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Introduction

As discussed in several reviews [1][2][3][4] two apparently different models are available for the treatment of C-H stretching (and also N-H, O-H, S-H . . . ) in polyatomic molecules: the local mode and the normal mode descriptions. In the local mode approach [2][3][4][5] the stretching vibrations are described in terms of anharmonic oscillators localized on individual C-H bonds, with harmonic interbond coupling. In the complementary normal mode approach [1,3] the stretching vibrations are represented as harmonic oscillators, the normal modes, coupled by quartic anharmonic interactions.

On the basis of perturbative treatments [1] and numerical computations for several molecules [6], Mills and co-workers suggested that the two treatments should always yield identical results if proper relations are imposed between the parameters of the two model Hamiltonians. The exact mathematical equivalence of the two approaches was soon proved by transforming the operators appearing in the Hamiltonian, first by Lehmann [7] for molecules with two equivalent C-H bonds and later by one of us [8] for any number of equivalent bonds. In this paper we extend the treatment to molecules with non equivalent C-H bonds and discuss in detail the case with two bonds.

Local mode and normal mode Hamiltonians

The local mode Hamiltonian for the stretching vibrations [1,3,6] is a sum of single bond contributions H α plus pair interactions between different bonds H αβ , H local = α H α + α =β H αβ , where the sums are on all bonds. The single bond Hamiltonians H α are modeled in terms of Morse oscillators. Their eigenfunctions |n α , n α = 0, 1, 2 . . ., describe states with n α vibrational quanta localized on the bond α, and their eigenvalues E α are given by the Morse expression [1], E α = ω α n α + x α n α (n α + 1). Here the parameters ω α and x α represent the harmonic frequency and anharmonicity of the bond. The matrix elements of the interbond interaction H αβ are identical to those appropriate to a harmonic model with a quadratic coupling [2,5], n α + 1 n β -1|H|n α n β = λ αβ √ n α + 1 √ n β , where λ αβ = λ βα is a nonnegative parameter. Due to the form of the matrix elements, all interactions are effectively restricted within stretching overtone manifolds with a constant total vibrational population n = α n α . As discussed elsewhere [8], the local mode Hamiltonian is most compactly expressed in terms of operators a † α and a α , defined to add or remove vibrational quanta from the bond α with the same effects as the familiar creation and annihilation operators for the harmonic oscillators:

a † α |n α = √ n α + 1 |n α + 1 a α |n α = √ n α |n α -1
The other usual properties of the operators follow automatically from their definition. In particular, it may be readily shown that the two operators are mutually adjoint, that they satisfy the boson commutation rules [a α , a † β ] = δ αβ , where δ αβ is the Kronecker delta, and that the vibrational population n α may be expressed as the operator n α = a † α a α . The local mode Hamiltonian, designed to yield the same matrix elements as the original H local , is

H local = α ω α a † α a α + α x α a † α a α (a † α a α + 1) + α =β λ αβ a † α a β
Since the two Hamiltonians have the same matrix elements between all vectors of the basis |n α n β . . . = |n α |n β . . ., they coincide. The Hamiltonian H local may be expressed more compactly by using the commutation rule a α a † α = a † α a α + 1 to reduce the anharmonic term a † α a α (a † α a α + 1) to normal order (all creation operators on the left) and by defining the diagonal coupling λ αα as λ αα = ω α + 2x α , yielding

