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Above threshold accumulated phase in molecular potentials.

are numerically calculated in the Born-Oppenheimer potentials of the ground molecular state of alkalimetal dimers in sec. 3.2. It is shown how bound, virtual states and resonances located in the vicinity of a threshold can be deduced from a pole calculation. Finally the multichannel case of a Feshbach resonance which crosses a threshold is briefly discussed in sec. 3.3. A definition of an optical potential in the frame of the quantum defect theory is introduced.

theory 2.1 definition of the accumulated phase by Milne equation

We consider a non coulomb potential V (r) which asymptotically vanishes faster than 1/r 2 . In the most general definition [2] of the accumulated radial phase below the threshold a Milne nonhomogeneous equation [4] is solved instead of the standard Schrödinger equation :

α + K 2 α = 1 α 3 , (1) 
where

K 2 = 2µ 2 (E -V (r)) -( +1) r 2 . α(r
) is an amplitude allowing to define a phase φ(r) by

φ(r) = r 0 1 α 2 dr . (2) 
Some work has been devoted to the best choice of the radial distance r c where the initial conditions are set [1,13]. For our purpose we point out that these boundary conditions are simple or more elaborate WKB expressions which are analytic functions of the energy in a well defined domain of the complex energy plane, see appendix A. All the accumulated phases we present are calculated according to these initial conditions.

In the illustrative examples r c will be defined at the minimum of the potential. Alternatively two functions f (r) and g(r) are defined through the amplitude α(r) and the phase φ(r) with α(r) = (f (r) 2 + g(r) 2 )

1 2 and cot φ = -g (r) f (r) . Below the threshold both f (r) and g(r) diverge beyond the turning points. α(r) diverges in the same way and φ(r) converges at r → ∞ to the accumulated phase. E = 0 is a special case, α(r) diverges as r and φ(r) converges to a finite real limit. At first sight such limit does not exist above the threshold because f (r) and g(r) are oscillating functions at large distances, generally out of phase and with different amplitudes. However it should be remembered that in the collision theory the positive real energies have to be carefully considered because at these energies eigenfunctions of the Schrödinger equation are not square integrable functions. Instead of E we have to consider the limits of E ± iη when η → 0 + and this limit has to be taken at the end of the calculations [START_REF] Cohen-Tannoudji | Théorie des Collisions[END_REF]. We add an index ±η to the functions we calculate at the energy E ± iη. Obviously f ±η (r) and g ±η (r) diverge at r → ∞ as e ηr since they are connected at large r to the functions which behave like e ±i(±k+iηr) , the branch cut of the square root is defined in the appendix A. α ±η (r) diverges in the same way, and φ ±η (r) converges to a finite limit. The limit η → 0 + is more easily calculated if we consider the cotangent of the phase. We define the limit β ± of φ ±η (∞) by : cotβ ± = -lim η→0+ lim r→∞ g ±η (r)

f ±η (r) . (3) 
We denote by P ±η (r) the asymptotically convergent function solution of the Schrödinger equation. If E = 0 the leading term of the asymptotic development of P ±η (r) is proportional to e ±ikr e -ηr . For any η = 0 the first limit r → ∞ of Eq. ( 3) is : where W (., .) denotes the wronskian of the two functions given in arguments. Each Wronskian can be calculated at any finite r, for instance at r = r c , since both functions f ±η and g ±η are solutions of the same Schrödinger equation. All the functions f , g and α are analytical functions of the energy, see appendix A. At any finite r, the functions f ±η (r), g ±η (r) converge towards f (r), g(r) which are calculated in the ordinary way by solving the differential equation at real energy E. On the other hand, we assume that it is possible to define for any E = 0 an external point r ∞ such as P ±η (r) has its asymptotical form for r ≥ r ∞ . Consequently the functions P ±η (r) converge at the limit η → 0 + towards the functions P ± (r) which asymptotically, or r ≥ r ∞ behave like e ±ikr . We deduce the limit η → 0 + of ( 4)

lim r→∞ g ±η (r) f ±η (r) = W (g ±η , P ±η ) W (f ±η , P ±η ) , (4) 
cotβ ± = - W (g, P ± ) W (f, P ± ) , (5) 
obviously β -= β + * where * denotes the complex conjugation. With the eq. ( 5) we generalise the definition of the accumulated phase below the threshold where P ± (r) is replaced by the real convergent function P (r) which asymptotically converges as e -κr with κ 2 = -2µ 2 E [9]. Conversely, this function can be continued through the complex energy plane from the real negative axis. The real positive axis is reached from above (resp. below) P (r) → P + (r)(resp.P -(r)) and we have the accumulated phase

β + (E)(resp.β -(E)).
The phases β ± (E) are connected with the parameters introduced in [3]. Beside the f and g functions, two functions denoted s and c "normalised per energy unit" are defined. Asymptotically these functions are linear combinations of the spherical Bessel and Neuman functions. The function s is proportional to f since both functions are regular at the origin, the proportionality factor is C(E). The function c is a linear combination of both functions f and g through a phaseshift λ, c = C(E)(g + tanλf ) [START_REF] Mies | [END_REF]. It can be verified that P ± (r) are proportional to the functions -c ± is. From Eq. ( 5) we obtain a relationship between β ± and the λ, C(E) parameters :

