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Pertubation Theory for Systems With Strong

Short-Ranged Interactions

PER SILLRÉN ∗ and JEAN-PIERRE HANSEN †

Department of Chemistry, University of Cambridge,

Lensfield Road, Cambridge CB2 1EW, UK

April 23, 2007

Abstract

We propose a variant of thermodynamic perturbation theory based on

the Mayer f-function which is applicable to strongly repulsive, and even sin-

gular interactions. The expansion of the free energy is successfully tested

against known ”exact results” for hard sphere fluids, and then applied to

binary mixtures of particles with non-additive hard cores or shouldered po-

tentials. The resulting phase diagrams agree well with existing simulation

data and theoretical predictions.

∗Present address: Department of Applied Physics, Chalmers University of Technology, SE-412
96 Göteborg, Sweden

†Corresponding Author: jph32@cam.ac.uk
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1 INTRODUCTION

1 Introduction

Thermodynamic Perturbation Theory of fluids goes back to van der Waals [1],

and was cast in modern Statistical Mechanics language by Zwanzig [2]. It is

based on the idea that the molecular structure of dense fluids and solids is es-

sentially determined by the short-range repulsive interactions between atoms or

molecules (exluded volume effect), and that smoothly varying long-range attrac-

tions between molecules, essential for cohesion, can be considered as a pertur-

bation to the reference system of particles interacting solely through the steep

repulsive forces. This perturbation approach was applied with considerable suc-

cess to simple liquids, culminating in the theories of Barker and Henderson [3],

and of Andersen, Chandler, and Weeks [4]. The success of these theories relies on

the assumption that excluded volume effects prevent strong local fluctuations,

and that the contribution w(r) to the full inter-atomic potential, treated as a per-

turbation, varies slowly in space and is comparable to kBT or less. Zwanzig’s

version of thermodynamic perturbation theory is well adapted to that case, but

is expected to fail when the perturbation w(r) is strongly repulsive and rapidly

varying or singular.

In this paper we present a modified version of thermodynamic perturbation

theory which is capable of dealing with strongly repulsive perturbations and non-

additivity of hard core interactions. It shifts the focus of the perturbation expan-

sion from the perturbation potential w(r) to the corresponding Mayer f-function

f(r), which remains a finite function of r for any repulsive interaction. The present

approach buids on and extends earlier work by Kincaid et al. [5] (who consid-

ered only the first order term in the f-function expansion) and by Pelissetto and

Hansen [6]. The formal expressions for the free energy obtained in Sections 2
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2 MAYER FUNCTION PERTURBATION THEORY

and 3 below are reminiscent of those derived by Barker and co-workers [7, 8, 9]

via a cluster expansion route, and used by those authors to express the free en-

ergy of a fluid mixture in terms of that of a one-component reference fluid, in

the spirit of Longuet - Higgins’ conformal solution theory [10].

The present theory is of relevance to a number of physical situations. One

example concerns a number of metals, like Cs and Ce, which undergo electronic

”collapse” under pressure. This physical situation may be modelled by a repul-

sive shouldered potential [11], which leads to an isostructural solid-solid transi-

tion [5, 12, 13] and to a melting curve maximum [14].

The second example is that of multi component colloidal dispersions, where

non-additive hard core interactions are the rule rather than the exception [15].

An extreme case of non-additivity is provided by the Asakura-Oosawa model of

colloid-polymer mixtures [16]. Examples of such systems will be considered as

applications of the f-function perturbation theory later in this paper.

2 Mayer Function Perturbation Theory

The basics of thermodynamic perturbation theory are well documented [2, 3, 17],

and are only briefly summarised here for a one component system. Consider a

system of N particles whose total interaction energy is split into two parts

Vλ(r
N) = V0(r

N) + Wλ(r
N), (1)

where V0 corresponds to a reference system while the perturbation is gradually

switched on by varying the coupling constant from λ0 (such that Wλ0 = 0) to λ1

3
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2 MAYER FUNCTION PERTURBATION THEORY

leading back to the full interaction term of the system of interest. If ZN(λ) denotes

the classical configuration integral for a given value λ of the coupling constant,

then the derivative of the excess (non-ideal) part of the Helmholtz free energy is

given by

β
∂F ex(λ)

∂λ
=

1

ZN(λ)

∫
β

∂Wλ

∂λ
e−βVλdrN = 〈βW ′

λ〉λ, (2)

where β = 1/kBT , the prime denotes a derivative with respect to λ, and 〈·〉λ

denotes a statistical average over a canonical ensemble with Boltzmann weight

e−βVλ . A Taylor expansion of the r.h.s. of eq. (2) in powers of ∆λ = λ1 − λ0,

followed by integration of both sides over λ ∈ [λ0, λ1] leads to the standard result

[2, 17]

βF ex(λ1) = βF ex(λ0) +
〈
βW ′

λ0

〉
λ0

+

+
1

2!