H local = αβ λ αβ a † α a β + α x α a † α a † α a α a α
The Hamiltonian contains diagonal and non-diagonal quadratic terms λ αβ a † α a β , together with purely diagonal quartic terms x α a † α a † α a α a α . Since the matrix λ = (λ αβ ) is Hermitian, we may always find a transformation D † λD which diagonalizes the quadratic part, possibly at the cost of introducing nondiagonal quartic terms. Here D is an unitary matrix (i.e. its inverse D -1 is identical to its conjugate transpose D † ) to be determined. We use the matrix D = (D αr ) to introduce new operators A † r and A r , implicitly defined by a α = r D αr A r and a † α = r D * αr A † r , where the asterisk indicates the complex conjugate. Since D is unitary, we may directly invert the definitions, obtaining explicit expressions A r = α D * αr a α and A † r = α D αr a † α . From these expressions it may be shown that the operators A † r and A r also satisfy boson commutation rules and, as a consequence [START_REF] Messiah | Quantum Mechanics[END_REF], they behave as creation and annihilation operators. While a † α and a α act on states |n α describing excitations localized on single bonds, A r and A † r act on states |v r describing vibrations delocalized on all bonds. To avoid ambiguities, we use lower case letters and greek labels for local operators, and upper-case letters and roman labels for non-local operators. Using the definition for a α and a † α in terms of the new non-local operators A r and A † r , we find a transformed Hamiltonian H normal , where ν rs and X rstu are combinations of D αr coefficients:

H normal = rs ν rs A † r A s + rstu X rstu A † r A † s A t A u F o r P e e r
ν rs = αβ λ αβ D * αr D βs X rstu = α x α D * αr D * αs D αt D αu
The number of terms in the unrestricted sums rs and rstu may be reduced by remembering that ν rs has been diagonalized with a suitable choice of the matrix D and by considering that the quartic term in H normal is symmetric for exchanges of r,s or t,u indexes. By restricting the sums and introducing counting factors one obtains

H normal = r ν rr A † r A r + r≤s,t≤u (2 -δ rs ) (2 -δ tu ) X rstu A † r A † s A t A u
where, to account for the number of possible exchanges, X rstu is multiplied by a factor 1 when r = s and t = u, 2 when one of the pairs differs, or 4 when both pairs differ.

The Hamiltonian H normal is most naturally expressed in the normal mode basis |v 1 v 2 . . . which diagonalizes the quadratic Hamiltonian. With this choice, as described elsewhere [8] and as shown below, the matrix elements of H normal become identical to those of a Hamiltonian describing harmonic normal modes with fundamental transition frequencies ν r = ν rr and with quartic anharmonic interactions.

The "x-K" relations between the local mode and the normal mode Hamiltonians may be obtained by matching the coefficients in H normal with those of the standard normal mode expressions from the literature [1,[START_REF] Nielsen | [END_REF]11]. The diagonal part H ′ normal of H normal , which involves only paired operators A † r A r and A † s A s and thus contains all quadratic terms and the quartic terms A † r A † r A r A r and A † r A † s A r A s , may be written in terms of the number operators v r = A † r A r as

H ′ normal = r ν r v r + r X rrrr v r (v r -1) + r<s 4X rsrs v r v s .
The corresponding literature expression [1] for the unperturbed energy of the normal mode state |v 1 v 2 . . . is

E = r ω r v r + 1 2 + r x rr v r + 1 2 2 + r<s x rs v r + 1 2 v s + 1 2 .
It may be easily verified that the transition frequency E -E GS from the ground state (GS) to |v 1 v 2 . . . becomes identical to H ′ normal by imposing x rr = X rrrr , x rs = 4X rsrs and ω r = ν rs 2X rsrs or, equivalently, ν r = ω r + 2x rr + s =r x rs /2.

The off-diagonal part H ′′ normal contains all terms of the quartic Hamiltonian not already included in H ′ normal . The corresponding interactions in the normal mode literature are described by coupling constants K rstu , which are best defined [START_REF] Nielsen | [END_REF] as coefficients of the quartic term r≤s≤t≤u

K rstu Q r Q s Q t Q u in the expansion of the Hamiltonian H normal in power series of the normal coordinates Q r . The coordinates Q r have matrix elements n r -1|Q r |n r = n r |Q r |n r -1 = n r /2, which correspond to Q r = (A † r + A r )/ √ 2.