cotβ ± = -tanλ ∓ i C 2 , (6) 
we use W (f, g) = 1. This equation is of practical importance since no change in the usual calculation procedures [3,[START_REF] Mies | [END_REF] is necessary to obtain the accumulated phases at any positive or negative real energy. Finally we introduce the functions oscillating at short distances -g(r) + if (r) = α(r)e iφ(r) and -g(r)if (r) = α(r)e -iφ(r) . The minus sign in front of g(r) is due to a convention used in [1] and [START_REF] Mies | [END_REF]. Obviously we have :

e 2iβ ± = W (-g + if, P ± ) W (-g -if, P ± ) . (7) 
It is worth to compare e 2iβ + with the collision matrix involving the phaseshift δ :

e -2iδ = W (f, P + ) W (f, P -) , (8) 
in Eq. ( 7) P + plays the role of f in Eq. ( 8), and -g ± if in Eq. ( 7) play the role of P + and P -in Eq. ( 8). As shown below, Eq. ( 7) describes the collision in an 'inner side' point of view : an outgoing wave is propagating to the right from the inner well to the exterior. Eq. ( 8) describes the collision in the asymptotic point of view.

definition by the transfer matrix

As previously suggested, another way to define an accumulated phase above the threshold consists in considering only the external part of the potential, from the minimum or r c to the asymptotic zone. The method described below and reviewed in [12] has been used by many authors in order to calculate accumulated phases in molecular potentials with a centrifugal barrier. We are rather interested by scattering in s partial wave. Now we assume that an inner zone of the potential can be treated in the first order of the WKB approximation. Actually this zone can be reduced to a infinitesimal interval around a point, denoted r 0 which is in the most general case taken equal to r c . The exterior part of the potential corresponds to the interval from r 0 to ∞. Let us remark that this assumption is more restrictive than the one used in the previous section 2.1. Without this assumption the notions of 'propagating' waves in the inner well, 'reflected' or 'transmitted' waves loose their meaning as emphasized in [16].

The wave function is given by the first order WKB formula as well in the asymptotic zone and in the vicinity of r 0 at the other bound of the studied interval. In the vicinity of r 0 the wave function is given by

ψ(r) = A e i R r r 0 K(r)dr K(r) + B e -i R r r 0 K(r)dr K(r) (9) 
and in the asymptotic zone r → ∞

ψ(r) = A ∞ e ikr √ k + B ∞ e -ikr √ k , (10) 
with a linear relation between the coefficients :

A B = M A ∞ B ∞ , (11) 
M is the transfer matrix which is unitary because of the conservation of the current of the probability and at positive energies above the threshold can be written as [START_REF] Merzbacher | Quantum Mechanics[END_REF] :

M = m 11 m * 21 m 21 m * 11 . (12) 
Except at eventual turning points the wave function can be written everywhere as in Eq. ( 9), A and B being replaced by two functions A(r) and B(r). A transfer matrix M(r) is calculated at each r value. This matrix is obtained from a first order linear equation or directly from the solution of the Schrödinger equation and its derivative [START_REF] Peres | [END_REF]. If we take now A ∞ = 1 and B ∞ = 0 we obtain from Eq. ( 9) and (11) the solution of the Schrödinger equation proportional to the function P + (r) introduced above, the conjugate conditions A ∞ = 0 and B ∞ = 1 giving the conjugate function P -(r).

On the other hand, the resolution of the Schrödinger or the Milne equation allows us to calculate in the inner part of the potential, between 0 and r 0 , the functions -g + if and -g -if which can be written in the vicinity of r 0 as e ±i( R r r 0

K(r)dr+φ in ) √ K(r)
where φ in is the Milne phase calculated only in the inner part of the potential and taking into account the initial condition for α(r 0 ) and its derivative. In most of the molecular potentials this phase is not different from the phase calculated in the first order of the WKB approximation plus a phase loss due to the reflection by an inner wall which generally does not differ from the familiar π/4 [19]. From (7) it follows that

e 2iβ + = m 21 m 11 e 2iφin . ( 13 
)
From ( 9) the ratio m21 m11 can be interpreted as a reflection coefficient R for the wave e i R r 0 K(r)dr define a WKB phase in the inner well specially for s wave. The square-well potential is a special case (see below 3.1). Actually the WKB phase ∞ 0 K(r)dr -∞ 0 kdr defined above the threshold should be compared to the phaseshift δ and not to the accumulated phase. The general relation between phaseshift, the transfer matrix elements and the φ in phase could be deduced from Eq. ( 8) but this will not be used in the following. In some cases, a transfer matrix can be calculated analytically, for example in the case of a parabolic potential barrier [5,12]. In the following we present numerical results. In fig. 1 we show at each r value the solution of the evolution equation of the transfer matrix M(r) in the long range part of the molecular potential 3 Σ u of 23 N a 2 dimer. We show for different above threshold energies how the reflection coefficient

|R| = | m21
m11 | is building. Each infinitesimal domain around any r reflects and transmits part of the wave. At low energy multiple reflections between two different domains at any r and r can occur. All the reflected waves have different phases and interfere. In the WKB inner part of the potential the oscillations are damped. The amplitude of the reflection coefficient |R| is a direct measure of the non-WKB character of the s wave function in a large transition zone.

