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For molecules with C–H bonds, a local mode description of the bonds is often adopted to interpret the C–H stretching
overtone spectra, although a representation in terms of normal mode is also possible. Equivalence between the two alternative
representations demands simple numerical equations between the normal mode anharmonicity constants xrs and the quartic
anharmonic coupling constants Krstu, the so-called “x-K relations”. The relations appropriate to low symmetry molecules
with two non-equivalent C–H bonds (ν1, ν2), such as XHC=CHY, are derived in this paper. The consequences of these
relations are illustrated with a detailed analysis of the C–H stretching overtone region, where the naive application of the
relations obtained for more symmetric molecules could lead to a different interpretation of the overtones 2ν1, 2ν2 and of the
combination band ν1 + ν2. The relations are tested with theoretical calculations for difluoro- and chlorofluoro-substituted
ethenes, propadiene, and butatrienes.

Keywords: local mode; normal mode; Morse oscillators; quartic anharmonic interactions; Darling-Dennison interactions;
C–H overtones

1 Introduction

As discussed in several reviews [1–4] two apparently different models are available for the treatment
of C–H stretching (and also N–H, O–H, S–H . . . ) in polyatomic molecules: the local mode and the
normal mode descriptions. In the local mode approach [2–5] the stretching vibrations are described in
terms of anharmonic oscillators localized on individual C–H bonds, with harmonic interbond coupling.
In the complementary normal mode approach [1,3] the stretching vibrations are represented as harmonic
oscillators, the normal modes, coupled by quartic anharmonic interactions.

On the basis of perturbative treatments [1] and numerical computations for several molecules [6], Mills
and co-workers suggested that the two treatments should always yield identical results if proper relations
are imposed between the parameters of the two model Hamiltonians. The exact mathematical equivalence
of the two approaches was soon proved by transforming the operators appearing in the Hamiltonian, first
by Lehmann [7] for molecules with two equivalent C–H bonds and later by one of us [8] for any number
of equivalent bonds. In this paper we extend the treatment to molecules with non equivalent C–H bonds
and discuss in detail the case with two bonds.

2 Local mode and normal mode Hamiltonians

The local mode Hamiltonian for the stretching vibrations [1, 3, 6] is a sum of single bond contributions
Hα plus pair interactions between different bonds Hαβ, Hlocal =

∑

α Hα +
∑

α6=β Hαβ, where the sums
are on all bonds. The single bond Hamiltonians Hα are modeled in terms of Morse oscillators. Their
eigenfunctions |nα〉, nα = 0, 1, 2 . . ., describe states with nα vibrational quanta localized on the bond α,
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2 A. Gambi and R. G. Della Valle

and their eigenvalues Eα are given by the Morse expression [1], Eα = ωαnα + xαnα(nα + 1). Here the
parameters ωα and xα represent the harmonic frequency and anharmonicity of the bond. The matrix
elements of the interbond interaction Hαβ are identical to those appropriate to a harmonic model with
a quadratic coupling [2, 5], 〈nα + 1 nβ − 1|H|nα nβ〉 = λαβ

√
nα + 1

√
nβ, where λαβ = λβα is a non-

negative parameter. Due to the form of the matrix elements, all interactions are effectively restricted
within stretching overtone manifolds with a constant total vibrational population n =

∑

α nα.
As discussed elsewhere [8], the local mode Hamiltonian is most compactly expressed in terms of operators

a†α and aα, defined to add or remove vibrational quanta from the bond α with the same effects as the
familiar creation and annihilation operators for the harmonic oscillators:

a†α|nα〉 =
√

nα + 1 |nα + 1〉
aα|nα〉 =

√
nα |nα − 1〉

The other usual properties of the operators follow automatically from their definition. In particular, it may
be readily shown that the two operators are mutually adjoint, that they satisfy the boson commutation

rules [aα, a†β] = δαβ , where δαβ is the Kronecker delta, and that the vibrational population nα may be

expressed as the operator nα = a†αaα. The local mode Hamiltonian, designed to yield the same matrix
elements as the original Hlocal, is

Hlocal =
∑

α

ωα a†αaα +
∑

α

xα a†αaα (a†αaα + 1) +
∑

α6=β

λαβ a†αaβ

Since the two Hamiltonians have the same matrix elements between all vectors of the basis |nαnβ . . .〉 =
|nα〉|nβ〉 . . ., they coincide. The Hamiltonian Hlocal may be expressed more compactly by using the com-

mutation rule aαa†α = a†αaα + 1 to reduce the anharmonic term a†αaα(a†αaα + 1) to normal order (all
creation operators on the left) and by defining the diagonal coupling λαα as λαα = ωα + 2xα, yielding