Matrix elements identical to those of H ′′

normal , within stretching overtone manifolds with constant n = r v r , are easily obtained by imposing

K rstu /4 = (2 -δ rs )(2 -δ tu ) X rstu .
Five essentially distinct types of off-diagonal terms are thus found. Their matrix elements, mostly reported in Table 1 of Ref. [8], match those found in the normal mode literature [1,6,11].

Case with two bonds only

We now analyse the case in which there are only two C-H bonds, which may be equivalent or non-equivalent, as it happens for dihalogenoethenes such as FHC=CHF or ClHC=CHF, respectively. The local mode Hamiltonian, explicitly written in terms of creation and annihilation operators acting on the two bonds α and β, is

H local = H α + H β + H αβ , where H α = λ αα a † α a α + x α a † α a † α a α a α , H β = λ ββ a † β a β + x β a † β a † β a β a β and H αβ = λ αβ a † α a β + λ βα a † β a α .
The coefficients λ αα = ω α + 2x α and λ ββ = ω β + 2x β are the diagonal coupling for the two bonds, x α and x β represent the anharmonicity of the bonds, and λ αβ = λ βα is the inter-bond coupling parameter. In this simple 2-dimensional case, the 2 × 2 unitary matrix D may be written as a function of a single parameter, the mixing angle φ:

D = cos φ -sin φ sin φ cos φ
After substitution, the off-diagonal harmonic normal mode coupling ν 12 = ν 21 becomes

ν 12 = cos 2 φ λ αβ -sin 2 φ λ βα -cos φ sin φ λ αα + cos φ sin φ λ ββ = cos 2φ λ αβ -1 2 sin 2φ (λ αα -λ ββ )
where we have used the trigonometric identities cos 2 φ -sin 2 φ = cos 2φ and cos φ sin φ = 1 2 sin 2φ. The off-diagonal harmonic coupling ν 12 may be canceled with a suitable choice of φ. This is achieved by requiring tan 2φ = 2λ αβ /(λ αα -λ ββ ), where φ may be chosen as non-negative by imposing λ αα ≥ λ ββ . Once determined φ, substitution back in the quadratic Hamiltonian yields the fundamental frequencies ν 1 and ν 2 , reported in Table 1. When ν 1 and ν 2 are already known, as it often happens, it may be useful to use the inverse relations, obtaining the harmonic couplings as λ αα = ν + ∆ν cos 2φ, λ ββ = ν -∆ν cos 2φ and λ αβ = ∆ν sin 2φ, where ν = (ν

1 + ν 2 )/2 and ∆ν = (ν 1 -ν 2 )/2.
Substitution in the quartic Hamiltonian yields five distinct X rstu coefficient, namely 1 as a function of the mixing angle φ. In the Table we also list all terms of the normal mode Hamiltonian H normal , along with their non-zero matrix elements in the normal mode basis |v 1 v 2 . The Hamiltonian has two quadratic terms, both diagonal, and nine quartic terms, three of which diagonal.

X 1111 , X 2222 , X 1212 = X 1122 = X 2211 , X 1112 = X 1211 and X 1222 = X 2212 , all reported in Table
For symmetric molecules with two equivalent C-H bonds, having ω α = ω β = ω and x α = x β = x, we find tan 2φ = +∞ and thus φ = π/4. For low symmetry molecules with non equivalent bonds, the mixing angle φ may assume any value and the lowered symmetry does no longer requires x α = x β . To simplify the discussion, we temporarily assume that the two bonds have the same anharmonicity, x α = x β = x. In Fig. 1 we display, as a function of φ, the essentially distinct coupling coefficients X 1111 = X 2222 = x(cos 4 φ + sin 4 φ), X 1212 = 2x cos 2 φ sin 2 φ, X 1112 = x cos φ sin φ (sin 2 φ -cos 2 φ), and X 1222 = x cos φ sin φ (cos 2 φ -sin 2 φ). As shown by Fig. 1 and as easily verified, X 1111 = x 11 and X 1212 = x 12 /4 are inversely correlated, since their sum is constant: X 1111 + X 1212 = x. The same holds for X 1112 = K 1112 /8 and X 1222 = K 1222 /8, since X 1112 + X 1222 = 0.