Below the threshold Eq. ( 10) is replaced by

ψ(r) = A ∞ e -κr √ κ + B ∞ e κr √ κ , (14) 
and a transfer matrix can be defined with different properties than previously [START_REF] Peres | [END_REF]. Only the condition A ∞ = 1 and B ∞ = 0 has to be considered. ψ(r) in Eq. ( 9) is real and |R| = 1. The wave function is confined in a well. The accumulated phase is real and is constituted from two parts corresponding to the reflection on the wall at left and on the barrier at right [19]. We have compared the whole WKB phase with the accumulated phase calculated by the transfer matrix method. For the Morse potential case both phases are identical, for the Lennard-Jones potential case the differences between the phases are in a complete agreement with the results of [20] and are not shown.

relation with the Green's function

From the general definition of the resolvent operator In coordinate space

G(z) = (z -h) -1 , where h is the hamiltonian h = - 2 2µ ( d 2 dr 2 + ( +1)
G(E ± iη, r, r ) = f ±η (r < )P ±η (r > ) W (f ±η , P ±η ) with r < (r > ) = min(max)(r, r ) (15) 
since the functions P ±η (r) are asymptotically convergent and [9]

G ± (E, r, r ) = f (r < )P ± (r > ) W (f, P ± ) . (16) 
Finally

G ± (E, r, r ) = G s (E, r, r ) + f (r)cotβ ± f (r ) (17) 
where G s (E, r, r ) = f (r < )g(r > ) is the smooth, free of poles, Green's function defined in [21]. This smooth Green's function is an important tool for the quantum defect theory. It is shown in [11,22] that the reaction matrix and consequently all the theory can be built on these functions defined in the closed or open channels. Finally a spectral theorem can be invoked in order to obtain a development of the Green's function on the complete basis of the eigenfunctions of the hamiltonian h with a discrete part and a continuum part. f (r) is the eigenfunction in the continuum.

G(z, r, r ) = n f n (r)N n f n (r ) z -E n + f (r)f (r ) z -E ρ(E)dE, (18) 
ρ(E) is a density-of-states and it follows from the definition given in the Sec. 2.1 that ρ(E) = 1/πC 2 (E), the π factor is due to the normalisation of the s functions, f n (r) is the f function at the energy of the bound state n. N n is a normalisation factor for the wave function of the bound state, √ N n f n (r) is normalised to unity. From the general properties of the Green's function in Hilbert space [11] a relation between cotβ(z) and the density-of-states, valid at any complex energy z, can be deduced from Eq.( 18) :

cotβ(z) = n N n z -E n + ∞ 0 ρ(E) z -E dE. (19) 
An additional term, analytical, real at real energy, can arise in the second term according to [11]. Conversely the Eq. ( 18) can be demonstrated from the Eq. ( 17) and ( 19) by the Weyl-Titschmarch theory [23,[START_REF] Titchmarsh | Eigenfunctions expansions associated with second order differential equations[END_REF]. From eq. ( 19) the normalisation factor is

N n = ( dβ dE )| -1
En [10]. Taking z = E ± iη, and using the equation

1 x±iη = vp( 1 x ) ∓ iπδ(x)
where vp is the principal value, we obtain the relation :

-tanλ = Recotβ ± = n N 2 n E -E n - 1 π vp ∞ 0 Imβ + (ε) E -ε dε (20) 
which is similar to a dispersion relation. This is illustrated on the fig. 9 . As it is shown below in sec. 3.3 cotβ + (E) can be related to the so-called self energy of a Feshbach resonance. It is worth to note that eq. ( 19) could be used to define directly the accumulated phase. However the summation requires an algebraic form for the density of states, but was successfully performed for the coulomb potential case [11].

As usual in potential scattering theory [START_REF] Newton | Scattering theory of waves and particles[END_REF], k is a more relevant variable than E. cotβ(k), like the Green's function [START_REF] García-Calderón | [END_REF] is an analytical function of complex k in the domain Imk ≥ 0. An analytical continuation of cotβ(k) through the branch cut can be obtained in the so-called Riemann sheet Imk ≤ 0 where poles are calculated. Some details are given in the appendix A. It can be noticed that P + (r) becomes a divergent function beyond r ∞ . That is a limitation for this procedure if |Imkr ∞ | is too large. The state associated with a pole in the non-physical sheet is a Siegert state [START_REF] García-Calderón | [END_REF]27] . The poles are calculated, according to the Cauchy theorem of residues, by integration on a closed contour following a procedure detailed in [28]. The residue of the pole is related with the normalisation factor of the Siegert state in appendix B.

Examples and applications

In the following we examine few accumulated phases for simple molecular potentials.

examples

The case of a square well potential and s partial wave can be treated analytically. V (r) = -2µ 2 U 0 if 0 ≤ r ≤ a and V (r) = 0 for r ≥ a. By using Eq. ( 7) and the boundary conditions α(r c ) = 1 √ K and α (r c ) = 0 it is found that below the threshold the accumulated phase is

β(E) = Ka + π 2 -tan -1 κ K
and above the threshold

β + (E) = Ka + π 2 - i 2 ln K -k K + k where K = √ U 0 + k 2 .
A wave e iKr √ K propagating in the right direction is partly reflected with a reflec-

tion coefficient R = K-k
K+k and partly transmitted. The outgoing wave is

k K (1 + R) e ikr √ k
. In this case

Recotβ + (E) = Ka + π
2 is the WKB phase in the well increased of π. The sign of the factor π 2 is due to the Eq. (2). At E = 0 the accumulated phase can be directly calculated from this equation. The poles of cot β + (E) are solutions of the equation √ U 0 sinKa = ±K, they correspond to bound states on the upper half axis Imk, virtual states on the lower half axis and resonances [29].

