trapping reaction by the nitrone N, kTap, is pH dependent and includes the contribution 

of both HO2
. and O2

-.  trapping. The second order rate constant for the superoxide 

spontaneous dismutation reaction, kdis, is also pH-dependent. Computer modelling of 

the kinetic curves obtained was achieved using a home-made programme and according 

to equations (5)-(8). In these calculations, the nitrone initial concentration is an 

experimental parameter, the initial concentrations of superoxide and of N-O2H are equal 

to zero, and kdis was evaluated as described further. The standard least-square method 

was applied to fit the experimental curves, yielding the other parameters. Therefore, the 

three kinetic curves obtained at three different nitrone concentrations were considered 

jointly and modelled with the same parameter set (except for parameters varying with 

the nitrone concentration). The values obtained for the initial concentration [X]0 and for 

the rate constant kX had no real meaning and only came up as an empirical model of the 

superoxide generation. Since they may vary with the solutions of either xanthine or 
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xanthine oxidase used [20], experiments at various nitrone concentrations were 

performed with exactly the same superoxide generator. The model corresponding to 

equations (9)-(12), which was first established by Baxendale [29], describes the 

superoxide spontaneous dismutation in aqueous media. Here, reaction (12) is negligible 

below pH 9.5.  

 HO2
. 

KA
 O2

-. + H+   (9) 

 2 HO2
. 

k1  H2O2 + O2   (10) 

 O2
-. +  HO2

. 
k2  H2O2 + O2 + HO- (11) 

 2 O2
-. 

k3  H2O2 + O2 + 2 HO-  (12) 

The rate constant kdis can be determined at any pH from equations (13)-(14), where 

pKA, k1 and k2 are equal to 4.88, 76 104 dm3.mol-1.s-1 and 85 106 dm3.mol-1.s-1, 

respectively [23]. 

 kdis = (k1 + χ k2) / (1 + χ)2 (13) 

 χ = KA / [H+] = 10(pH-pKA) (14) 

 

2.3 Determination of the trapping rate constants kHO2. and kO2-. 

Because nitrones react differently with O2
-. and with HO2

., reactions (15) and (16) 

should be considered instead of reaction (3) in the kinetic model, kHO2. and kO2-. being 

the rate constants for the trapping of superoxide radical anion (O2
-.) and hydroperoxyl 

radical (HO2
.), respectively, by the nitrone N.  

 O2
-. + N + H+ 

kO2-.
  N-O2H  (15) 

 HO2
. + N  

kHO2.
  N-O2H (16) 
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According to Finkelstein et al. [14], equation. (17) can be written from equations (14)-

(16).  

 kTap = (kHO2. + χ kO2.-) / (1 + χ) (17) 

Using the method described in the previous section, kTap was determined for each 

nitrone at five pH values ranging from 6.2 to 9.3. The experimental curves thus obtained 

were modelled using equation (17), which led to kHO2. and kO2.-. 

 

3 Results and discussion 

3.1 Determination of the rate constants at various pH 

Experiments were performed in order to evaluate the pH influence on the trapping of 

superoxide by four nitrones: EMPO 1, DEPO 2, TN 3 and DMPO 4. Whatever the 

species trapped by the nitrone N (O2
-. or HO2

., both designated here by the term 

‘superoxide’), only the protonated adduct N-O2H will be detected by EPR. Actually, 

the anionic radical species N-O2
- is not EPR silent, but its concentration in the pH 

range considered is negligible, considering the high pKa values of  hydroperoxides.  

The formulae of the stable nitroxide 5 and of the spin adducts 6-9 considered in this 

study have been drawn in figure 2. Before each kinetic experiment, a full EPR 

spectrum of the medium was recorded. All the spectra thus obtained were analysed 

using the computer program elaborated by Duling [30], which led to the values 

listed in table 1 for the hyperfine splitting constants (hfscs) with the nitrogen (aN), 

the β-hydrogen (aHβ) and eventually a γ-hydrogen (aHγ) or a β-phosphorus (aP) 

nuclei. These hfscs were not found to vary in the pH range considered and agree 

with the literature data [4,10,24,27]. In a previous study [24], we have shown that 
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the mono-nitroxide 8 (i.e. the mono-adduct) was almost exclusively formed at the 

tri-nitrone TN 3 concentrations used, the proportion of bi-nitroxide being negligible. 

[Insert figure 2 and table 1 about here] 

The kinetic approach used, based on a competition between the superoxide trapping 

and its spontaneous dismutation at a given pH value, permits the consideration of the 

whole kinetic curve of superoxide adduct formation and decay. This method has 

been extensively described elsewhere and will only be briefly explained here [20]. 

For each nitrone N considered and at each pH value studied, a part of the EPR 

spectrum of N-O2H was recorded as a function of time at various nitrone 

concentrations, in the presence of an internal reference (see experimental section). In 

order to illustrate the method employed, an EPR spectrum of the adduct TN-O2H 8 

recorded at pH 6.2 in the presence of the internal standard 3CP is shown in figure 3, 

the framed part corresponding to the signal range chosen to perform the kinetic 

experiments. Using both singular value decomposition and pseudo-inverse 

deconvolution methods, kinetic curves indicating the time dependant changes in the 

N-O2H concentration at various pH were achieved. As an example, the curves 

obtained with the spin trap 3 at pH 6.2 and at pH 9.3 are given in figure 4. Using 

equations. (5)-(8), computer modelling of the experimental kinetic curves obtained 

with each nitrone at each pH considered yielded the values of kD and kTap listed in 

table 2. 

[Insert figures 3 and 4 and table 2 about here] 

 It has been shown that the rate constant for the first-order decay of 

nitrone/superoxide spin adducts increased with pH and with the spin trap 

concentration [7-9,20,21,30]. Overall, the values listed for kD in table 2 agree with 
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these observations, though a few deviations from this general trend can be noticed. 