By examining Fig. 1 and by inspection of the ν r and X rstu coefficients listed in Table 1, we can identify three limit cases, with φ = 0, π/4 and π/8: φ = 0: In this case the interbond coupling λ αβ is zero and all off-diagonal quartic matrix elements also vanish.

We have independent vibrations on the two bonds, corresponding to a pure local mode model. φ = π/4: This is the previously mentioned case of two equivalent C-H bonds, with λ αα = λ ββ = λ = ω + 2x. The two normal modes describe symmetric and antisymmetric combinations of the two C-H bond stretchings, with the two usual eigenvalues ν 1 = λ + λ αβ and ν 2 = λ -λ αβ . We also obtain X 1111 = X 2222 = X 1212 = X 1122 = x/2, which correspond to the usual "x-K" relations [1] 

x 11 = x 22 = x 12 /4 = K 1122 /4 = x/2.
Finally, we find X 1112 = X 2212 = 0, which is to be expected. In fact, since the two normal modes ν 1 and ν 2 belong to different irreducible representations, Hamiltonian terms involving odd numbers of operators acting on either modes vanish. φ = π/8: In this limit case, with λ αβ = (λ αα -λ ββ )/2, the off-diagonal matrix elements of the form The ω r , x rs and K rstu coefficients as a function of the Morse parameters ω and x for the three limit cases with mixing angle φ = 0, π/8, and π/4 radians are reported in Table 2. The coefficients for the generic case may be obtained by combining the relations in the first column of Table 2 with the expressions in Table 1. It should be emphasized that the coefficients may vary quite rapidly with φ, as shown in Fig. 1. For φ close to π/8, for example, even small changes of φ will result in large K 1111 and K 1212 changes, with little effects on K 1112 and K 1222 . The opposite happens with φ close to π/4.

v 1 ± 1 v 2 ∓ 1|H|v 1 v 2 assume
To illustrate the relations developed in this paper, we now investigate how the mixing angle φ affects the C-H stretching overtone and combination spectra. All the Hamiltonian matrix elements between states |v 1 v 2 with n = v 1 + v 2 up to 4 are shown in Table 3. Since, as previously discussed, only states within the same overtone manifold actually interact, the Hamiltonian matrix factorizes into a single block for each value of n. For molecules with equivalent C-H bonds (φ = π/4), these blocks factorize even further, since only states with the same even/odd parity of v 2 or, equivalently, the same parity of v 1 , may interact. Finally, complete factorization to a purely diagonal Hamiltonian matrix occurs for non interacting bonds (φ = 0). It may also be noticed that since each state |v 1 v 2 couples only with itself and with the states |v 1 ± 1 v 2 ∓ 1 and |v 1 ± 2 v 2 ∓ 2 , the Hamiltonian matrices with n > 2 exhibit a band diagonal structure.

In Fig. 2 we display the transition frequencies as a function of φ, for all overtone and combination states up to n = 4, computed by numerical diagonalization of the Hamiltonian matrices. For all angles, we assume that the two stretching fundamental [12] transitions occur at wavenumbers ν 1 = 3114 cm -1 and ν 2 = 3102 cm -1 . The Morse's anharmonicity constant is assumed to be x 1 = x 2 = x = -60 cm -1 [13].