The Morse potential V (r) = D e (e -r-rc re -1) 2 -D e is a special case. An accurate accumulated phase below the threshold is the WKB phase [3] :

β(E) = β(0) -πr e κ where β(0) = π 2µDer 2 e 2
. It follows that an accumulated phase can be obtained above the threshold by analytic continuity :

β + (E) = β(0) + iπr e k.
Below the threshold β(E) is real and linearly dependent on κ = -2µ 2 E. Above the threshold the real part is constant and its imaginary part is proportional to k = 2µ 2 E. The slope of the accumulated phase below the threshold and the slope of the imaginary part of β + (k) above the threshold are both equal to πr e , independently of the depth of the potential. The results has been numerically verified. The potential supports n 0 bound states, n 0 is the greatest integer number ≤ β(0)/π. Bound states are the solutions of the equation β + (k n ) = nπ, n ≤ n 0 . For n > n 0 , we obtain virtual states. In the case 0 ≤ β(0) -n 0 π << 1 the last bound state is very close to the threshold and very diffuse. By a slight decreasing of the depth D e of the well we can have the opposite situation 0 ≤ n 0 π -β(0) << 1, the bound state becomes a virtual state in the second Riemann sheet. In both cases, the associated pole is given by k n0 = iκ n0 with κ n0 = (β(0)/π -n 0 )/r e which is positive for the bound state and negative for the virtual state. The virtual state is associated to a zero energy resonance as defined in [START_REF] Landau | Quantum Mechanics[END_REF]. The other virtual states do not appear as resonances in the cross-sections or in the phase shift. 5) and in g partial wave for the rubidium case (fig. 6). In all the cases, the accumulated phases are calculated (a) in 1 Σ g , (b) in 3 Σ u potentials, (c) in a Lennard-Jones (12,6) 

potential V LJ = -C6 r 6 (1 -2( rc r ) 6
). C 6 = 1553.03 u.a. is the van der Waals parameter of the 23 N a 2 molecular potentials and C 6 = 4700 u.a. for the potential of the rubidium, r c is arbitrarily chosen at the minimum of the 1 Σ potential. In addition, we show (d) the real part and the imaginary part of the reflection coefficient R = m21 m11 evaluated at the minimum of the 3 Σ u potential. As expected from the previous discussion, all the imaginary parts are identical. Slight differences can occur in case (c) because the long range van der Waals part associated to the C 8 and C 10 are not taken into account in the somewhat arbitrary used LJ potentials. We report the real part modulo π, not the absolute real part. This one can be calculated by accounting for the number of bound states in the well. It appears that the real parts below and above the thresholds of the accumulated phase in cases (a-b-c) can be obtained from the real part of the reflection coefficient (d) by adding a constant factor. This is the φ in phase, as it is verified in each case by a direct calculation of this phase. As a result, the smooth energy dependence of the accumulated phase arises from the external part of the potential. The whole inner part is described by a unique energy independent phase. Actually this parameter is used by many authors as a tunable parameter to fit the scattering length in ultracold collisions [START_REF] Moerdjik | [END_REF]. In addition, by comparing the results for (a-b) and (c) we conclude that the description of the long range part only by the -C6 r 6 term is sufficient at least for the energy domain considered [32]. In s partial wave the accumulated phase is very smooth when expressed as a function of k = 2µ 2 E above the threshold and of κ = -2µ 2 E below the threshold. A cusp appears at the threshold, the accumulated phase is continuous but its derivative is not. The importance of this cusp is discussed in [3,[START_REF] Mies | [END_REF]. By an appropriate choice of the phase φ in it is possible to shift the real accumulated phase in order to have β(E = 0) = nπ. Alternatively, this can also be achieved by a slight modification of the inner wall of the molecular potential. We show the result on fig. 4. The energy scale is limited to few 100µK. On this energy scale we observe that the variations of Reβ(κ) at E < 0 and Imβ + (k) at E > 0 are linear with the same slope. The slope of Reβ + (k) at E = 0 + is zero. We can explain this property by considering a simple approximate development at any complex k 2 |E| for potentials of 23 N a 2 , and 85 Rb 2 , both in 3 Σu, with φ in fitted to have for both potentials a bound state localised at the threshold . Accumulated phases for 1 Σg are not shown, being identical to the previous ones.

cotβ(k) = iN k + iAk + • • • , (21) 
In addition it can be noted that a reduced wave number (µC 6 )

1 4 2µ 2 |E| is used instead of k = 2µ
2 |E| in the fig. 4. According to the previous discussion we obtain the same accumulated phase for sodium and rubidium, in both isotopes 85 and 87. More generally, for any potential with a long attractive tail of the form -

2 2µ β n-2
n /r n , references [33], [34] give the algebraic form of the slope below the threshold. From their result the accumulated phase could be inferred above the threshold by using the continuity in the complex energy plane. In the = 0 partial wave cases the energy variations of the accumulated phase are smooth without any cusp at the threshold as it is shown on figs. 5, 6. Moreover, as stated in [START_REF] Mies | [END_REF], by using (6) we obtain the threshold law for the imaginary part of the accumulated phase ∝ k 2 +1 whatever the tail of the potential is. The threshold law for the phaseshift is different for long range tail and short range potential, as it is detailed in [35]. bound, virtual states and resonance. In potential scattering theory it is usual to define bound, virtual and resonance states as poles of the S-matrix. This matrix can be obtained from eq. ( 8) and ( 5) :

S = cot β + cot β -× W (g, P -) W (g, P + ) , (22) 
where the second term of the r.h.s. of this equation is generally free of poles. The poles of cot β + are poles of the S-matrix.