These could be explained by considering two main factors. Firstly, EPR signals 

recorded under certain extreme conditions (e.g. at high pH values) were often very 

weak. Actually, it would have been impossible to achieve the kinetic curves from 

these spectra without the help of SVD and deconvolution methods. In this case, kD  

determination could be less accurate, as shown for instance by the errors given in 

table 2. Secondly, the first-order decay of nitrone/superoxide spin adducts in 

aqueous media are known to depend on several parameters other than pH and nitrone 

concentration. In particular, minor changes in the superoxide generator (i.e. in 

solutions of xanthine or of xanthine oxidase) may affect significantly N-O2H life-

time [8,10,20,21]. Considering the number of experiments performed in this study, 

different solutions of xanthine and of xanthine oxidase have been used, thereby 

rending kD evaluation less accurate. The dependence of the decay rate of 

nitrone/superoxide adducts on various parameters (pH, nitrone concentration, 

superoxide generating system, etc.) is certainly an interesting problem that would 

warrant a more thorough study. A better knowledge of the mechanisms responsible 

for N-O2H decay in aqueous solutions would permit the design of new spin traps 

with increased superoxide adduct life-time. However, the purpose of the present 

work was mainly to scrutinise the effect of pH on the superoxide trapping rate. Note 

that the three series of spectra at the three different nitrone concentrations, for each 

nitrone and at each pH, were recorded under exactly the same conditions. Thus, in 

the kinetic approach used, minor changes in the superoxide generator would not 

affect kTap determination. 
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A fast survey of kTap values given in table 2 shows that the same nitrone ranking was 

obtained at each pH considered: DEPO was always found the fastest at trapping 

superoxide, followed by EMPO, TN and DMPO. Whatever the nitrone, our results 

confirmed that kTap diminished at higher pH. This could suggest that the nitrones 

would trap the hydroperoxyl radical more rapidly than the superoxide radical anion. 

At this point however, interpretation of the experimental results requires an more 

advanced analysis, in which contributions of the protonated and non protonated 

radicals should be separated. 

 

3.2 Analysis of kTap variation with pH 

In this last part of our study, the superoxide radical anion and the protonated 

hydroperoxyl radical were distinguished. Our purpose was to determine in which 

extent each of these two species contributes to the N-O2H EPR signal observed. As 

mentioned in the experimental section, kO2-. and kHO2. are the second-order rate 

constants for the trapping of O2
-. and of HO2

. by a nitrone N, respectively. Equation 

(17), which can be rewritten as equation (18), indicates the relation between kO2-., 

kHO2. and kTap. Equation(19) can be written from equation (18), in which pKA is 

equal to 4.88. 

  kTap = [kHO2. + 10(pH-pKA) kO2.-] / [1 + 10(pH-pKA)]   (18) 

 log kTap = log [kHO2. + (pH – 4.88) kO2.-] -  pH + 4.88 (19) 

Fitting the model described by equation (18) to the experimental points for nitrones 

1-4 yielded the values reported in table 3 for the rate constants kO2-. and kHO2. . In 

figure 5, the decimal logarithm of kTap has been plotted vs. pH. The curves have 

been obtained according to equation (19) and using the rate constant values listed in 
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table 3, showing for each nitrone a rather good fit between experimental and 

calculated kTap values.  

[Insert figure 5 about here] 

In the particular case of DMPO, kO2-. was found near nil, considering the error in its 

determination. This last result could seem in contradiction with that published by 

Goldstein et al. [32], who have found that kO2-. was equal to 170 ± 40 dm3 mol-1s-1 

for DMPO. However, they obtained this value by measuring the kinetics of O2
-. 

consumption in the presence of 4 using the pulse radiolysis technique, while we 

followed the kinetics of formation of 9 using EPR spectroscopy. According to 

Goldstein et al. [32], only a fraction of the superoxide radical anion yields the 

nitroxide 9. This explains the discrepancy mentioned above, all the more so since 

the yield of the reaction: 4 + O2
-. → 9 is unknown. Consequently, the EPR method is 

obviously more appropriate to kinetic studies of superoxide trapping by nitrones. 

Whatever the nitrone, there is always three order of magnitude between kHO2. and kO2-. 

(see table 3). Thus, the trapping of O2
-. does not intervene significantly in the N-O2H 

formation until the superoxide concentration is much higher than that of hydroperoxyl 

radical. For instance, the proportion of the EPR signal of 6 originating from the trapping 

of O2
-. by EMPO  is lower than 1% at pH 6.5, than 2.5% at pH 7 and than 8% at pH 7.5. 

In the case of DMPO 4, these values are raised to ca. 2.5%, 8% and 25% at pH 6.5, 7 

and 7.5 respectively. This means that the EPR signals of the spin adducts N-O2H 

observed in aqueous media around neutral pH were almost exclusively due to the 

trapping of the protonated species HO2
. 
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4 Conclusion 

This study confirms that the spin trapping of O2
-./HO2

. by nitrones is overall more 

efficient at low pH. Whatever the nitrone N, the formation of N-O2H is not only faster 

in acidic media but the decay rate of this spin adduct increases with pH. When it comes 

to the trapping rate, the same nitrone ranking was obtained at each pH studied: DEPO 

was found the fastest at trapping superoxide, followed by EMPO, and TN, these three 

compounds being much more efficient than DMPO. Examining the pH dependence of 

the kinetics of N-O2H formation permitted to evaluate separately the rate constant 

values for the spin trapping of superoxide radical anion and of hydroperoxyl radical by 

four nitrones. The results obtained with 1-4 clearly showed that the EPR signals of the 

nitrone/superoxide spin adducts observed in aqueous media were essentially due to the 

trapping of the protonated species HO2
.. For the nitrones tested, kO2-. was always found 

lower than 2 dm3 mol-1 s-1. In previous studies conducted with ten commonly used 

nitrones, 1-3 were found the most efficient for superoxide/hydroperoxyl radical trapping 

at neutral pH [20-21]. Thus, this very low reactivity of nitrones with the superoxide 

radical anion should be considered as a serious drawback, precluding the use of these 

compounds in quantitative studies of O2
-./HO2

. formation in aqueous media. Despite 

this, compounds 1-3 could still find interesting applications in qualitative studies in 

water or biological media. Therefore, the development of new and more efficient traps 

is still a necessity, in particular for superoxide radical anion detection. 
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Figure Caption 

Figure 1: Formulae of the nitrone spin traps 1-4 studied. 