Hlocal =
∑

αβ

λαβ a†αaβ +
∑

α

xα a†αa†αaαaα

The Hamiltonian contains diagonal and non-diagonal quadratic terms λαβ a†αaβ, together with purely

diagonal quartic terms xα a†αa†αaαaα. Since the matrix λ = (λαβ) is Hermitian, we may always find a
transformation D

†
λD which diagonalizes the quadratic part, possibly at the cost of introducing non-

diagonal quartic terms. Here D is an unitary matrix (i.e. its inverse D
−1 is identical to its conjugate

transpose D
†) to be determined. We use the matrix D = (Dαr) to introduce new operators A†

r and Ar,

implicitly defined by aα =
∑

r DαrAr and a†α =
∑

r D∗
αrA

†
r, where the asterisk indicates the complex

conjugate. Since D is unitary, we may directly invert the definitions, obtaining explicit expressions Ar =
∑

α D∗
αraα and A†

r =
∑

α Dαra
†
α. From these expressions it may be shown that the operators A†

r and Ar

also satisfy boson commutation rules and, as a consequence [9], they behave as creation and annihilation

operators. While a†α and aα act on states |nα〉 describing excitations localized on single bonds, Ar and

A†
r act on states |vr〉 describing vibrations delocalized on all bonds. To avoid ambiguities, we use lower

case letters and greek labels for local operators, and upper-case letters and roman labels for non-local

operators. Using the definition for aα and a†α in terms of the new non-local operators Ar and A†
r, we find

a transformed Hamiltonian Hnormal,

Hnormal =
∑

rs

νrs A†
rAs +

∑

rstu

Xrstu A†
rA

†
sAtAu
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Local modes in non-equivalent bonds 3

where νrs and Xrstu are combinations of Dαr coefficients:

νrs =
∑

αβ λαβ D∗
αrDβs

Xrstu =
∑

α xα D∗
αrD

∗
αsDαtDαu

The number of terms in the unrestricted sums
∑

rs and
∑

rstu may be reduced by remembering that νrs

has been diagonalized with a suitable choice of the matrix D and by considering that the quartic term in
Hnormal is symmetric for exchanges of r,s or t,u indexes. By restricting the sums and introducing counting
factors one obtains

Hnormal =
∑

r

νrr A†
rAr +

∑

r≤s,t≤u

(2 − δrs) (2 − δtu) Xrstu A†
rA

†
sAtAu

where, to account for the number of possible exchanges, Xrstu is multiplied by a factor 1 when r = s and
t = u, 2 when one of the pairs differs, or 4 when both pairs differ.

The Hamiltonian Hnormal is most naturally expressed in the normal mode basis |v1v2 . . .〉 which diago-
nalizes the quadratic Hamiltonian. With this choice, as described elsewhere [8] and as shown below, the
matrix elements of Hnormal become identical to those of a Hamiltonian describing harmonic normal modes
with fundamental transition frequencies νr = νrr and with quartic anharmonic interactions.

The “x-K” relations between the local mode and the normal mode Hamiltonians may be obtained
by matching the coefficients in Hnormal with those of the standard normal mode expressions from the

literature [1,10,11]. The diagonal part H ′
normal of Hnormal, which involves only paired operators A†

rAr and

A†
sAs and thus contains all quadratic terms and the quartic terms A†

rA
†
rArAr and A†

rA
†
sArAs, may be

written in terms of the number operators vr = A†
rAr as

H ′
normal =

∑

r

νr vr +
∑

r

Xrrrr vr(vr − 1) +
∑

r<s

4Xrsrs vrvs.

The corresponding literature expression [1] for the unperturbed energy of the normal mode state |v1v2 . . .〉
is

E =
∑

r

ωr

(

vr +
1

2

)

+
∑

r

xrr

(

vr +
1

2

)2

+
∑

r<s

xrs

(

vr +
1

2

)(

vs +
1

2

)

.

It may be easily verified that the transition frequency E−EGS from the ground state (GS) to |v1v2 . . .〉 be-
comes identical to H ′

normal by imposing xrr = Xrrrr, xrs = 4Xrsrs and ωr = νr−
∑

s 2Xrsrs or, equivalently,
νr = ωr + 2xrr +

∑

s 6=r xrs/2.