As it appears on the inset of the fig. 3, Reβ + intersects the horizontal axis at negative energy, there is a bound state very close to the threshold for the 1 Σ g potential of 85 Rb 2 at κ = κ r = 4.310 -4 (u.a.). By the procedure summarised in Sec.2.3, we calculate the poles of cot β + (k). We show the contribution of this pole on the fig. 7 by comparing the complete calculation of cot β + with a reduced development iNr k-iκr + B r , where B r = cot β(0) + Nr κr , which is valid below and above the threshold. iN r is the residue of the pole, N r being real and negative. It is related with the normalisation factor of the bound state (see appendix B). The bound state is localised at E r = - Long line is the real part of cotβ + , -• -its imaginary part. Imβ + = 0 for E < 0 and negative for E > 0 with a deep minimum very close to the threshold, see the inset. The truncated development iNr k-iκr + Br is represented by ---for its real part, and by a dot line for its imaginary part. The vertical line at E = -0.38µK is the asymptote where the bound state is localised. In the inset same plots with a smaller energy scale.

On the fig. 3 it appears that the accumulated phase associated to the 3 Σ u potential can be obtained by a small negative shift of the previous accumulated phase associated to the 1 Σ g . There is no longer a bound state close to the threshold but a virtual state is expected in this case. cotβ + has a pole at k = iκ v with κ v = -2.0 10 -3 , on the half-axis Imk < 0 in the second Riemann sheet. On the fig. 8 cotβ - is plotted rather than cotβ + (= cot β - * ) for a better visualisation of the imaginary part. There is no longer an asymptote but rather a severe discontinuity of the derivative of the real part of cotβ ± appears at the threshold. cot β + is compared with a truncated development on the poles. The contribution of the last bound state localised at E b = -10.3mK is added to improve the comparison. The development is

iNv k-iκv + Nb E-Eb + B v , N b
is the normalisation factor of the bound state, iN v the residue of the pole (N v real and negative) is related to the normalisation factor of the virtual state. The wave function of the virtual state is divergent like any Siegert state, but can be normalised as in [START_REF] García-Calderón | [END_REF]36], see appendix B. For = 0 partial wave, the pole associated with a shape resonance is calculated by the same procedure. As in the standard scattering theory we have for each resonance a pair of conjugate poles, both in the second Riemann sheet at k p = Re(k p )-iImk p and at -k * p . As previously, cot β + is compared to a truncated development on these poles + Bv is plotted with the same legend as in fig. 7 . of the previous truncated development on the poles (dashed line) are plotted vs. energy. The constant B p is calculated from the difference between cotβ + evaluated at k = Rek p and the development of the two poles at the same energy. N p is the complex residue of the pole k p . The resonance is very large because it is localised close to the top of the centrifugal barrier. The imaginary part of cotβ -could be fitted to a lorentzian with a low accuracy. The same calculation has been performed for the collision in g partial wave of rubidium atoms but it is not shown. We find a resonance at 0.72mK with a half-width 2.8µK. This calculation do not take account for the spin-spin interaction and for the spin-orbit coupling [37]. In this case the resonance is very narrow and the imaginary part of cotβ -can be approximated by a lorentzian. Let us note that, in this case, the position of the resonance can be obtained directly from the equation Reβ + = 0mod(π), or equivalently, by the intersection of the dot line of the fig. 6 with the horizontal axis, because this resonance is a 'quasi bound state' with a very small width. This method is not correct when applied to the N a 2 in d partial wave case previously discussed. 

shift and width of a Feshbach resonance

Finally we discuss the case of a multichannel collision, namely the extensively studied case of a magnetically tunable Feshbach resonance which crosses the threshold of an open channel [38]. We restrict our discussion to a single open channel and an isolated Feshbach resonance as it is the case of alkali-metal boson atoms 

= i-1 2 m = j > (or m = -j)
where i is the nuclear spin and f is the hyperfine angular momentum. The spin-orbit and spin-spin interactions are neglected. The multichannel quantum defect theory can be applied to such systems [START_REF] Mies | [END_REF]32,39,40] with different propositions for a convenient choice of the functions f and g and of the reference potentials (adiabatic, diabatic, pure van der Waals, truncated van der Waals, Born-Oppenheimer potentials) in which they are calculated. Following [START_REF] Mies | [END_REF] the real short-range reaction matrix is denoted by Y. The point is that this matrix is nearly energy independent and do not depend on the magnetic field strength. The Feshbach resonance corresponds to the coupling of a bound state with the open channel, bound in the set of the closed channels only. The energy E b of this bound state is obtained by a procedure which is a pole analysis of the physical reaction matrix, i.e. a reaction matrix calculated on the open channel only by the familiar reduction formula [10]. Some details are given in appendix C. This bound state, coupled to the open channel, is shifted by ∆(E) and acquires a width Γ(E). Shift and width are obtained from Eq. (C4) in the appendix C by

∆(E) - i 2 Γ(E) = V 2 tan β + o (E) + Ȳ ( 23 
)
which corresponds to a reduction formula for the open channels [10,[START_REF] Fano | Atomic Collisions and Spectra[END_REF]. V is the coupling of the bound state with the open channel. The shift and width are energy dependent because of the energy dependence of the accumulated phase β + o (E) in the open channel. However they do not depend on the magnetic field strength, as a consequence only the energy of the bound state is (linearly) dependent on the field strength. We put Ȳ = tan φ and Eq. ( 23) becomes

∆(E) - i 2 Γ(E) = V 2 cot(β + o (E) + φ) + V 2 sin 2 φ 2 . ( 24 
)
The last term is constant and can be added to the bound state energy E b . The real (resp.imaginary) part of cot(β + o (E) + φ) is proportional to the shift(resp.width) of the Feshbach resonance. As it is well-known, the so-called self energy ∆(E)-i 2 Γ(E) is generally defined from the resolvent operator [START_REF] Cohen-Tannoudji | Processus d'interaction entre photons et atomes[END_REF]. Our conclusion follows directly from this general definition and from Eq. ( 17).