Figure 2: Formulae of 3CP 5, used as internal reference, and of the spin adducts N-O2H 6-9 studied. 

Figure 3: EPR signal obtained in a pH 6.2 buffer by generating superoxide with a xanthine/xanthine 

oxidase system in the presence of TN 3 (0.03 mol dm-3) and of 3CP 5 (0.6 10-6 mol dm-3). The three lines 

of 5 spectrum are marked by downwards arrows. The other lines belong to the spectrum of TN-O2H 7. 

The framed part corresponds to the signal portion recorded to achieve the kinetic curves. 

Figure 4: Experimental (full lines) and calculated (dotted lines) kinetic curves indicating the time-

dependent changes in TN-O2H 8 concentration. A) 8 was produced at pH 6.2 by generating superoxide in 

the presence of: a) 5 mmol dm-3 3, b) 30 mmol dm-3 3, and c) 125 mmol dm-3 3. B) 8 was produced at pH 

9.3 by generating superoxide in the presence of: a) 20 mmol dm-3 3, b) 40 mmol dm-3 3, and c) 125 mmol 

dm-3 3. Calculated curves, obtained according to the model described by equations. (5)-(8), led to kTap and 

kD values given in table 2. 

Figure 5: Variation of the apparent rate constant kTap with pH for DEPO 2 ( ),EMPO 1 ( ),TN 3 ( ), 

and DMPO 4 ( ). The curves have been calculated using equation (19) and the rate constant values listed 

in table 3. Experimental points have been obtained from kTap values listed in table 2. 
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Table 1. EPR hyperfine splitting constants for the nitroxides 5-9  
in 0.1 mol dm-3 phosphate buffer (pH range: 6.2-9.3) 

 aN / mT aHβ / mT other / mT 
5 1.62 / / 
6 1.32 1.09 0.10 (aHγ) 
7 1.26 0.99 0.12 (aHγ) 
8 1.34 0.16   4.24 (aP) 
9 1.43 1.17 0.12 (aHγ) 
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Table 2. Apparent rate constants for the spin trapping of superoxide by nitrones 1-4 (kTap) and 

for the decay of nitrone-superoxide spin adducts (kD) at various pH. 
nitrone pH kTap / dm3 mol-1 s-1 [N] / mmol dm-3 kD / 10-3 s-1 

EMPO 1 6.2 101 ± 8 150 
30 
10 

0.88 ± 0.01 
0.48± 0.01 
0.45± 0.01 

 7.2 10.9 ± 0.1   200 
30 
10 

1.25 ± 0.04 
0.65 ± 0.04 
0.60 ± 0.04 

 8.0 2.02 ± 0.08    150 
30 
15 

0.41 ± 0.01 
0.40 ± 0.01 
0.51± 0.01 

 8.8 0.68 ± 0.05 150 
30 
10 

2.66 ± 0.03 
3.68 ± 0.03 
3.56 ± 0.03 

 9.3 0.60 ± 0.03 150 
30 
10 

17.89 ± 0.78 
14.11 ± 0.78 
9.38 ± 0.78 

DEPO 2 6.2 185 ± 15 10 
6.5 

6.57 ± 0.29 
4.41± 0.29 

 7.2 31 ± 1.3   15 
5 

2.06 ± 0.52 
1.04 ± 0.52 

 8.0 3.54 ± 0.28    10 
6 

21.28 ± 0.48 
10.60 ± 0.48 

 8.8 3.18 ± 0.32 5 
3 

6.26 ± 1.35 
3.18 ± 1.35 

 9.3 1.98 ± 0.11 10 
3 

15.84 ± 1.81 
10.56 ± 1.81 

TN 3 6.2 58.26± 2.67 125 
30 
5 

2.40 ± 0.07 
1.93 ± 0.07 
1.57 ± 0.07 

 7.2 8.90 ± 0.58   140 
72 
5 

2.70 ± 0.27 
2.60 ± 0.27 
1.90 ± 0.27 

 8.0 1.56 ± 0.11    125 
40 
20 

4.11 ± 1.0 
4.30 ± 1.0 
4.64± 1.0 

 8.8 0.77 ± 0.09 125 
30 
15 

5.07 ± 0.88 
3.85 ± 0.88 
2.99 ± 0.88 

 9.3 0.56 ± 0.06 125 
40 
20 

6.59 ± 0.55 
6.10 ± 0.55 
5.49 ± 0.55 
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Table 2 (continued). Apparent rate constants for the spin trapping of superoxide by nitrones 1-

4 (kTap) and for the decay of nitrone-superoxide spin adducts (kD) at various pH. 
DMPO 4 6.2 27.48 ± 1.95 125 

40 
10 

0.48 ± 0.1 
0.66± 0.1 
0.75± 0.1 

 6.8 9.65 ± 0.60   150 
40 
30 

5.4 ± 1.8 
4.9 ± 1.8 
5.4 ± 1.8 

 7.2 2.0 ± 0.3    125 
40 
20 

9.0 ± 1.7 
8.2 ± 1.7 
7.9 ± 1.7 

 8.0 0.52 ± 0.09 130 
75 
60 

15.0 ± 2.5 
14.4 ± 2.5 
11.4 ± 2.5 

 9.3 0.35 ± 0.04 150 
50 
30 

17.7 ± 4.5 
9.1 ± 4.5 
9.2 ± 4.5 
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Table 3. Rate constants for the spin trapping of hydroperoxyl radical 
(kHO2.) and of superoxide (kO2.-) by nitrones 1-4. 