The off-diagonal part H ′′
normal contains all terms of the quartic Hamiltonian not already included in

H ′
normal. The corresponding interactions in the normal mode literature are described by coupling constants

Krstu, which are best defined [10] as coefficients of the quartic term
∑

r≤s≤t≤u Krstu QrQsQtQu in the
expansion of the Hamiltonian Hnormal in power series of the normal coordinates Qr. The coordinates Qr

have matrix elements 〈nr − 1|Qr|nr〉 = 〈nr|Qr|nr − 1〉 =
√

nr/2, which correspond to Qr = (A†
r +Ar)/

√
2.

Matrix elements identical to those of H ′′
normal, within stretching overtone manifolds with constant n =

∑

r vr, are easily obtained by imposing Krstu/4 = (2 − δrs)(2 − δtu) Xrstu. Five essentially distinct types
of off-diagonal terms are thus found. Their matrix elements, mostly reported in Table 1 of Ref. [8], match
those found in the normal mode literature [1, 6, 11].

3 Case with two bonds only

We now analyse the case in which there are only two C–H bonds, which may be equivalent or non-equivalent,
as it happens for dihalogenoethenes such as FHC=CHF or ClHC=CHF, respectively. The local mode
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4 A. Gambi and R. G. Della Valle

Hamiltonian, explicitly written in terms of creation and annihilation operators acting on the two bonds α

and β, is Hlocal = Hα +Hβ +Hαβ, where Hα = λααa†αaα +xαa†αa†αaαaα, Hβ = λββa†βaβ +xβa†βa†βaβaβ and

Hαβ = λαβa†αaβ +λβαa†βaα. The coefficients λαα = ωα +2xα and λββ = ωβ +2xβ are the diagonal coupling
for the two bonds, xα and xβ represent the anharmonicity of the bonds, and λαβ = λβα is the inter-bond
coupling parameter. In this simple 2-dimensional case, the 2 × 2 unitary matrix D may be written as a
function of a single parameter, the mixing angle φ:

D =

(

cos φ − sin φ
sin φ cos φ

)

After substitution, the off-diagonal harmonic normal mode coupling ν12 = ν21 becomes

ν12 = cos2 φ λαβ − sin2 φ λβα − cos φ sin φ λαα + cos φ sin φ λββ

= cos 2φ λαβ − 1
2 sin 2φ (λαα − λββ)

where we have used the trigonometric identities cos2 φ − sin2 φ = cos 2φ and cos φ sin φ = 1
2 sin 2φ. The

off-diagonal harmonic coupling ν12 may be canceled with a suitable choice of φ. This is achieved by
requiring tan 2φ = 2λαβ/(λαα − λββ), where φ may be chosen as non-negative by imposing λαα ≥ λββ .
Once determined φ, substitution back in the quadratic Hamiltonian yields the fundamental frequencies ν1

and ν2, reported in Table 1. When ν1 and ν2 are already known, as it often happens, it may be useful to
use the inverse relations, obtaining the harmonic couplings as λαα = ν + ∆ν cos 2φ, λββ = ν − ∆ν cos 2φ
and λαβ = ∆ν sin 2φ, where ν = (ν1 + ν2)/2 and ∆ν = (ν1 − ν2)/2.

Substitution in the quartic Hamiltonian yields five distinct Xrstu coefficient, namely X1111, X2222,
X1212 = X1122 = X2211, X1112 = X1211 and X1222 = X2212, all reported in Table 1 as a function of
the mixing angle φ. In the Table we also list all terms of the normal mode Hamiltonian Hnormal, along
with their non-zero matrix elements in the normal mode basis |v1 v2〉. The Hamiltonian has two quadratic
terms, both diagonal, and nine quartic terms, three of which diagonal.

For symmetric molecules with two equivalent C–H bonds, having ωα = ωβ = ω and xα = xβ = x,
we find tan 2φ = +∞ and thus φ = π/4. For low symmetry molecules with non equivalent bonds, the
mixing angle φ may assume any value and the lowered symmetry does no longer requires xα = xβ .
To simplify the discussion, we temporarily assume that the two bonds have the same anharmonicity,
xα = xβ = x. In Fig. 1 we display, as a function of φ, the essentially distinct coupling coefficients X1111 =
X2222 = x(cos4 φ + sin4 φ), X1212 = 2x cos2 φ sin2 φ, X1112 = x cos φ sin φ (sin2 φ − cos2 φ), and X1222 =
x cos φ sin φ (cos2 φ− sin2 φ). As shown by Fig. 1 and as easily verified, X1111 = x11 and X1212 = x12/4 are
inversely correlated, since their sum is constant: X1111 + X1212 = x. The same holds for X1112 = K1112/8
and X1222 = K1222/8, since X1112 + X1222 = 0.