〈
βW ′′

λ0

〉
λ0
− 1

2!

〈(
βW ′

λ0
−

〈
βW ′

λ0

〉
λ0

)2
〉

λ0

+

+
1

3!
〈βW ′′′

λ0
〉λ0 +

3

3!

(
〈βW ′

λ0
βW ′′

λ0
〉λ0 − 〈βW ′

λ0
〉λ0〈βW ′′

λ0
〉λ0

)
+

+
1

3!

〈(
βW ′

λ0
− 〈βW ′

λ0
〉λ0

)3
〉

λ0

+ · · · (3)

where we set λ0 = 0 and λ1 = 1.

In the most common version of perturbation theory, one chooses

Wλ(r
N) = λW (rN), λ ∈ [0, 1]. (4)

With this linear choice, adopted by Zwanzig [2], all derivatives of Wλ beyond the

first vanish, so that the second and higher order terms in the expansion in eq. (3)

simplify [17].

We shall henceforth make the usual assumption that W is pairwise additive,

4
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2 MAYER FUNCTION PERTURBATION THEORY

i.e.

W (rN) =
N∑

i=1

N∑
j>i

w(ri, rj). (5)

Zwanzig’s series may then be formally regarded as a cumulant expansion in

”powers” of βw, which is not expected to converge when |βw| >> 1, and which

is meaningless if w is singular as is the case for hard-core interactions. To cope

with such situations, it is natural to focus on the Mayer f-function associated with

the perturbation potential w:

f(ri, rj) = e−βw(ri,rj) − 1 (6)

as one does in the derivation of the virial expansion of the equation-of-state or

the free energy around a non-interacting reference system [17]. A natural choice

for βWλ is hence [6]

βWλ(r
N) = −

N∑
i=1

N∑
j>i

ln(1 + λf(ri, rj)), λ ∈ [0, 1]. (7)

The derivatives with respect to λ taken at λ = 0, are easily calculated to be

βW ′ = −
N∑

i=1

N∑
j>i

f(ri, rj)

βW ′′ =
N∑

i=1

N∑
j>i

f 2(ri, rj)

βW ′′′ = −2!
N∑

i=1

N∑
j>i

f 3(ri, rj)

...

βW (n) = (−1)n(n− 1)!
N∑

i=1

N∑
j>i

fn(ri, rj). (8)

5
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2 MAYER FUNCTION PERTURBATION THEORY

These may now be substituted into eq. (3) to yield

βF ex
1 = −2πNρ

∫ ∞

0

g
(2)
0 (r)f(r)r2dr (9)

where we have assumed that the pair interaction is spherically symmetric, i.e. de-

pends only on r = |ri− rj|, g
(2)
0 (r) is the pair distribution function of the reference

system, and ρ = N/V is the number density. The second order term reads

βF ex
2 = πNρ

∫ ∞

0

g
(2)
0 (r)f(r)2r2dr − 1

2

〈(
βW ′ − 〈βW ′〉

)2
〉

0

, (10)

where the fluctuation term can be expanded in terms of the pair, triplet and

quadruplet distribution functions of the reference system [2, 3, 17]; it has exactly

the same structure as the second order term in the Zwanzig perturbation theory,

with the perturbation potential βw replaced by the Mayer f-function, eq. (6). In

the applications we have not attempted to evaluate this fluctuation term because

the higher order distribution functions are generally unknown, and must be ap-

proximated. Instead, we have used Barker and Henderson’s ”local compressibil-

ity” approximation [3], according to which

β2

2

(〈
(W ′)2

〉
0
− 〈W ′〉20

)
=

πρ
∂(βP0)

∂ρ

∂

∂ρ

(
ρ

∫ ∞

0

f(r)2g(r)r2dr

)
, (11)

where P0 is the pressure of the reference system.