nitrone kHO2. / dm3 mol-1 s-1 kO2.- / dm3 mol-1 s-1 kHO2. / kO2.- 
EMPO 1 2206 ± 4 0.41 ± 0.04 5.38 103 
DEPO 2 4015 ± 30 1.68 ± 0.65 2.39 103 

TN 3 1264 ± 3 0.57 ± 0.03 2.22 103 
DMPO 4 600 ± 30 0.34 ± 0.4 1.76 103 
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Figure 1      A. Allouch et al.       pH Effect on Superoxide Trapping by Nitrones  
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Figure 2      A. Allouch et al.       pH Effect on Superoxide Trapping by Nitrones  
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Figure 3      A. Allouch et al.       pH Effect on Superoxide Trapping by Nitrones  
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Figure 4      A. Allouch et al.       pH Effect on Superoxide Trapping by Nitrones 
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Figure 5 A. Allouch et al. pH Effect on Superoxide Trapping by Nitrones 
 

 

 4 5 6 7 8 9

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
 

pH

log kTap

Page 26 of 52

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 1 

Molecular Physics, Vol. X, No. X, Month 2007, xxx–xxx 

A. Allouch et al. pH Effect on Superoxide Trapping by Nitrones 

 

 

Effect of pH on superoxide/ hydroperoxyl radical 

trapping by nitrones: an EPR/kinetic study 
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The pH dependence of the apparent rate constant kTap for O2
-.
/HO2

.
 trapping by four 

nitrones was examined. In each case, kinetic curves were obtained after treatment of 

EPR spectra of the spin adduct formed using both singular value decomposition  and 

pseudo-inverse deconvolution methods. Modelling these curves led to evaluate kTap at 

various pH values. Analysis of the pH dependence of kTap permitted the determination 

of the rate constants for the spin trapping of O2
-.
 and of HO2

.
 separately. Whatever the 

nitrone, our results clearly show that the EPR signals of the nitrone/superoxide spin 

adducts observed in aqueous media were essentially due to the trapping of the 

protonated species HO2
. 

 

Keywords: EPR; Kinetics; pH Effect; Spin Trapping; Superoxide; Nitrones 
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1 Introduction 

Since the EPR/spin trapping technique was first introduced [1-3], it has found numerous 

applications in the detection of free radicals produced in chemistry, biology or 

medicine. It has been notably employed for detecting superoxide in aqueous media 

using nitrone spin traps [4-6]. For this purpose, a nitrone must trap rapidly this radical 

and must lead to a long-lived spin adduct. Several reliable methods have been described 

to determine kD, the rate constant for the nitrone/superoxide spin adduct decay [7-13]. 

In contrast, evaluating the apparent rate of superoxide trapping by a nitrone, kTap, is 

more problematic and major disagreements exist regarding the data published in this 

field [11,14-21]. The most popular method used in these studies involves a competition 

between the nitrone and a superoxide scavenger, and implies that the superoxide 

spontaneous dismutation, the spin adduct decay and the consumption of the competitor 

during the course of the experiment correspond to negligible events [11,14-17]. Two 

years ago, we brought evidences of the importance of these three reactions and showed 

that their omission resulted in significantly overestimating kTap [22]. Another method 

based on a competition between the superoxide trapping by the nitrone and the 

spontaneous dismutation of this radical  yielded lower kTap values []18,19]. This 

prompted us to elaborate a new kinetic approach to the evaluation of kTap in buffered 

media [20,21]. It was also based on a competition between the superoxide trapping and 

its spontaneous dismutation, and kinetic curves were obtained after treatment of EPR 

spectra using both singular value decomposition (SVD) and pseudo-inverse 

deconvolution methods before their computer modelling. Whatever the method used, it 

is widely admitted that the kinetic parameters related to the spin trapping of superoxide 

by nitrones are pH dependent. On one hand, nitrone/superoxide spin adducts decayed 
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more slowly in acidic media [7-9]. On the other hand,
 
kTap also greatly varied with pH 

[14,16], owing to the fact that superoxide O2
-.
 and its protonated form HO2

.
 were not 

distinguished in these studies, both radicals leading to the same EPR-detectable spin 

adduct in aqueous media. The relative concentrations of HO2
.
 and of O2

-.
 depend on pH, 

the pKA value for the acidic dissociation reaction of the hydroperoxyl radical being 

equal to 4.88 [23].
 
Considering that nitrones react differently with HO2

.
 and O2

-.
, this 

justifies the pH dependence of kTap .  

Recently, we have found that three nitrones were particularly efficient for superoxide 

detection: the ethyl 2-methyl-3,4-dihydro-2H-pyrrole-carboxylate 1-oxide 1 (EMPO, 

kTap≈ 11 dm
3
mol

-1
s

-1
 at pH 7.2), the diethyl 3,4-dihydro-2H-pyrrole-2,2-dicarboxylate 

1-oxide 2 (DEPO, kTap≈ 31 dm
3
mol

-1
s

-1
 at pH 7.2), and 1,3,5-tri [(N- (1-

diethylphosphono)-1-methyl-ethyl) -N-oxy-aldimine] benzene 3 (TN, kTap≈ 9 dm
3
mol

-

1
s

-1
 at pH 7.2) [20,21]. Among them, TN is the only lipophilic trap, with an 

octanol/water partition coefficient higher than 300 [24]. By far, DEPO was found the 

fastest at trapping superoxide, but the spin adduct thus formed decayed very rapidly, 

particularly when high nitrone concentrations were used. However, kinetic experiments 

with all these traps were only performed at pH 7.2. To proceed with this study, we have 

examined the pH dependence of the rate constant for the superoxide trapping by EMPO, 

DEPO, TN and have compared the results obtained to that given by the well-known 2,2-

dimethyl-3,4-dihydro-2H-pyrrole 1-oxide 4 (DMPO) (see figure 1). Analysis of the data 

obtained at various pH permitted to evaluate separately the rate constant for the trapping 

of HO2
.
 and O2

-.
 by the nitrone considered and to determine which species is actually 

responsible for the formation of the adduct detected by EPR. 