By examining Fig. 1 and by inspection of the νr and Xrstu coefficients listed in Table 1, we can identify
three limit cases, with φ = 0, π/4 and π/8:

φ = 0: In this case the interbond coupling λαβ is zero and all off-diagonal quartic matrix elements also vanish.
We have independent vibrations on the two bonds, corresponding to a pure local mode model.

φ = π/4: This is the previously mentioned case of two equivalent C–H bonds, with λαα = λββ = λ = ω + 2x. The
two normal modes describe symmetric and antisymmetric combinations of the two C–H bond stretchings,
with the two usual eigenvalues ν1 = λ+λαβ and ν2 = λ−λαβ . We also obtain X1111 = X2222 = X1212 =
X1122 = x/2, which correspond to the usual “x-K” relations [1] x11 = x22 = x12/4 = K1122/4 = x/2.
Finally, we find X1112 = X2212 = 0, which is to be expected. In fact, since the two normal modes ν1 and
ν2 belong to different irreducible representations, Hamiltonian terms involving odd numbers of operators
acting on either modes vanish.

φ = π/8: In this limit case, with λαβ = (λαα − λββ)/2, the off-diagonal matrix elements of the form 〈v1 ± 1 v2 ∓
1|H|v1 v2〉 assume their extremal values. These matrix elements, which are non-zero for molecules with
non equivalent C–H bonds, connect states in which a single vibrational quantum is transferred from one
mode to the other one.
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Local modes in non-equivalent bonds 5

The ωr, xrs and Krstu coefficients as a function of the Morse parameters ω and x for the three limit cases
with mixing angle φ = 0, π/8, and π/4 radians are reported in Table 2. The coefficients for the generic
case may be obtained by combining the relations in the first column of Table 2 with the expressions in
Table 1. It should be emphasized that the coefficients may vary quite rapidly with φ, as shown in Fig. 1.
For φ close to π/8, for example, even small changes of φ will result in large K1111 and K1212 changes, with
little effects on K1112 and K1222. The opposite happens with φ close to π/4.

To illustrate the relations developed in this paper, we now investigate how the mixing angle φ affects the
C–H stretching overtone and combination spectra. All the Hamiltonian matrix elements between states
|v1v2〉 with n = v1 + v2 up to 4 are shown in Table 3. Since, as previously discussed, only states within
the same overtone manifold actually interact, the Hamiltonian matrix factorizes into a single block for
each value of n. For molecules with equivalent C–H bonds (φ = π/4), these blocks factorize even further,
since only states with the same even/odd parity of v2 or, equivalently, the same parity of v1, may interact.
Finally, complete factorization to a purely diagonal Hamiltonian matrix occurs for non interacting bonds
(φ = 0). It may also be noticed that since each state |v1v2〉 couples only with itself and with the states
|v1 ± 1 v2 ∓ 1〉 and |v1 ± 2 v2 ∓ 2〉, the Hamiltonian matrices with n > 2 exhibit a band diagonal structure.

In Fig. 2 we display the transition frequencies as a function of φ, for all overtone and combination states
up to n = 4, computed by numerical diagonalization of the Hamiltonian matrices. For all angles, we assume
that the two stretching fundamental [12] transitions occur at wavenumbers ν1 = 3114 cm−1 and ν2 = 3102
cm−1. The Morse’s anharmonicity constant is assumed to be x1 = x2 = x = −60 cm−1 [13].

For the local mode case φ = 0 the Hamiltonian matrices (Table 3) are purely diagonal. The first overtones
and the combination band, for example, are thus simply calculated as (2ν1) = 2ν1 + 2x11 = 6108 cm−1,
(2ν2) = 2ν2 + 2x22 = 6084 cm−1 and (ν1 + ν2) = ν1 + ν2 = 6216 cm−1, respectively.