Higher order terms in the series (3) become increasingly complicated except

in the specific case considered in [6], where the third order term is tractable, as

will be shown in the next section.

In the limiting case where the reference system is an ideal gas of non-interacting

6
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3 GENERALISATION TO BINARY MIXTURES

particles, i.e. V0(r
N) ≡ 0 the first order correction (9) (with g

(2)
0 (r) = 1 over the

interval of interest) reduces to the familiar second virial coefficient correction to

the ideal gas free energy. In the same limit βF ex
2 = 0.

3 Generalisation to Binary Mixtures

The Mayer function perturbation expansion derived in the previous section for a

one-component system is easily extended to multi-component systems with the

concomitant complication linked to summations over pairs of species. Since non-

additive interactions in binary AB mixtures, whereby essentially

σAB 6= σA + σB

2
, (12)

are particularly relevant for binary colloidal systems or colloid-polymer mixtures,

we restrict the subsequent case to such mixtures, treating the deviation from ad-

ditivity as the perturbation wAB(r). In other words

W (rN) = WAB(rN) =

NA∑
i=1

NB∑
i>j

wAB(ri, rj) (13)

where NA and NB are the numbers of particles of both species and N = NA + NB

is the total number of particles. We will also use the molar fractions xA = NA/N

and xB = 1−NA. Making once more the choice

βWAB,λ(r
N) = −

NA∑
i=1

NB∑
j>i

ln(1 + λfAB(ri, rj)), λ ∈ [0, 1]. (14)

7
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3 GENERALISATION TO BINARY MIXTURES

where fAB(ri, rj) = e−βwAB(ri,rj) − 1, it is easily verified that the first and second

order corrections to the free energy are now

βF ex
1 = −4πNxAxBρ

∫ ∞

0

g
(0)
AB(r)fAB(r)r2dr (15)

and

βF ex
2 = 2πNxAxBρ

∫ ∞

0

g
(0)
AB(r)f 2

AB(r)r2dr − 1

2

〈(
βW ′

AB − 〈βW ′
AB〉

)2
〉

0

, (16)

where g
(0)
AB(r) is the pair distribution function between A and B particles in the

additive reference system (where wAB(r) ≡ 0).

A special case of non-additive binary mixtures was considered by Pelissetto

and Hansen in the context of colloid-polymer mixtures [6]. They used a reference

mixture where particles of opposite species do not interact (”two fluid” system),

i.e. v
(0)
AB(r) ≡ 0. In that case the perturbation wAB(r) includes the total coupling

between A and B particles. Because of this, the expressions for F ex
1 and F ex

2 sim-

plify considerably [6]; in particular F ex
2 only requires knowledge of the reference

(”two fluid”) pair distribution functions g
(0)
AA(r) and g

(0)
BB(r). In the Appendix we

derive the formal expression for the third order term F ex
3 , which in this particu-

lar case only requires knowledge of the ”two fluid” pair and triplet distribution

functions g
(0)
αα(r1, r2) and g

(0)
ααα(r1, r2, r3) (α = A or B). Although lengthy, a nu-

merical evaluation of F ex
3 appears feasible in this case, if the triplet distribution

functions are replaced by their Kirkwood superposition approximations [17] for

hard sphere particles (e.g. colloids) or the convolution approximation [18, 17]

for soft core particles (e.g. polymers). Work along these lines is planned for the

future.

8
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4 APPLICATIONS

In the more general case where the two components of the mixture are al-

ready coupled in the reference system (v(0)
AB(r) 6= 0), the explicit expression for the

second order term (16) involves two, three, and four-body distribution functions

and is intractable in practice. Moreover the ”local compressibility” approxima-

tion [3] cannot easily be generalised to the multi-component case. For that reason

we have restricted the free energy calculations for non-additive mixtures to first

order in section 4

4 Applications

The application of the Mayer function perturbation theory will be restricted to

the case where the reference potentials v
(0)
αβ (r) are simply additive hard spheres

interactions

v
(0)
αβ (r) =

 ∞, r < σαβ = (σA + σB)/2

0, r > σαβ

, (17)

where σα is the diameter of particles of species α, while the perturbation will be

a repulsive step function (or ”shoulder”)

wαβ(r) =

 εαβ, σαβ < r < σαβ(1 + ∆αβ)

0, r > σαβ(1 + ∆αβ)
, (18)

where the εαβ are positive energies. We will consider both finite steps and the

limit of infinite steps, which amounts to an increase of the hard-core diameters

from σαβ to σαβ(1 + ∆αβ).