[Insert figure 1 about here] 
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In this whole study, the spin adduct detected by EPR after trapping either O2
-.
 or  HO2

.
 

with a nitrone N in aqueous media will be denoted N-O2H. With the aim of simplifying 

the notation, the term ‘superoxide’ will first be used to designate both superoxide and 

hydroperoxyl radicals as a whole in the part of this work devoted to the study of the pH 

effect on kTap. Similarly, the symbol ‘O2
-.
’ in the kinetic model [equations (1)-(4)] as 

well as in the rate equations (5)-(8) will represent either protonated or non-protonated 

forms of the radical. In a second part of this study, the two species will be considered 

separately to evaluate each individual contribution to the formation of N-O2H. 

 

2 Experimentals 

2.1 Materials 

The nitrones EMPO 1, DEPO 2 and TN 3 were synthesised and purified according to 

procedures described previously [24-27]. DMPO 4 (Sigma-Aldrich Co.) was purified by 

vacuum distillation before use. Diethylenetriaminepentacetic acid (DTPA), 3-carboxy-

2,2,5,5-tetramethylpyrrolidin-1-oxyl 5 (3CP), xanthine and xanthine oxidase were 

obtained from Sigma-Aldrich Co. Buffer solutions,  were stirred gently for six hours in 

the presence of a chelating iminodiacetic acid resin to remove trace metal impurities. 

 

2.2 Achievement of experimental kinetic curves 

All experiments were made in 0.1 mol dm
-3

 phosphate buffer (pH range: 6.2-9.3). 

Superoxide was produced using a xanthine-xanthine oxidase system. In a standard 

experiment, the medium contained a nitrone N (3-200 mmol. dm
-3

), 1.6 mmol.dm
-3

 

xanthine, 3 mmol.dm
-3

 diethylenetriaminepentacetic acid, 3CP (0.5-1.1 µmol dm
-3

) used 

as internal standard, and  0.04 unit.cm
-3

 xanthine oxidase. Air was bubbled into the 

Page 30 of 52

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 5 

medium for one min. before addition of xanthine oxidase. A part of the EPR signal 

showing at least one line of the superoxide adduct N-O2H and one line of 3CP spectra 

was recorded every 42 s. Noise was reduced using the SVD procedure, and the kinetic 

curves (adduct concentration  vs. time) were obtained after deconvolution of the signal 

using the pseudo-inverse method, according to procedures extensively described 

previously [20]. These calculations were achieved with the help of a home-made 

computer programme written in FORTRAN, using subroutines given in Numerical 

Recipes [28]. At each pH value and for each nitrone, three experiments were performed 

at three different nitrone concentrations, one of which was set high enough to trap out 

most of the superoxide produced. In the case of DEPO, the procedure was modified as 

described previously [20,21], because the spin adduct decays too rapidly at high nitrone 

concentrations. EPR essays were carried out at 20°C in capillary tubes by using a 

Bruker EMX spectrometer operating at X-band with 100 kHz modulation frequency. 

General instrument settings were as follows: microwave power, 20 mW; modulation 

amplitude, 0.1-0.18 mT; receiver gain, 2  10
5
 - 2  10

6
; time constant, 164 ms; scan time, 

21 s; scan width, 1.5 - 6 mT; 2 scans. 

 

2.3 Determination of the apparent rate constant kTap 

At a given pH, the kinetic model considered can be described by equations (1)-(4),  

X 
kX

 O2
-.
      (1) 

2 O2
-.
 + 2 H

+
 

kdis
  O2 + H2O2 (2) 

 O2
-.
  + H

+
 + N 

kTap
  N-O2H (3) 

 N-O2H  
kD

  Y   (4) 
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 6 

where kX and kD are the rate constants for the generation of superoxide and for the 

decay of the spin adduct N-O2H, respectively, Y representing EPR silent products and X 

an intermediate derived from xanthine [20]. The apparent rate constant for the second-

order trapping reaction is denoted kTap. The rate equations (5)-(8) can be written from 

this kinetic model: 

 d[X]/dt = -kX [X]     (5) 

 d[O2
.-
]/dt = kX [X] – kTap [N] [O2

-.
] – 2 kdis [O2

-.
]
2 

(6) 

 d[N-O2H]/dt = kTap [N] [O2
-.
] – kD [N-O2H]  (7) 

 d[N]/dt = - kTap [N] [O2
-.
]     (8) 

The term ‘superoxide’ and the symbol ‘O2
-.
’ designate here the protonated and non-

protonated forms of the radical indiscriminately. The apparent rate constant for the 

trapping reaction by the nitrone N, kTap, is pH dependent and includes the contribution 

of both HO2
.
 and O2

-.
  trapping. The second order rate constant for the superoxide 

spontaneous dismutation reaction, kdis, is also pH-dependent. Computer modelling of 

the kinetic curves obtained was achieved using a home-made programme and according 

to equations (5)-(8). In these calculations, the nitrone initial concentration is an 

experimental parameter, the initial concentrations of superoxide and of N-O2H are equal 

to zero, and kdis was evaluated as described further. The standard least-square method 

was applied to fit the experimental curves, yielding the other parameters. Therefore, the 

three kinetic curves obtained at three different nitrone concentrations were considered 

jointly and modelled with the same parameter set (except for parameters varying with 

the nitrone concentration). The values obtained for the initial concentration [X]0 and for 

the rate constant kX had no real meaning and only came up as an empirical model of the 

superoxide generation. Since they may vary with the solutions of either xanthine or 

Page 32 of 52

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 7 

xanthine oxidase used [20], experiments at various nitrone concentrations were 

performed with exactly the same superoxide generator. The model corresponding to 

equations (9)-(12), which was first established by Baxendale [29], describes the 

superoxide spontaneous dismutation in aqueous media. Here, reaction (12) is negligible 

below pH 9.5.  

 HO2
.
 