For the φ = π/4 limit case we have (from Table 2): x11 = x22 = −30 cm−1, x12 = K1122 = −120
cm−1. Both 2ν1 and 2ν2 belong to the same symmetry species (the total-symmetric irreducible representa-
tion) and therefore interact through a Darling-Dennison resonance term K1122/2, giving a block diagonal
Hamiltonian matrix (from Table 3):





2ν1 + x 0 x
0 ν1 + ν2 + 2x 0
x 0 2ν2 + x



 =





6168 0 −60
0 6096 0

−60 0 6144





The combination band is calculated as (ν1 + ν2) = ν1 + ν2 + x12 = 6096 cm−1. The overtone frequencies,
obtained by matrix diagonalization, have the final perturbed values (2ν1) = 6217.19 cm−1 and (2ν2) =
6094.81 cm−1.

For the φ = π/8 case, the states |2 0〉, |0 2〉 and |1 1〉, corresponding to the 2ν1, 2ν2 overtones and
to the ν1 + ν2 combination band, all belong to the total-symmetric symmetry species and may therefore
interact. While the fundamental values of ν1, ν2 and the Morse’s anharmonicity x do not change, the other
parameters from Table 2 now are: x11 = x22 = −45 cm−1, x12 = K1122 = −60 cm−1, and in addition,
K1112 = 120 cm−1 and K1222 = −120 cm−1. The Hamiltonian matrix is non diagonal:





2ν1 + 3x/2 −
√

2x/2 x/2

−
√

2x/2 ν1 + ν2 + x
√

2x/2

x/2
√

2x/2 2ν2 + 3x/2



 =





6138 42.43 −30
42.43 6156 −42.43
−30 −42.43 6114





After diagonalization, the perturbed values are found to be (2ν1) = 6104.17 cm−1, (2ν2) = 6087.23 cm−1

and (ν1 + ν2) = 6216.60 cm−1.
In Fig. 2 the wavenumbers of the overtones and combination modes displayed as a function of the mixing

angle φ appear to move evenly from φ = 0 up to φ = π/4. However, if we consider the eigenvectors and
therefore the approximate descriptions of the vibrational modes, we have at φ = 0 that all modes are
completely pure vibrations — all the out of diagonal matrix elements of Table 3 are zeros — with the
assignments reported in the left side of Fig. 2, whereas when φ = π/4 we get the assignments displayed
in the right part of Fig. 2. For intermediate values of the mixing angle φ, the overtones and combination
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bands are mingled in great extent and it is difficult to describe the vibrations in terms of only one mode.
Although other interactions have to be considered in actual cases, it appears evident from these re-

sults that the naive use of the symmetric “x-K” relations would lead, for non-symmetric molecules, to
misassignment of C–H overtone and combination bands.

To complete this investigation, we now illustrate how the mixing angle φ behaves for actual molecules
with two non equivalent C–H bonds. In order to determine the spectroscopic parameters described pre-
viously, namely ω1, ω2, x11, x22, x12, ν1, ν2, K1122, K1112, K1222, 2ν1, 2ν2 and ν1 + ν2, the anharmonic
force fields of two series of molecules have been computed from density functional theory (DFT) quantum
mechanical calculations.

The DFT calculations have been carried out by using Dunning correlation consistent polarized triple zeta
(cc-pVTZ) basis set [14] and the Becke [15] three parameter exchange functional (B3) in combination with
the Lee, Yang, and Parr [16] (LYP) correlation functional. All B3LYP/cc-pVTZ computations have been
performed with the G03 system of programs [17]. Details about the calculations of the anharmonic force
field are given elsewhere [18]. Here, we recall that following the approach first proposed by Schneider and
Thiel [19], a full cubic and a semidiagonal quartic force field is obtained by central numerical differentiation
of analytical second derivatives, performed in dimensionless normal coordinates around the equilibrium
geometry.

The molecules investigated with two equivalent C–H bonds were 1,1-difluoroethene (F2C=CH2), cis-
and trans-1,2-difluoroethene (FHC=CHF), 1,3-difluoropropadiene (FHC=C=CHF), cis- and trans-1,4-
difluorobutatriene (FHC=C=C=CHF). By substitution of one F atom with a Cl atom in each molecule, we
get the corresponding cases with two non-equivalent C–H bonds: ClFC=CH2, cis- and trans-ClHC=CHF,
ClHC=C=CHF, cis- and trans-ClHC=C=C=CHF.