A severe test of the Mayer function perturbation theory is provided by the

one-component hard sphere system characterised by the initial-core diameter σ

9
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4 APPLICATIONS

(reference system) and the final diameter σ(1 + ∆) (ε → ∞). The corresponding

Mayer function is simply

f(r) =

 −1, σ < r < σ(1 + ∆)

0, r > σ(1 + ∆)
. (19)

This amounts to increasing the initial (reference) packing fraction from η = πρσ3/6

to η′ = η(1 + ∆)3.

The properties of hard sphere systems are known to a high degree of accuracy

for any packing fraction both in the fluid and in the solid phases. In the fluid the

free energy is calculated from the Carnahan-Starling equation of state [19], while

the pair distribution function is accurately represented by the Verlet-Weis semi-

empirical modification of the analytic solution of the Percus-Yevick equation [20,

17]. The free energy of the FCC solid phase may be derived from Hall’s equation

of state up to close-packing [21, 22], while the pair distribution functions were

taken from MC data and the fits in ref [23].

Figure 1 shows the excess free energy per particle as a function of packing

fraction η′, as calculated from second order perturbation theory for ∆ = 0.05

which correspond to a 16% increase in packing fraction relative to the reference

fluid! The agreement between the perturbation theory predictions and the known

”exact” results for the free energy is surprisingly good in the fluid phase, but de-

teriorates in the solid phase, so that the predicted freezing transition is shifted

towards too large packing fractions. The second order correction is significantly

smaller than the first order correction term. For the particular case where the

Mayer function is given by eq. (19), the first (non-fluctuation) contribution to F ex
2

in eq. (10) is positive and exactly one half of the first order correction F ex
1 , while

10
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4 APPLICATIONS
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Fex

 / 
N

" = 0.05

 

 

!

!(1 + ")3

1st order perturbation theory
2nd order perturbation theory

Figure 1: The excess free energy per particle vs. packing fraction η′ = η(1 + ∆)3 for
∆ = 0.05. Results are shown for the solid and fluid branches. The ”exact” free
energies are shown by the full line with triangles, the reference free energy by
the dotted line with squares. The first and second order perturbation results are
the dash dotted line with circles and the dashed line with stars

the fluctuation contribution is by definition negative. When evaluated within the

”local compressibility” approximation it significantly reduces the total second or-

der correction. At even larger values of ∆, the convergence is found to be slower,

as expected. Nevertheless, even for ∆ = 0.1, second order perturbation theory

yields good results for the free energy of the fluid (relative error less than 10% at

η′ = 0.5), but the results for the solid deteriorates rapidly as η′ increases.

The conclusion to be drawn from this test-case is that the Mayer function per-

11
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4 APPLICATIONS

turbation theory truncated after second order yields reliable free energies even in

the extreme case of a singular perturbation. For moderate values of the range ∆

of the perturbation, satisfactory results are obtained when the expansion is trun-

cated after first order; the corresponding free energy lies systematically slightly

below the ”exact” values. This is exactly the opposite of the Zwanzig pertur-

bation theory where the free energy is bounded above by the first order series

(Gibbs-Bogoliubov inequality). We have however no proof that the first order

Mayer function expansion provides an exact lower bound.

The second system we have investigated is that of a binary mixture of spheres

of diameters σA and σB (size ratio ξ = σA/σB ≤ 1) with a repulsive step energy

εAB and width ∆AB between unlike particles (see eqs. (17) and (18)). We first

consider the case of a symmetric non-additive mixture, with σA = σB = σ, ∆AB =

∆ and εAB = ε →∞. This system has been examined earlier [15] using the semi-

empirical equation of state of Barboy and Gelbart [24], and Monte Carlo data are

available for the case ∆ = 0.2 [25]. As expected, non-additivity drives fluid-fluid

phase separation above a critical packing fraction.