For the local mode case φ = 0 the Hamiltonian matrices (Table 3) are purely diagonal. The first overtones and the combination band, for example, are thus simply calculated as (2ν

1 ) = 2ν 1 + 2x 11 = 6108 cm -1 , (2ν 2 ) = 2ν 2 + 2x 22 = 6084 cm -1 and (ν 1 + ν 2 ) = ν 1 + ν 2 = 6216 cm -1 , respectively.
For the φ = π/4 limit case we have (from Table 2): x 11 = x 22 = -30 cm -1 , x 12 = K 1122 = -120 cm -1 . Both 2ν 1 and 2ν 2 belong to the same symmetry species (the total-symmetric irreducible representation) and therefore interact through a Darling-Dennison resonance term K 1122 /2, giving a block diagonal Hamiltonian matrix (from Table 3):

  2ν 1 + x 0 x 0 ν 1 + ν 2 + 2x 0 x 0 2ν 2 + x   =   6168 0 -60 0 6096 0 -60 0 6144  
The combination band is calculated as (ν 1 + ν 2 ) = ν 1 + ν 2 + x 12 = 6096 cm -1 . The overtone frequencies, obtained by matrix diagonalization, have the final perturbed values (2ν 1 ) = 6217.19 cm -1 and (2ν 2 ) = 6094.81 cm -1 .

For the φ = π/8 case, the states |2 0 , |0 2 and |1 1 , corresponding to the 2ν 1 , 2ν 2 overtones and to the ν 1 + ν 2 combination band, all belong to the total-symmetric symmetry species and may therefore interact. While the fundamental values of ν 1 , ν 2 and the Morse's anharmonicity x do not change, the other parameters from Table 2 now are: x 11 = x 22 = -45 cm -1 , x 12 = K 1122 = -60 cm -1 , and in addition, K 1112 = 120 cm -1 and K 1222 = -120 cm -1 . The Hamiltonian matrix is non diagonal: After diagonalization, the perturbed values are found to be (2ν 1 ) = 6104.17 cm -1 , (2ν 2 ) = 6087.23 cm -1 and (ν 1 + ν 2 ) = 6216.60 cm -1 . In Fig. 2 the wavenumbers of the overtones and combination modes displayed as a function of the mixing angle φ appear to move evenly from φ = 0 up to φ = π/4. However, if we consider the eigenvectors and therefore the approximate descriptions of the vibrational modes, we have at φ = 0 that all modes are completely pure vibrations -all the out of diagonal matrix elements of Table 3 are zeros -with the assignments reported in the left side of Fig. 2, whereas when φ = π/4 we get the assignments displayed in the right part of Fig. 2. For intermediate values of the mixing angle φ, the overtones and combination bands are mingled in great extent and it is difficult to describe the vibrations in terms of only one mode.

  2ν 1 + 3x/2 - √ 2x/2 x/2 - √ 2x/2 ν 1 + ν 2 + x √ 2x/2 x/2 √ 2x/2 2ν 2 + 3x/2   =   6138 
Although other interactions have to be considered in actual cases, it appears evident from these results that the naive use of the symmetric "x-K" relations would lead, for non-symmetric molecules, to misassignment of C-H overtone and combination bands.

To complete this investigation, we now illustrate how the mixing angle φ behaves for actual molecules with two non equivalent C-H bonds. In order to determine the spectroscopic parameters described previously, namely ω 1 , ω 2 , x 11 , x 22 , x 12 , ν 1 , ν 2 , K 1122 , K 1112 , K 1222 , 2ν 1 , 2ν 2 and ν 1 + ν 2 , the anharmonic force fields of two series of molecules have been computed from density functional theory (DFT) quantum mechanical calculations.

The DFT calculations have been carried out by using Dunning correlation consistent polarized triple zeta (cc-pVTZ) basis set [14] and the Becke [15] three parameter exchange functional (B3) in combination with the Lee, Yang, and Parr [16] (LYP) correlation functional. All B3LYP/cc-pVTZ computations have been performed with the G03 system of programs [START_REF] Frisch | Gaussian03, revision D.02[END_REF]. Details about the calculations of the anharmonic force field are given elsewhere [START_REF] Barone | [END_REF]. Here, we recall that following the approach first proposed by Schneider and Thiel [19], a full cubic and a semidiagonal quartic force field is obtained by central numerical differentiation of analytical second derivatives, performed in dimensionless normal coordinates around the equilibrium geometry.