The spectroscopic normal mode terms were evaluated from the quantum mechanical anharmonic force
fields using second-order perturbation theory [20]. In addition, the cubic and quartic semidiagonal force
constants, expressed in terms of dimensionless normal coordinates, were used to compute the Darling-
Dennison constants Krstu [11, 21]. These data are collected in Tables 4 and 5 for equivalent and non-
equivalent C–H bonds, respectively. The calculated xrs and Krstu parameters are also shown in Fig. 1.

For molecules with equivalent C–H bonds, it can be seen that the parameters reported in Table 4
accurately follow the usual x-K relations [6] expected for φ = π/4: x11 ≈ x22 ≈ x12/4 ≈ K1122/4. In
this case the vibrational normal modes 1 and 2 belong to different symmetry species and consequently
ν1 + ν2 cannot interact with 2ν1 and/or 2ν2. For the same reason, the Darling-Dennison constants K1112

and K1222 involving an odd number of identical modes are zero (see also the last column of Table 2).
In the molecules with two non-equivalent C–H bonds, the spectroscopic terms reported in Table 5

correspond to a wide range of mixing angles φ. The angle φ, also indicated in Table 5, has been obtained
by inverting the relations of Tables 1 and 2, as mentioned in the caption of Fig. 1. For all molecules we
find K1112 ≈ −K1222, which implies xα ≈ xβ (Tables 1 and 2), x11 ≈ x22 and x12 ≈ K1122, as expected in
this case. In ClFC=CH2 φ approaches the π/4 limit, showing that the two strongly coupled C–H bonds
actually behave as almost equivalent stretchings, whereas cis-ClHC=CHF has φ ≃ π/8. Going to the
longer molecules of cis- or trans-1-chloro-4-fluorobutatriene (ClHC=C=C=CHF), the interaction between
the two distant C–H bonds further decreases and the mixing angle φ approaches 0. The two C–H bonds
may be considered as two isolated pure local modes.

For all molecules, the theoretically computed spectroscopic parameters xrs and Krstu are in good agree-
ment with expected behaviour, depicted in Fig. 1. The six anharmonic constants x11, x22, x12, K1122,
K1112 and K1222, which appear as independent parameters in a normal mode treatment, can be accurately
described in terms of a reduced set of three local mode parameters, namely the mixing angle φ and the
bond anharmonicities xα and xβ (with xα ≈ xβ). The residual deviations from the ideal behaviour are
due to coupling to other modes and to anharmonic interactions between the bonds, which restore the
independence of the parameters.
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4 Conclusions

For molecules with C–H bonds it is often believed that a normal mode model is not accurate and that a
local mode description of the bonds is preferable. However, as previously shown for specific cases [1, 6–8]
and now proved in general, a local mode problem may be mapped onto a normal mode problem with
exactly identical matrix elements, and therefore exactly identical energies. Thus, there is no fundamental
difference between the local mode and normal mode descriptions, since normal modes are exactly as good,
or as bad, as local modes. The choice between the two models is mainly one of mathematical convenience
for the problem at hand.

The operator method [8] has been used to derive a normal mode model, including quartic anharmonicity,
corresponding to the local mode model for low-symmetry molecules containing two non-equivalent C–H
bonds. For this non-symmetric case, quartic anharmonic constants of the type Krrrs are no longer zero
as for symmetric molecules, and should be taken into account. These constants may be calculated by
second order perturbation theory using the cubic and quartic anharmonic force field obtained from ab

initio calculations [11,21].
DFT quantum chemical calculations for a number of molecules with non-equivalent C–H bonds show

that the mixing between the two stretchings decreases with their distance, rapidly approaching the limit of
two non-interacting local modes. Complete mixing, regardless of the distance, is instead invariably found in
molecules with equivalent C–H bonds, which would have degenerate energy levels in absence of interaction.
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Figure 1. Curves: distinct anharmonic couplings X1111 = x11 = x22, X1212 = x12/4 = K1122/4, X1112 = K1112/8 and
X1222 = K1222/8 as a function of the mixing angle φ, for the case in which xα = xβ = x. Points: ab initio estimates of

X1111 = 1

2
(x11 + x22), X1212 = 1

2
(x12/4 + K1122/4), X1112 = K1112/8 and X1222 = K1222/8 for the various molecules reported in

Tables 4 and 5, with x = X1111 + X1212 and φ obtained from sin 2φ =
p

2X1212/x.
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Table 1. Terms of the normal mode Hamiltonian, together with their coefficients νr and Xrstu as a function of the mixing angle φ. The non zero matrix

elements of each term are also listed.