The phase diagram predicted by first order perturbation theory is compared

in figure 2 to Amar’s MC data. The agreement is seen to be excellent. As ∆ is

increased, the critical packing fraction is expected to drop [15].

The perturbation theory predictions for the critical reduced density as a func-

tion of ∆ are compared in figure 3 to the earlier predictions based on the Barboy-

Gelbart equation of state [15]. The two curves are seen to be close for 0 < ∆ < 1.

For the large non-additivity of ∆ = 1, the two curves are close to the scaled par-

ticle result of Mazo and Bearman [26], while for ∆ = 0.2, the prediction of the

perturbation theory is in better agreement with the MC-results than the predic-

12
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4 APPLICATIONS
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1st order perturbation theory
Amar’s MC results

Figure 2: Binodal (density vs. concentration) as predicted from first order perturbation
theory (circles and dashed curve) for ξ = 1 and ∆ = 0.2, compared to Amar’s
MC results (triangles with error bars)

tion from the Barboy-Gelbart equation.

We next turn our attention to the case of a symmetric binary mixture with

a finite repulsive step (ε, ∆) between unlike particles. This system is no longer

athermal, but the phase diagram now depends on reduced temperature T ∗ =

kBT/ε.

The results of first order perturbation theory for ∆ = 0.2 are summarised in

the 3 frames of figure 4, which shows cuts (xA, η), (η, T ∗) and (xA, T ∗) of the

coexistence surface. The trends are as expected; in particular the critical packing

fraction increases as T ∗ increases. We are not aware of any previous study of the

system for comparison.

We have also carried out first order perturbation calculations for non-additive
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4 APPLICATIONS

0 0.2 0.4 0.6 0.8 10
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1.5

!

" C #
3

 

 

1st order perturbation theory
Amars MC result
Mazo and Bearmans SPT result
Biben and Hansen

Figure 3: Critical reduced density ρcσ
3 vs. non-additivity parameter ∆ for the symmetric

non-additive hard sphere mixture. The dash-dotted curve with circles repre-
sents the results of first order perturbation theory. The dashed curve is based
on the Barboy-Gelbart equation of state [15], the triangle is Amar’s MC result
[25], while the square is the scaled particle prediction of Mazo and Bearman
[26]

asymmetric binary mixtures characterised by ξ = σA/σB � 1 and ∆ (ε = ∞). The

free energy of the additive reference system was derived from the binary hard

sphere mixture equation of state of Mansoori et al. [27], while the required pair

distribution function gAB(r) was taken from the solution of the PY equation [28].

Examples of the reduced excess free energies f vs. the concentration xA of small

spheres at fixed packing fraction η, and of f vs. η for fixed xA are shown in figure

5, where they are compared to the predictions of a recent theory for non-additive

hard spheres due to Santos et al. [29]. Agreement between the two very different

theories is reasonable. Note that for the choosen parameters, ξ = 0.2 and ∆ = 0.2,

the binary mixture is expected to phase separate into A-rich and A-poor mixtures
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Figure 4: Three cuts through the phase diagram in temperature T - packing fraction η -
composition xA = NA/(NA + NB) space. The non-additivity parameter of the
system is ∆ = 0.2.

[15, 30], as is easily checked from the stability limit (spinodal line):

(
∂µA

∂ρA

)(
∂µB

∂ρB

)
−

(
∂µA

∂ρB

)2

= 0. (20)

In fact, for such an asymmetric mixture (ξ = 0.2), a much smaller value of ∆ is

sufficient to drive phase separation [15].

5 Conclusions

We have shown that a simple modification of standard thermodynamic perturba-

tion theory, which focuses on the Mayer f-function, rather than the perturbation

potential w itself, is successful in dealing with short-range, finite or infinite repul-

sive interactions. The convergence of the perturbation series for the free energy

appears to be good, at least in the fluid phase and truncation after the first or-
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Figure 5: Reduced excess free energies per particle vs. concentration xA at η = 0.5 (left)
and vs. total packing fraction η at xA = 0.8 (right), for the asymmetric binary
mixture with ξ = 0.2 and ∆ = 0.2

der correction yields satisfactory results compared to known exact or simulation

data.