The phase-shift φ is nearly constant on a large scale of energy and magnetic field strength. From the previous section 3.2 it follows that β + o (E) + φ is the accumulated phase in an effective physical or 'optical' potential which does not depend on the choice of the reference potentials used to perform the MQDT calculations. The reference potentials do not need to be physically defined at short range [32,39] because the channels are only asymptotically well defined. Now, the potential associated to the open optical channel is well specified at short range by this phaseshift φ. In complement to this discussion we show in the appendix C how the collision matrix in the optical potential can be extracted from the multichannel collision matrix. Finally, we have found that, in the collision of alkali-metal atoms, in the configuration of the hyperfine spins considered above, this shifted accumulated phase is close to the accumulated phase defined in the 3 Σ u Born-Oppenheimer potential. For the multichannel collision case involving rubidium 85 Rb atoms in s wave, φ = 0.007π is very small but it has to be compared with the accumulated phase in the Born-Oppenheimer potential β3 Σ (0) mod(π) = -0.0553π. The optical potential supports a virtual state like the B-O potential but its position is now E v = -6.63µK instead of -8.26µK given in sec. 3.2. As a consequence the variation of the scattering length is ∼ 25%. It is worth to note that the energy of the virtual state was evaluated at E v = -6.45µK by another method [START_REF] Marcelis | [END_REF].

The cotangent of the accumulated phases for the optical potential are not shown because they are not qualitatively different from the ones shown for 3 Σ u B-O potentials in the section 3.2. Nevertheless it is possible to discuss briefly the coupling of the bound state with the continuum. The main features of the cross-section depend on the solutions of the familiar characteristic equation E -E b -∆(E) + i 2 Γ(E) = 0. By using Eq. ( 24) and the procedure discussed in Sec. 2.3 these solutions are poles of the S matrix and they are numerically available. Some approximations can be useful. In a first approximation we can retain for cotβ + o only the contribution of the poles calculated in the previous section and we obtain a simple third or fifth degree characteristic equation. Another approximation consists in solving only the real part of the characteristic equation as discussed in [40]. Let us consider the collision of 23 N a atoms in only a d partial wave, the spin-spin coupling being neglected. The shape resonance studied in fig. 9 and the bound state are interacting, it results two resonances whose position and width are varying with the magnetic field, as it is detailed in [40]. In the case of the s collision between 85 Rb atoms, energy variations of both width and shift are very large because of the previously discussed virtual state supported by the optical potential. The Feshbach resonance is coupled to this virtual state. Considering only the contribution of the virtual state in the development on the poles of cotβ + o we obtain the characteristic equation :

(

2 2µ k 2 -E b )(k -iκ v ) -i V 2 2κ v = 0. (25) 
A similar equation has been found by [START_REF] Marcelis | [END_REF] using the Feshbach formalism. iκ v is the pole associated with the virtual state (κ v < 0) and iN v its residue.

2 2µ V 2 with V 2 = -2κ v N v V 2
is the square of the coupling of the bound state with the virtual state. It is calculated by taking into account the normalisation factor of the Siegert virtual state (eq. ( B3)). This term is evaluated at 1.96 10 -8 K 2 in agreement with the cited reference. The solutions of eq. ( 25) are bound, virtual or resonance states according to the magnetic field strength or the energy of the bound state E b . Some of these solutions are discussed in this reference. We do not comment them here, because this discussion is out the scope of our paper.

Conclusion

An accumulated phase for the quantum defect theory is introduced from the Milne equation or from a transfer matrix description of the collision in the external part of the potential. This phase is related to the accumulated phase usually calculated below the threshold but it becomes complex above the threshold with two determinations β ± at energy E ± iη when η → 0 + . In the vicinity of the threshold the phase is continuous, with a discontinuity at the threshold for its derivative in the s partial wave case. From a quantum defect theory point of view, the phase defined in this work could be interesting for two reasons. Firstly, this phase is very smooth in each side of the threshold, both sides being related because the phase is an analytic function of the energy. As it appears on the illustrative examples, the energy dependence is due to the external part of the potential. The details of the potential in its inner part do not appear in the accumulated phase. In all the studied cases, the inner part is described only by a WKB phase shift. Secondly it should be noted, by examining eqs. (23)or (C3) and by comparing them to the well known reduction formula (C1), that all the closed and open channels are treated in a completely symmetric way. The energy dependence of the reaction matrix being negligible, the energy variations are taken into account by matrix in the form tan β + reaction matrix whatever the channel is closed or open. On the other hand, the well-known relation between the cotangent of the phase and the Green's function has two consequences. Firstly, the accumulated phase is a tool for the calculation of the bound, virtual, and resonance states. Secondly, the shift and the width of a Feshbach resonance which occurs in the ultracold collisions can be directly calculated by a simple formula involving the accumulated phase in a well defined optical potential. Our results are mostly obtained by numerical methods. However an algebraic form of the accumulated phase in the case of scattering by a long-range van der Waals potential would be more convenient for the localisation of the poles. 