Hamiltonian term νr or Xrstu coefficient Non zero matrix element

ν1 A†
1
A1 ν1 = cos2 φ λαα + sin2 φ λββ + 2 cos φ sin φ λαβ 〈v1 v2|H|v1 v2〉 = ν1 v1

ν2 A†
2
A2 ν2 = sin2 φ λαα + cos2 φ λββ − 2 cos φ sin φ λαβ 〈v1 v2|H|v1 v2〉 = ν2 v2

X1111 A†
1
A†

1
A1A1 X1111 = cos4 φ xα + sin4 φ xβ 〈v1 v2|H|v1 v2〉 = X1111 (v2

1
− v1)

X2222 A†
2
A†

2
A2A2 X2222 = sin4 φ xα + cos4 φ xβ 〈v1 v2|H|v1 v2〉 = X2222 (v2

2
− v2)

4 X1212 A†
1
A†

2
A1A2 X1212 = cos2 φ sin2 φ (xα + xβ) 〈v1 v2|H|v1 v2〉 = 4 X1212 v1v2

X1122 A†
1
A†

1
A2A2 X1122 = X1212 〈v1 + 2 v2 − 2|H|v1 v2〉 = X1122

p

(v1 + 2)(v1 + 1)(v2 − 1)v2

X2211 A†
2
A†

2
A1A1 X2211 = X1212 〈v1 − 2 v2 + 2|H|v1 v2〉 = X2211

p

(v2 + 2)(v2 + 1)(v1 − 1)v1

2 X1112 A†
1
A†

1
A1A2 X1112 = cos φ sin φ (sin2 φ xβ − cos2 φ xα) 〈v1 + 1 v2 − 1|H|v1 v2〉 = 2 X1112

q

(v1 + 1)v2

1
v2

2 X1211 A†
1
A†

2
A1A1 X1211 = X1112 〈v1 − 1 v2 + 1|H|v1 v2〉 = 2 X1211

p

(v2 + 1)(v1 − 1)2v1

2 X1222 A†
1
A†

2
A2A2 X1222 = cos φ sin φ (cos2 φ xβ − sin2 φ xα) 〈v1 + 1 v2 − 1|H|v1 v2〉 = 2 X1222

p

(v1 + 1)(v2 − 1)2v2

2 X2212 A†
2
A†

2
A1A2 X2212 = X1222 〈v1 − 1 v2 + 1|H|v1 v2〉 = 2 X2212

q

(v2 + 1)v2

2
v1
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Table 2. Spectroscopic normal mode terms ωr , xrs and Krstu, expressed as multiples or

combinations of the corresponding νr and Xrstu coefficients (listed in the same order of Table

1) for the limit cases (see text) with mixing angle φ = 0, π/8, and π/4.

φ = 0 φ = π/8 φ = π/4

λαβ = 0 λαβ = (ωα − ωβ)/2 λαβ 6= 0
ωα 6= ωβ ωα 6= ωβ ωα = ωβ = ω
xα 6= xβ xα = xβ = x xα = xβ = x

ω1 = ν1 − 2X1111 − 2X1212 ωα
1

2
(ωα + ωβ) +

√
2λαβ ω + λαβ

ω2 = ν2 − 2X2222 − 2X1212 ωβ
1

2
(ωα + ωβ) −

√
2λαβ ω − λαβ

x11 = X1111 xα
3

4
x 1

2
x

x22 = X2222 xβ
3

4
x 1

2
x

x12 = K1122 = K2211 = 4X1212 0 x 2x
K1112 = K1211 = 8X1112 0 −2x 0
K1222 = K2212 = 8X1222 0 2x 0
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Table 3. Matrix elements of the normal mode Hamiltonian Hnormal between states |v1v2〉 with n = v1 + v2 up to 4. The

Hamiltonian matrix factorizes into a block for each value of n. The states listed on the right hand side refer to the rows, and

also apply to the corresponding columns.