The most interesting application is to highly asymmetric, non-additive binary

mixtures (cf. eq. (18), with ξ = σA/σB � 1). A previous calculation [15], based on

the semi-empirical Barboy-Gelbart equation-of-state [24], showed that the critical

∆ required to drive phase separation decreases with ξ, and appears to go to zero

(corresponding to additive hard spheres) around ξ = 0.2. This finding must be

reconciled with the known behaviour of the Asakura-Oosawa model [16], which

corresponds to the ξ → 0 limit (ideal polymers being modelled as point particles),

for a fixed, finite value of ∆. In fact, the free volume calculation of Lekkerkerker

et al. [31] predicts a critical value ∆ ∼ 0.4 to drive phase separation in that limit.

This implies that somewhere in the interval 0 < ξ . 0.2, the critical ∆ must rise

from zero towards its value for ξ = 0. We are planning to extend the present

perturbation theory to support this conjecture of a non-monotonic variation of ∆
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with size ratio ξ.
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Appendix: Third Order Correction to the Free Energy

of a Binary Mixture without A-B Interaction in the Ref-

erence System

In the case of a two-component system with no cross interaction in the reference

system (i.e. v
(0)
AB(r) ≡ 0 ), the total perturbation potential is

βW (λ) =

NA∑
i=1

NB∑
j=1

wAB,λ(|ri − rj|) (21)

The first and second order corrections were calculated by Pelissetto and Hansen

in [6]. The third order term in the perturbation series (equation (3)) is

1

3!

(
〈βW ′′′〉+ 3

[
〈βW ′βW ′′〉 − 〈βW ′〉〈βW ′′〉

]
+ 〈(βW ′ − 〈βW ′〉)3〉

)
(22)

The first term 〈βW ′′′〉 is just

〈βW ′′′〉 = NANB〈w2(|r1 − s1|)〉 = 4πNxAxBρ

∫
w2(r)r

2dr. (23)

The first part of the second term, 〈βW ′βW ′′〉, can be worked out to be

〈βW ′βW ′′〉 = 4πNxAxBρ

∫
w0(r)w1(r)r

2dr + (24)

+NAρ2
B

∫
ds1ds2w0(s1)w1(s2)g

(0)
BB(|s1 − s2|) +

+NBρ2
A

∫
dr1dr2w0(r1)w1(r2)g

(0)
AA(|r1 − r2|) +

+ρ2
Aρ2

B

∫
dr1dr2

∫
ds1ds2w0(|r1 − s1|)w1(|r2 − s2|)g(0)

AA(|r1 − r2|)g(0)
BB(|s1 − s2|)
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The second part of the second term, 〈βW ′〉〈βW ′′〉, is

〈βW ′〉〈βW ′′〉 = 16π2N2xAxBρ2

∫ ∫
w0(r1)w1(r2)r

2
1dr1r

2
2dr2 (25)

What is left to calculate is

〈(
βW ′ − 〈βW ′〉

)3
〉

=
〈
(βW ′)3

〉
− 3〈βW ′〉

〈
(βW ′)2

〉
+ 2〈βW ′〉3 = (26)

=
〈
(βW ′)3

〉
− 3〈βW ′〉

(〈
(βW ′)2

〉
−

〈
βW ′〉2

)
− 〈βW ′〉3.

The only term that hasn’t been worked out yet is the first one,

〈
(βW ′)3

〉
=

NA∑
i=1

NB∑
j=1

NA∑
k=1

NB∑
l=1

NA∑
m=1

NB∑
n=1

〈
wAB,0(|ri− sj|)wAB,0(|rk− sl|)wAB,0(|rm− sn|)

〉
(27)

This tedious sum will be worked out in 9 steps. The first step is to work out the

term with i = k = m and j = l = n. This term is simply

(i) : NANB

〈
[wAB,0(|r1 − s1|)]3

〉
= 4πNxAxBρ

∫
[wAB,0(r)]

3r2dr (28)

The second case is that with three equal indices for the A-particles and exactly one

pair of equal indices for the B-particles. There are three such groups of terms, one

with j = l, one with j = n and one with l = n, hence the factor 3 below.