dβ dk | kp = 2k p ( r∞ rc f 2 p dr + if p (r ∞ ) 2 2k p ). (B2) 
The integral rc 0 f 2 p dr can be evaluated by the same method by calculating the wronskian W (f p , f ) at r c . It is vanishingly small if the energy dependence of the function f (r) is neglected as it is usually assumed in the quantum defect theory. Finally we have :

dβ dk | kp = 2k p ( r∞ 0 f 2 p dr + if p (r ∞ ) 2 2k p ). ( B3 
)
For a bound state at energy E r = -κ 2 r , k p = iκ r the Siegert condition condition holds because f r (r) = f r (r ∞ )e -κr(r-r∞) at r ≥ r ∞ and the term in ( ) of the eq. ( B3) is ∞ 0 f 2 r dr. We have [10] 

dβ dE | r = - 1 2κ r dβ dκ | r = ∞ 0 f 2 r dr. (B4)
For a virtual state the term in ( ) is the inverse of the normalisation factor defined in [START_REF] García-Calderón | [END_REF] and more recently used in [36]. The term added to the overlap integral is now -ifv(r∞) 2 2|κv| , it takes into account the divergent part of the Siegert wave function associated to the pole.

In the special case of the Morse potential, dβ dk is a constant. The pole associated to a bound or a virtual state has the residue -i/πr e , independently of its position. This result approximately holds in the general case. The accumulated phase is a linear function of the complex k in the neighbourhood of the threshold. Moreover the residue is a purely imaginary number iN , where N = dβ dκ < 0. However, the inverse of the normalisation factor of the Siegert or bound state wave function, which is the overlap integral, is divergent at the threshold like 1/κ r,v .

Appendix C: multichannel collision

Some details on the multichannel collision case are given here. We only consider one open channel and a single Feshbach resonance. A generalisation is straightforward.

In the MQDT framework, the set of the solutions of the Schrödinger equation at short range is given in the matrix form f -gY where Y is the real short range reaction matrix involving all the closed (c) or open (o) channels, f and g denoting the diagonal matrix of the functions χf or χg where χ are the wave functions of the target defining the channels. By imposing on the closed channels the physical boundary conditions at large distances we obtain the wave function in the open channel ψ = f o -g o K where K is the physical reaction matrix, here reduced to a single element, operating only on the open channels. It is obtained by the reduction formula [10] :

K = Y oo -Y oc (tan β c + Y cc ) -1 Y oc (C1)
β c correspond to the accumulated phase in the closed channels calculated at the negative energy E -I c where I c is the threshold energy. In the problem of a magnetically tunable Feshbach resonance, only I c are varying with the magnetic field strength. By a pole analysis the bound state of interest E b can be isolated from the others and the physical reaction matrix is [40] which involves a normalisation factor and a rotation matrix operating only on the closed channels [40]. This rotation matrix gives the decomposition of the wave function of the bound state on the basis of the closed channels. V is energy independent as Y oc is. If the bound state E b is well isolated, the energy dependence of Ȳ is negligible and Ȳ is calculated at the threshold. By replacing the function f in Eq.8 by the function ψ previously defined and with the help of Eq. ( 5), we obtain the collision matrix S = e 2iδ : S = tan β -+ K tan β + + K × W (g, P -) W (g, P + ) . (C3)

K = Ȳ - V 2 E -E b (C2)
The second term of the r.h.s. of this equation is generally non resonant with a weak energy dependence. From Eq.(C2) and Eq.(C3) we obtain for the S-matrix

S = E -E b - V 2 tan β -+ Ȳ E -E b - V 2 tan β + + Ȳ S opt (C4)
which can be identified with the more familiar form :

S = S opt (1 - 2iΓ(E) E -E b -∆(E) + iΓ(E) ) (C5)
where ∆(E) -iΓ(E) =

V 2 tan β -+ Ȳ is commented in the text. In Eq. (C4) S opt , corresponding to the non resonant open channel collision matrix in absence of the bound state, is given by :

S opt = tan β -+ Ȳ tan β + + Ȳ × W (g, P -) W (g, P + ) . ( C6 
)
Using the definition of the phaseshift φ = tan -1 Ȳ we obtain :

S opt = tan(β -+ φ) tan(β + + φ) × W (g, P -) W (g, P + ) = W ( f, P -)

W ( f, P + ) , ( C7 
)
where g(r) = g(r) cos φ + f (r) sin φ and f(r) = -g(r) sin φ + f (r) cos φ are the phase-shifted g(r) and f (r) functions. The whole procedure, which introduces the phaseshift φ in the previous equations, is a special formulation of the 'phase-shifted transformation' of the MQDT parameters [47], [48]. By comparing this equation with the Eq. ( 22) it can be noticed that S opt is the collision matrix in the optical open channel defined in the text. 
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 1 Figure 1. Amplitude of the reflection coefficient |R(r)| = | m 21 (r) m 11 (r) |. m 21 (r) and m 11 (r) are elements of the transfer matrix M(r) evaluated at each value of the radial distance (in a logarithmic scale) from the minimum r 0 = 9.77 u.a. to the asymptotic zone 1200 u.a. of the 3 Σu potential of the 23 N a 2 dimer in s partial wave at different energies.

r 2 )

 2 +V (r) we deduce the delayed and advanced Green's functions G ± = lim η→0 G(E±iη).