KA
 O2

-.
 + H

+
   (9) 

 2 HO2
.
 

k1
 H2O2 + O2   (10) 

 O2
-.
 +  HO2

.
 

k2
 H2O2 + O2 + HO

-
 (11) 

 2 O2
-.
 

k3
 H2O2 + O2 + 2 HO

-
  (12) 

The rate constant kdis can be determined at any pH from equations (13)-(14), where 

pKA, k1 and k2 are equal to 4.88, 76 10
4
 dm

3
.mol

-1
.s

-1
 and 85 10

6
 dm

3
.mol

-1
.s

-1
, 

respectively [23]. 

 kdis = (k1 + χ k2) / (1 + χ)
2
 (13) 

 χ = KA / [H
+
] = 10

(pH-pKA)
 (14) 

 

2.3 Determination of the trapping rate constants kHO2. and kO2-. 

Because nitrones react differently with O2
-.
 and with HO2

.
, reactions (15) and (16) 

should be considered instead of reaction (3) in the kinetic model, kHO2. and kO2-. being 

the rate constants for the trapping of superoxide radical anion (O2
-.
) and hydroperoxyl 

radical (HO2
.
), respectively, by the nitrone N.  

 O2
-.
 + N + H

+
 

kO2-.
  N-O2H  (15) 

 HO2
.
 + N  

kHO2.
  N-O2H (16) 
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According to Finkelstein et al. [14], equation. (17) can be written from equations (14)-

(16).  

 kTap = (kHO2. + χ kO2.-) / (1 + χ) (17) 

Using the method described in the previous section, kTap was determined for each 

nitrone at five pH values ranging from 6.2 to 9.3. The experimental curves thus obtained 

were modelled using equation (17), which led to kHO2. and kO2.-. 

 

3 Results and discussion 

3.1 Determination of the rate constants at various pH 

Experiments were performed in order to evaluate the pH influence on the trapping of 

superoxide by four nitrones: EMPO 1, DEPO 2, TN 3 and DMPO 4. Whatever the 

species trapped by the nitrone N (O2
-.
 or HO2

.
, both designated here by the term 

‘superoxide’), only the protonated adduct N-O2H will be detected by EPR. Actually, 

the anionic radical species N-O2
-
 is not EPR silent, but its concentration in the pH 

range considered is negligible, considering the high pKa values of  hydroperoxides.  

The formulae of the stable nitroxide 5 and of the spin adducts 6-9 considered in this 

study have been drawn in figure 2. Before each kinetic experiment, a full EPR 

spectrum of the medium was recorded. All the spectra thus obtained were analysed 

using the computer program elaborated by Duling [30], which led to the values 

listed in table 1 for the hyperfine splitting constants (hfscs) with the nitrogen (aN), 

the β-hydrogen (aHβ) and eventually a γ-hydrogen (aHγ) or a β-phosphorus (aP) 

nuclei. These hfscs were not found to vary in the pH range considered and agree 

with the literature data [4,10,24,27]. In a previous study [24], we have shown that 
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the mono-nitroxide 8 (i.e. the mono-adduct) was almost exclusively formed at the 

tri-nitrone TN 3 concentrations used, the proportion of bi-nitroxide being negligible. 

[Insert figure 2 and table 1 about here] 

The kinetic approach used, based on a competition between the superoxide trapping 

and its spontaneous dismutation at a given pH value, permits the consideration of the 

whole kinetic curve of superoxide adduct formation and decay. This method has 

been extensively described elsewhere and will only be briefly explained here [20]. 

For each nitrone N considered and at each pH value studied, a part of the EPR 

spectrum of N-O2H was recorded as a function of time at various nitrone 

concentrations, in the presence of an internal reference (see experimental section). In 

order to illustrate the method employed, an EPR spectrum of the adduct TN-O2H 8 

recorded at pH 6.2 in the presence of the internal standard 3CP is shown in figure 3, 

the framed part corresponding to the signal range chosen to perform the kinetic 

experiments. Using both singular value decomposition and pseudo-inverse 

deconvolution methods, kinetic curves indicating the time dependant changes in the 

N-O2H concentration at various pH were achieved. As an example, the curves 

obtained with the spin trap 3 at pH 6.2 and at pH 9.3 are given in figure 4. Using 

equations. (5)-(8), computer modelling of the experimental kinetic curves obtained 

with each nitrone at each pH considered yielded the values of kD and kTap listed in 

table 2. 

[Insert figures 3 and 4 and table 2 about here] 

 It has been shown that the rate constant for the first-order decay of 

nitrone/superoxide spin adducts increased with pH and with the spin trap 

concentration [7-9,20,21,30]. Overall, the values listed for kD in table 2 agree with 

Page 35 of 52

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 10 

these observations, though a few deviations from this general trend can be noticed. 

These could be explained by considering two main factors. Firstly, EPR signals 

recorded under certain extreme conditions (e.g. at high pH values) were often very 

weak. Actually, it would have been impossible to achieve the kinetic curves from 

these spectra without the help of SVD and deconvolution methods. In this case, kD  

determination could be less accurate, as shown for instance by the errors given in 

table 2. Secondly, the first-order decay of nitrone/superoxide spin adducts in 

aqueous media are known to depend on several parameters other than pH and nitrone 

concentration. In particular, minor changes in the superoxide generator (i.e. in 

solutions of xanthine or of xanthine oxidase) may affect significantly N-O2H life-

time [8,10,20,21]. Considering the number of experiments performed in this study, 

different solutions of xanthine and of xanthine oxidase have been used, thereby 

rending kD evaluation less accurate. The dependence of the decay rate of 

nitrone/superoxide adducts on various parameters (pH, nitrone concentration, 

superoxide generating system, etc.) is certainly an interesting problem that would 

warrant a more thorough study. A better knowledge of the mechanisms responsible 

for N-O2H decay in aqueous solutions would permit the design of new spin traps 

with increased superoxide adduct life-time. However, the purpose of the present 

work was mainly to scrutinise the effect of pH on the superoxide trapping rate. Note 

that the three series of spectra at the three different nitrone concentrations, for each 

nitrone and at each pH, were recorded under exactly the same conditions. Thus, in 

the kinetic approach used, minor changes in the superoxide generator would not 

affect kTap determination. 
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A fast survey of kTap values given in table 2 shows that the same nitrone ranking was 

obtained at each pH considered: DEPO was always found the fastest at trapping 

superoxide, followed by EMPO, TN and DMPO. Whatever the nitrone, our results 

confirmed that kTap diminished at higher pH. This could suggest that the nitrones 

would trap the hydroperoxyl radical more rapidly than the superoxide radical anion. 