„

ν1 0
0 ν2

« |10〉
|01〉

0

B

@

2ν1 + 2x11

√
2

4
K1112

1

2
K1122√

2

4
K1211 ν1 + ν2 + x12

√
2

4
K1222

1

2
K2211

√
2

4
K2212 2ν2 + 2x22

1

C

A

|20〉
|11〉
|02〉

0

B

B

B

@

3ν1 + 6x11

√
3

2
K1112

√
3

2
K1122 0√

3

2
K1211 2ν1 + ν2 + 2x11 + 2x12

1

2
K1112 + 1

2
K1222

√
3

2
K1122√

3

2
K2211

1

2
K1211 + 1

2
K2212 ν1 + 2ν2 + 2x22 + 2x12

√
3

2
K1222

0
√

3

2
K2211

√
3

2
K2212 3ν2 + 6x22

1

C

C

C

A

|30〉
|21〉
|12〉
|03〉

0

B

B

B

B

B

B

@

4ν1 + 12x11
3

2
K1112

√
6

2
K1122 0 0

3

2
K1211 3ν1 + ν2 + 6x11 + 3x12

√
6

2
K1112 +

√
6

4
K1222

3

2
K1122 0√

6

2
K2211

√
6

2
K1211 +

√
6

4
K2212 2ν1 + 2ν2 + 2x11 + 2x22 + 4x12

√
6

4
K1112 +

√
6

2
K1222

√
6

2
K1122

0 3

2
K2211

√
6

4
K1211 +

√
6

2
K2212 ν1 + 3ν2 + 6x22 + 3x12

3

2
K1222

0 0
√

6

2
K2211

3

2
K2212 4ν2 + 12x22

1

C

C

C

C

C

C

A

|40〉
|31〉
|22〉
|13〉
|04〉
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Table 4. Spectroscopic normal mode terms (cm−1), from B3LYP/cc-pVTZ anharmonic force field (see text), for the case of two

equivalent C–H stretchings in difluoro-substituted ethenes, propadiene, and butatrienes. Unperturbed values, no resonances have

been taken into account. The cis and trans diastereomers are indicated by c and t, respectively.

F2C=CH2 c-FHC=CHF t-FHC=CHF FHC=C=CHF c-FHC=C=C=CHF t-FHC=C=C=CHF

ω1 3293 3231 3219 3181 3200 3202
ω2 3194 3208 3213 3180 3199 3201
x11 −29.77 −27.39 −28.20 −29.04 −28.86 −28.65
x22 −25.47 −27.69 −27.74 −29.09 −28.96 −28.74
x12 −105.65 −111.66 −110.89 −116.40 −115.64 −114.77
K1122 −117.13 −113.01 −109.55 −116.47 −115.88 −114.70
ν1 3154 3101 3088 3053 3065 3068
ν2 3066 3073 3077 3050 3069 3072
2ν1 6249 6147 6119 6047 6072 6079
2ν2 6081 6090 6098 6042 6081 6087
ν1 + ν2 6115 6062 6054 5986 6018 6026
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Table 5. Spectroscopic normal mode terms (cm−1) and mixing angle φ (rad), from B3LYP/cc-pVTZ anharmonic force field (see text),

for the case of two non equivalent C–H stretchings in chlorofluoro-substituted ethenes, propadiene, and butatrienes. Unperturbed values,

no resonances have been taken into account. The cis and trans diastereomers are indicated by c and t, respectively.

ClFC=CH2 c-ClHC=CHF t-ClHC=CHF ClHC=C=CHF c-ClHC=C=C=CHF t-ClHC=C=C=CHF

ω1 3281 3234 3223 3187 3203 3204
ω2 3179 3199 3214 3185 3197 3197
x11 −32.36 −45.50 −50.94 −54.34 −58.84 −58.40
x22 −28.50 −44.67 −49.90 −53.55 −57.89 −57.20
x12 −95.24 −43.31 −23.89 −20.47 −1.61 −1.38
K1122 −106.50 −44.63 −22.38 −20.49 −1.52 −1.33
K1112 60.69 113.21 89.20 90.31 27.42 25.45
K1222 −69.44 −109.53 −89.49 −88.82 −26.51 −24.52
ν1 3144 3103 3091 3055 3072 3076
ν2 3049 3063 3088 3051 3067 3072
2ν1 6224 6114 6080 6002 6026 6035
2ν2 6041 6036 6077 5996 6019 6029
ν1 + ν2 6098 6122 6156 6086 6138 6146
φ 0.2005π 0.1077π 0.0749π 0.0683π 0.0184π 0.0172π
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Figure 2. Wavenumbers as a function of the mixing angle φ for the overtone and combination modes with n = v1 + v2 up to 4, with
fixed values of the fundamentals.
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