The molecules investigated with two equivalent C-H bonds were 1,1-difluoroethene (F 2 C=CH 2 ), cisand trans-1,2-difluoroethene (FHC=CHF), 1,3-difluoropropadiene (FHC=C=CHF), cis-and trans-1,4difluorobutatriene (FHC=C=C=CHF). By substitution of one F atom with a Cl atom in each molecule, we get the corresponding cases with two non-equivalent C-H bonds: ClFC=CH 2 , cis-and trans-ClHC=CHF, ClHC=C=CHF, cis-and trans-ClHC=C=C=CHF.

The spectroscopic normal mode terms were evaluated from the quantum mechanical anharmonic force fields using second-order perturbation theory [START_REF] Papoušek | Molecular Vibrational-Rotational Spectra[END_REF]. In addition, the cubic and quartic semidiagonal force constants, expressed in terms of dimensionless normal coordinates, were used to compute the Darling-Dennison constants K rstu [11,[START_REF] Lehmann | [END_REF]. These data are collected in Tables 4 and5 for equivalent and nonequivalent C-H bonds, respectively. The calculated x rs and K rstu parameters are also shown in Fig. 1.

For molecules with equivalent C-H bonds, it can be seen that the parameters reported in Table 4 accurately follow the usual x-K relations [6] expected for φ = π/4: x 11 ≈ x 22 ≈ x 12 /4 ≈ K 1122 /4. In this case the vibrational normal modes 1 and 2 belong to different symmetry species and consequently ν 1 + ν 2 cannot interact with 2ν 1 and/or 2ν 2 . For the same reason, the Darling-Dennison constants K 1112 and K 1222 involving an odd number of identical modes are zero (see also the last column of Table 2).

In the molecules with two non-equivalent C-H bonds, the spectroscopic terms reported in Table 5 correspond to a wide range of mixing angles φ. The angle φ, also indicated in Table 5, has been obtained by inverting the relations of Tables 1 and2, as mentioned in the caption of Fig. 1. For all molecules we find K 1112 ≈ -K 1222 , which implies x α ≈ x β (Tables 1 and2), x 11 ≈ x 22 and x 12 ≈ K 1122 , as expected in this case. In ClFC=CH 2 φ approaches the π/4 limit, showing that the two strongly coupled C-H bonds actually behave as almost equivalent stretchings, whereas cis-ClHC=CHF has φ ≃ π/8. Going to the longer molecules of cis-or trans-1-chloro-4-fluorobutatriene (ClHC=C=C=CHF), the interaction between the two distant C-H bonds further decreases and the mixing angle φ approaches 0. The two C-H bonds may be considered as two isolated pure local modes.

For all molecules, the theoretically computed spectroscopic parameters x rs and K rstu are in good agreement with expected behaviour, depicted in Fig. 1. The six anharmonic constants x 11 , x 22 , x 12 , K 1122 , K 1112 and K 1222 , which appear as independent parameters in a normal mode treatment, can be accurately described in terms of a reduced set of three local mode parameters, namely the mixing angle φ and the bond anharmonicities x α and x β (with x α ≈ x β ). The residual deviations from the ideal behaviour are due to coupling to other modes and to anharmonic interactions between the bonds, which restore the independence of the parameters. Local modes in non-equivalent bonds 7

4 Conclusions

For molecules with C-H bonds it is often believed that a normal mode model is not accurate and that a local mode description of the bonds is preferable. However, as previously shown for specific cases [1,[6][7][8] and now proved in general, a local mode problem may be mapped onto a normal mode problem with exactly identical matrix elements, and therefore exactly identical energies. Thus, there is no fundamental difference between the local mode and normal mode descriptions, since normal modes are exactly as good, or as bad, as local modes. The choice between the two models is mainly one of mathematical convenience for the problem at hand. The operator method [8] has been used to derive a normal mode model, including quartic anharmonicity, corresponding to the local mode model for low-symmetry molecules containing two non-equivalent C-H bonds. For this non-symmetric case, quartic anharmonic constants of the type K rrrs are no longer zero as for symmetric molecules, and should be taken into account. These constants may be calculated by second order perturbation theory using the cubic and quartic anharmonic force field obtained from ab initio calculations [11,[START_REF] Lehmann | [END_REF].