(ii) : 3NANB(NB − 1)
〈
[wAB,0(|r1 − s1|)]2wAB,0(|r1 − s2|)

〉
=

= 3NAρ2
B

∫
ds1ds2[wAB,0(s1)]

2wAB,0(s2)g
(0)
BB(|s1 − s2|)

= 3NAρ2
B

( ∫
ds1[wAB,0(s1)]

2
∫

ds2wAB,0(s2) +
∫

dk
(2π)3

[ŵAB,0(k)]3ĥ
(0)
BB(k)

)
(29)

The third case is the one with all A-particle indices equal, but no B-particle in-
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dices equal: i = k = m, j 6= l 6= n, j 6= n.

(iii) : NANB(NB − 1)(NB − 2)
〈
wAB,0(|r1 − s1|)wAB,0(|r1 − s2|)wAB,0(|r1 − s3|)

〉
=

= NAρ3
B

∫
ds1ds2ds3wAB,0(s1)wAB,0(s2)wAB,0(s3)g

(0)
BBB(s1, s2, s3) (30)

Case (iv) is just case (ii) with A and B interchanged:

(iv) : 3NA(NA − 1)NB

〈
[wAB,0(|r1 − s1|)]2wAB,0(|r2 − s1|)

〉
=

= 3ρ2
ANB

∫
dr1dr2[wAB,0(r1)]

2wAB,0(r2)g
(0)
AA(|r1 − r2|)

= 3ρ2
ANB

( ∫
dr1[wAB,0(r1)]

2
∫

dr2wAB,0(r2) +
∫

dk
(2π)3

[ŵAB,0(k)]3ĥ
(0)
AA(k)

)
(31)

The fifth case has one pair of equal A-indices and one pair of equal B-indices.

There are 3× 3 such groups of terms, hence the factor 9 below:

(v) : 9NA(NA − 1)NB(NB − 1)
〈
[wAB,0(|r1 − s1|)]2wAB,0(|r2 − s2|)

〉
= (32)

= 9ρ2
Aρ2

B

∫
dr1dr2ds1ds2[wAB,0(|r1 − s1|)]2wAB,0(|r2 − s2|)g(0)

AA(|r1 − r2|)g(0)
BB(|s1 − s2|)

Case (vi) has one equal pair of A-indices, but no equal B-indices and therefor

needs to be multiplied by a factor 3.

(vi) : 3NA(NA − 1)NB(NB − 1)(NB − 2)
〈
wAB,0(|r1 − s1|)wAB,0(|r1 − s2|)wAB,0(|r2 − s3|)

〉
=

= 3ρ2
Aρ3

B

∫
dr1dr2ds1ds2ds3wAB,0(|r1 − s1|)wAB,0(|r1 − s2|)wAB,0(|r2 − s3|)×

g
(0)
AA(|r1 − r2|)g(0)

BBB(s1, s2, s3) (33)
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Case (vii) is just case (iii) with A and B interchanged:

(vii) : NA(NA − 1)(NA − 2)NB

〈
wAB,0(|r1 − s1|)wAB,0(|r2 − s1|)wAB,0(|r3 − s1|)

〉
=

= ρ3
ANB

∫
dr1dr2dr3wAB,0(r1)wAB,0(r2)wAB,0(r3)g

(0)
AAA(r1, r2, r3) (34)

Case (viii) is just case (vi) with A and B interchanged:

(viii) : 3NA(NA − 1)(NA − 2)NB(NB − 1)
〈
wAB,0(|r1 − s1|)wAB,0(|r2 − s1|)wAB,0(|r3 − s2|)

〉
=

= 3ρ3
Aρ2

B

∫
dr1dr2dr3ds1ds2wAB,0(|r1 − s1|)wAB,0(|r2 − s1|)wAB,0(|r3 − s2|)×

g
(0)
AAA(r1, r2, r3)g

(0)
BB(|s1 − s2|) (35)

And finally, case (ix) has no equal A-indices and no equal B-indices:

(ix) : NA(NA − 1)(NA − 2)NB(NB − 1)(NB − 2)×〈
wAB,0(|r1 − s1|)wAB,0(|r2 − s2|)wAB,0(|r3 − s3|)

〉
=

= ρ3
Aρ3

B

∫
dr1dr2dr3ds1ds2ds3wAB,0(|r1 − s1|)wAB,0(|r2 − s2|)wAB,0(|r3 − s3|)×

·g(0)
AAA(r1, r2, r3)g

(0)
BBB(s1, s2, s3). (36)
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Additive reference energy, SLY
Santos et al.
1st order perturbation theory
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