At this point however, interpretation of the experimental results requires an more 

advanced analysis, in which contributions of the protonated and non protonated 

radicals should be separated. 

 

3.2 Analysis of kTap variation with pH 

In this last part of our study, the superoxide radical anion and the protonated 

hydroperoxyl radical were distinguished. Our purpose was to determine in which 

extent each of these two species contributes to the N-O2H EPR signal observed. As 

mentioned in the experimental section, kO2-. and kHO2. are the second-order rate 

constants for the trapping of O2
-.
 and of HO2

.
 by a nitrone N, respectively. Equation 

(17), which can be rewritten as equation (18), indicates the relation between kO2-., 

kHO2. and kTap. Equation(19) can be written from equation (18), in which pKA is 

equal to 4.88. 

  kTap = [kHO2. + 10
(pH-pKA)

 kO2.-] / [1 + 10
(pH-pKA)

]   (18) 

 log kTap = log [kHO2. + (pH – 4.88) kO2.-] -  pH + 4.88 (19) 

Fitting the model described by equation (18) to the experimental points for nitrones 

1-4 yielded the values reported in table 3 for the rate constants kO2-. and kHO2. . In 

figure 5, the decimal logarithm of kTap has been plotted vs. pH. The curves have 

been obtained according to equation (19) and using the rate constant values listed in 
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table 3, showing for each nitrone a rather good fit between experimental and 

calculated kTap values.  

[Insert figure 5 about here] 

In the particular case of DMPO, kO2-. was found near nil, considering the error in its 

determination. This last result could seem in contradiction with that published by 

Goldstein et al. [32], who have found that kO2-. was equal to 170 ± 40 dm
3
 mol

-1
s

-1
 

for DMPO. However, they obtained this value by measuring the kinetics of O2
-.
 

consumption in the presence of 4 using the pulse radiolysis technique, while we 

followed the kinetics of formation of 9 using EPR spectroscopy. According to 

Goldstein et al. [32], only a fraction of the superoxide radical anion yields the 

nitroxide 9. This explains the discrepancy mentioned above, all the more so since 

the yield of the reaction: 4 + O2
-.
 → 9 is unknown. Consequently, the EPR method is 

obviously more appropriate to kinetic studies of superoxide trapping by nitrones. 

Whatever the nitrone, there is always three order of magnitude between kHO2. and kO2-. 

(see table 3). Thus, the trapping of O2
-.
 does not intervene significantly in the N-O2H 

formation until the superoxide concentration is much higher than that of hydroperoxyl 

radical. For instance, the proportion of the EPR signal of 6 originating from the trapping 

of O2
-.
 by EMPO  is lower than 1% at pH 6.5, than 2.5% at pH 7 and than 8% at pH 7.5. 

In the case of DMPO 4, these values are raised to ca. 2.5%, 8% and 25% at pH 6.5, 7 

and 7.5 respectively. This means that the EPR signals of the spin adducts N-O2H 

observed in aqueous media around neutral pH were almost exclusively due to the 

trapping of the protonated species HO2
.
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4 Conclusion 

This study confirms that the spin trapping of O2
-.
/HO2

.
 by nitrones is overall more 

efficient at low pH. Whatever the nitrone N, the formation of N-O2H is not only faster 

in acidic media but the decay rate of this spin adduct increases with pH. When it comes 

to the trapping rate, the same nitrone ranking was obtained at each pH studied: DEPO 

was found the fastest at trapping superoxide, followed by EMPO, and TN, these three 

compounds being much more efficient than DMPO. Examining the pH dependence of 

the kinetics of N-O2H formation permitted to evaluate separately the rate constant 

values for the spin trapping of superoxide radical anion and of hydroperoxyl radical by 

four nitrones. The results obtained with 1-4 clearly showed that the EPR signals of the 

nitrone/superoxide spin adducts observed in aqueous media were essentially due to the 

trapping of the protonated species HO2
.
. For the nitrones tested, kO2-. was always found 

lower than 2 dm
3
 mol

-1
 s

-1
. In previous studies conducted with ten commonly used 

nitrones, 1-3 were found the most efficient for superoxide/hydroperoxyl radical trapping 

at neutral pH [20-21]. Thus, this very low reactivity of nitrones with the superoxide 

radical anion should be considered as a serious drawback, precluding the use of these 

compounds in quantitative studies of O2
-.
/HO2

.
 formation in aqueous media. Despite 

this, compounds 1-3 could still find interesting applications in qualitative studies in 

water or biological media. Therefore, the development of new and more efficient traps 

is still a necessity, in particular for superoxide radical anion detection. 
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Figure Caption 

Figure 1: Formulae of the nitrone spin traps 1-4 studied. 

Figure 2: Formulae of 3CP 5, used as internal reference, and of the spin adducts N-O2H 6-9 studied. 

Figure 3: EPR signal obtained in a pH 6.2 buffer by generating superoxide with a xanthine/xanthine 

oxidase system in the presence of TN 3 (0.03 mol dm
-3

) and of 3CP 5 (0.6 10
-6

 mol dm
-3

). The three lines 

of 5 spectrum are marked by downwards arrows. The other lines belong to the spectrum of TN-O2H 7. 

The framed part corresponds to the signal portion recorded to achieve the kinetic curves. 