DFT quantum chemical calculations for a number of molecules with non-equivalent C-H bonds show that the mixing between the two stretchings decreases with their distance, rapidly approaching the limit of two non-interacting local modes. Complete mixing, regardless of the distance, is instead invariably found in molecules with equivalent C-H bonds, which would have degenerate energy levels in absence of interaction. " 
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2 Figure 2 .

 22 Figure 2. Wavenumbers as a function of the mixing angle φ for the overtone and combination modes with n = v 1 + v 2 up to 4, with fixed values of the fundamentals.
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  Figure 1. Curves: distinct anharmonic couplings X 1111 = x 11 = x 22 , X 1212 = x 12 /4 = K 1122 /4, X 1112 = K 1112 /8 and X 1222 = K 1222 /8 as a function of the mixing angle φ, for the case in which xα = x β = x. Points: ab initio estimates of X 1111 = 1 2 (x 11 + x 22 ), X 1212 = 1 2 (x 12 /4 + K 1122 /4), X 1112 = K 1112 /8 and X 1222 = K 1222 /8 for the various molecules reported in Tables4 and 5, with x = X 1111 + X 1212 and φ obtained from sin 2φ = p 2X 1212 /x.
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Table 2 .

 2 Spectroscopic normal mode terms ωr , xrs and Krstu, expressed as multiples or combinations of the corresponding νr and Xrstu coefficients (listed in the same order of Table1) for the limit cases (see text) with mixing angle φ = 0, π/8, and π/4.

Table 3 .

 3 Matrix elements of the normal mode Hamiltonian H normal between states |v1v2 with n = v1 + v2 up to 4. The Hamiltonian matrix factorizes into a block for each value of n. The states listed on the right hand side refer to the rows, and also apply to the corresponding columns.

Table 4 .

 4 Spectroscopic normal mode terms (cm -1 ), from B3LYP/cc-pVTZ anharmonic force field (see text), for the case of two equivalent C-H stretchings in difluoro-substituted ethenes, propadiene, and butatrienes. Unperturbed values, no resonances have been taken into account. The cis and trans diastereomers are indicated by c and t, respectively.

		F 2 C=CH 2	c-FHC=CHF t-FHC=CHF FHC=C=CHF c-FHC=C=C=CHF t-FHC=C=C=CHF
	ω 1	3293	3231	3219	3181	3200	3202
	ω 2	3194	3208	3213	3180	3199	3201
	x 11 x 22 x 12 K 1122 ν 1	-29.77 -25.47 -105.65 -117.13 3154	-27.39 -27.69 -111.66 -113.01 3101	-28.20 -27.74 -110.89 -109.55 3088	-29.04 -29.09 -116.40 -116.47 3053	-28.86 -28.96 -115.64 -115.88 3065	-28.65 -28.74 -114.77 -114.70 3068
	ν 2	3066	3073	3077	3050	3069	3072
	2ν 1	6249	6147	6119	6047	6072	6079
	2ν 2	6081	6090	6098	6042	6081	6087
	ν 1 + ν 2	6115	6062	6054	5986	6018	6026
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Table 5 .

 5 Spectroscopic normal mode terms (cm -1 ) and mixing angle φ (rad), from B3LYP/cc-pVTZ anharmonic force field (see text), for the case of two non equivalent C-H stretchings in chlorofluoro-substituted ethenes, propadiene, and butatrienes. Unperturbed values, no resonances have been taken into account. The cis and trans diastereomers are indicated by c and t, respectively.
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Table 1. Terms of the normal mode Hamiltonian, together with their coefficients νr and Xrstu as a function of the mixing angle φ. The non zero matrix elements of each term are also listed.

Hamiltonian term

νr or Xrstu coefficient Non zero matrix element