Figure 4: Experimental (full lines) and calculated (dotted lines) kinetic curves indicating the time-

dependent changes in TN-O2H 8 concentration. A) 8 was produced at pH 6.2 by generating superoxide in 

the presence of: a) 5 mmol dm
-3

 3, b) 30 mmol dm
-3

 3, and c) 125 mmol dm
-3

 3. B) 8 was produced at pH 

9.3 by generating superoxide in the presence of: a) 20 mmol dm
-3

 3, b) 40 mmol dm
-3

 3, and c) 125 mmol 

dm
-3

 3. Calculated curves, obtained according to the model described by equations. (5)-(8), led to kTap and 

kD values given in table 2. 

Figure 5: Variation of the apparent rate constant kTap with pH for DEPO 2 (�),EMPO 1 (�),TN 3 (�), 

and DMPO 4 (�). The curves have been calculated using equation (19) and the rate constant values listed 

in table 3. Experimental points have been obtained from kTap values listed in table 2. 
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Table 1. EPR hyperfine splitting constants for the nitroxides 5-9  

in 0.1 mol dm
-3

 phosphate buffer (pH range: 6.2-9.3) 

 aN / mT aHβ / mT other / mT 

5 1.62 / / 

6 1.32 1.09 0.10 (aHγ) 

7 1.26 0.99 0.12 (aHγ) 

8 1.34 0.16   4.24 (aP) 

9 1.43 1.17 0.12 (aHγ) 
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Table 2. Apparent rate constants for the spin trapping of superoxide by nitrones 1-4 (kTap) and 

for the decay of nitrone-superoxide spin adducts (kD) at various pH. 

nitrone pH kTap / dm
3
 mol

-1
 s

-1
 [N] / mmol dm

-3
 kD / 10

-3
 s

-1
 

EMPO 1 6.2 101 ± 8 150 

30 

10 

0.88 ± 0.01 

0.48± 0.01 

0.45± 0.01 

 7.2 10.9 ± 0.1   200 

30 

10 

1.25 ± 0.04 

0.65 ± 0.04 

0.60 ± 0.04 

 8.0 2.02 ± 0.08    150 

30 

15 

0.41 ± 0.01 

0.40 ± 0.01 

0.51± 0.01 

 8.8 0.68 ± 0.05 150 

30 

10 

2.66 ± 0.03 

3.68 ± 0.03 

3.56 ± 0.03 

 9.3 0.60 ± 0.03 150 

30 

10 

17.89 ± 0.78 

14.11 ± 0.78 

9.38 ± 0.78 

DEPO 2 6.2 185 ± 15 10 

6.5 
6.57 ± 0.29 

4.41± 0.29 

 7.2 31 ± 1.3   15 

5 
2.06 ± 0.52 

1.04 ± 0.52 

 8.0 3.54 ± 0.28    10 

6 
21.28 ± 0.48 

10.60 ± 0.48 

 8.8 3.18 ± 0.32 5 

3 
6.26 ± 1.35 

3.18 ± 1.35 

 9.3 1.98 ± 0.11 10 

3 
15.84 ± 1.81 

10.56 ± 1.81 

TN 3 6.2 58.26± 2.67 125 

30 

5 

2.40 ± 0.07 

1.93 ± 0.07 

1.57 ± 0.07 

 7.2 8.90 ± 0.58   140 

72 

5 

2.70 ± 0.27 

2.60 ± 0.27 

1.90 ± 0.27 

 8.0 1.56 ± 0.11    125 

40 

20 

4.11 ± 1.0 

4.30 ± 1.0 

4.64± 1.0 

 8.8 0.77 ± 0.09 125 

30 

15 

5.07 ± 0.88 

3.85 ± 0.88 

2.99 ± 0.88 

 9.3 0.56 ± 0.06 125 

40 

20 

6.59 ± 0.55 

6.10 ± 0.55 

5.49 ± 0.55 

Page 45 of 52

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 3 

 

 
Table 2 (continued). Apparent rate constants for the spin trapping of superoxide by nitrones 1-

4 (kTap) and for the decay of nitrone-superoxide spin adducts (kD) at various pH. 

DMPO 4 6.2 27.48 ± 1.95 125 

40 

10 

0.48 ± 0.1 

0.66± 0.1 

0.75± 0.1 

 6.8 9.65 ± 0.60   150 

40 

30 

5.4 ± 1.8 

4.9 ± 1.8 

5.4 ± 1.8 

 7.2 2.0 ± 0.3    125 

40 

20 

9.0 ± 1.7 

8.2 ± 1.7 

7.9 ± 1.7 

 8.0 0.52 ± 0.09 130 

75 

60 

15.0 ± 2.5 

14.4 ± 2.5 

11.4 ± 2.5 

 9.3 0.35 ± 0.04 150 

50 

30 

17.7 ± 4.5 

9.1 ± 4.5 

9.2 ± 4.5 
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Table 3. Rate constants for the spin trapping of hydroperoxyl radical 

(kHO2.) and of superoxide (kO2.-) by nitrones 1-4. 

nitrone kHO2. / dm
3
 mol

-1
 s

-1
 kO2.- / dm

3
 mol

-1
 s

-1
 kHO2. / kO2.- 

EMPO 1 2206 ± 4 0.41 ± 0.04 5.38 10
3
 

DEPO 2 4015 ± 30 1.68 ± 0.65 2.39 10
3
 

TN 3 1264 ± 3 0.57 ± 0.03 2.22 10
3
 

DMPO 4 600 ± 30 0.34 ± 0.4 1.76 10
3
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Figure 1      A. Allouch et al.       pH Effect on Superoxide Trapping by Nitrones  
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Figure 2      A. Allouch et al.       pH Effect on Superoxide Trapping by Nitrones  
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Figure 3      A. Allouch et al.       pH Effect on Superoxide Trapping by Nitrones  

 

2 mT

Page 50 of 52

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 4 

 

 

 

 

 

 

Figure 4      A. Allouch et al.       pH Effect on Superoxide Trapping by Nitrones 
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Figure 5 A. Allouch et al. pH Effect on Superoxide Trapping by Nitrones 

 

 

 

 4 5 6 7 8 9

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

 

pH

log k
Tap

Page 52 of 52

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