3. 2

 2 alkali-metal dimer potentials 3.2.1 accumulated phases. We examine examples of scattering by potentials with long-range part corresponding to the ground molecular state 1 Σ g and 3 Σ u of the dimer of sodium 23 N a 2 and rubidium 85 Rb 2 Page 7 of 28 URL: http://mc.manuscriptcentral.com/tandf/s partial wave (figs. 2, 3), in d partial wave for sodium (fig.

Figure 2 . 21 m 11 ,Figure 3 .

 221113 Figure 2. Accumulated phase for collision of 23 N a atoms in s partial wave vs function of sign(E) q 2µ 2 |E|. Energy varies from -15mK to 15mK. (a) ----corresponds to real part of the accumulated phase mod1 in the 1 Σg potential, (b) • • •• 3 Σu, (c) -• --• the LJ potential, (d) -• • -•• the real part of m 21 m 11, all the imaginary parts are identical (long line).
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 56 Figure 5. Accumulated phase for collision of 23 N a atoms in d partial wave. Same legend as in fig.2. In the inset the imaginary part of the accumulated phases are plotted vs.k 2 +1 at energy lower than 400µK.
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 27 Figure 7. cotβ + for collision of85 Rb atoms in a s partial wave. Energy E in µK. Long line is the real part of cotβ + , -• -its imaginary part. Imβ + = 0 for E < 0 and negative for E > 0 with a deep minimum very close to the threshold, see the inset. The truncated development iNr k-iκr + Br is represented by ---for its real part, and by a dot line for its imaginary part. The vertical line at E = -0.38µK is the asymptote where the bound state is localised. In the inset same plots with a smaller energy scale.
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 83 Figure 8. cot β -for 85 Rb 2 3 Σu in a s partial wave. The conjugate complex of the pole development iNv k-iκv + N b E-E b

Figure 9 .

 9 Figure 9. cot β -(E) (full line) for 23 N a 2 3 Σu in a d partial wave as function of E. The shape resonance corresponds to a pole at complex energy E R = 5.07 -i2.08mK very close to the top of the barrier at 5.18mK. The conjugate complex of the development on the conjugate poles is plotted for comparison (dashed line).
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 28442 List of the figures and captions• Fig.1Amplitude of the reflection coefficient |R(r)| = | m21(r) m11(r) |. m 21 (r) and m 11 (r) are elements of the transfer matrix M(r) evaluated at each value of the radial distance (in a logarithmic scale) from the minimum r 0 = 9.77 u.a. to the asymptotic zone 1200 u.a. of the 3 Σ u potential of the 23 N a 2 dimer in s partial wave at different energies.• Fig.2Accumulated phase for collision of23 N a atoms in s partial wave vs function of sign(E) 2µ2 |E|. Energy varies from -15mK to 15mK. (a) ----corresponds to real part of the accumulated phase mod1 in the 1 Σ g potential, (b)• • •• 3 Σ u , (c) -• --• the LJ potential, (d) -• • -•• the real part of m21m11 , all the imaginary parts are identical (long line).• Fig.3Accumulated phase for collision of 85 Rb atoms in s partial wave. Energy varies from -15mK to 15mK. In the inset same plots for (a) 1 Σ g and (b)3 Σ u with smaller energy scale. Same legend as fig.2. Accumulated phase function of the scalar ±(µC 6 )1 for potentials of 23 N a 2 , and 85 Rb 2 , both in 3 Σ u , with φ in fitted to have for both potentials a bound state localised at the threshold . Accumulated phases for 1 Σ g are not shown, being identical to the previous ones.• Fig.5Accumulated phase for collision of23 N a atoms in d partial wave. Same legend as in fig.2. In the inset the imaginary part of the accumulated phases are plotted vs. k 2 +1 at energy lower than 400µK. • Fig.6Accumulated phase for collision of 85 Rb atoms in g partial wave. Same legend as in fig.5.• Fig.7cotβ + for collision of85 Rb atoms in a s partial wave. Energy E in µK. Long line is the real part of cotβ + , -• -its imaginary part. Imβ + = 0 for E < 0 and negative for E > 0 with a deep minimum very close to the threshold, see the inset. The truncated development iNr k-iκr + B r is represented by ---for its real part, and by a dot line for its imaginary part. The vertical line at E = -0.38µK is the asymptote where the bound state is localised. In the inset same plots with a smaller energy scale.• Fig.8cot β -for 85 Rb 2 3 Σ u in a s partial wave. The conjugate complex of the pole development iNv k-iκv + Nb E-Eb + B v is plotted with the same legend as in fig. 7. • Fig.9 cot β -(E) (full line) for 23 N a 2 3 Σ u in a d partial wave as function of E. The shape resonance corresponds to a pole at complex energy E R = 5.07 -i2.08mK very close to the top of the barrier at 5.18mK. The conjugate complex of the development on the conjugate poles is plotted for comparison (dashed line). f and g are neglected, its limit at E = E p is dβ dE | Ep = 1 2kp dβ dk | kp , and
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Some points concerning the analyticity of the accumulated phase and the calculation of cot β(z) are developed in this appendix.

Firstly, we examine the analyticity of the functions f , g, α and φ. In the radius of convergence |V (r c ) + |, K(r c ) and K(r c ) can be developed in a convergent entire series of the energy. The initial conditions of the considered functions, including the special conditions defined in [1], are chosen as functions of the two parameters. They are analytical functions of the energy in the whole energy complex domain defined by the radius of convergence. It is asserted by a theorem of H.Poincaré that the solution of an ordinary differential equation, like the Milne or Schrödinger equation is analytic if the parameters, here

as well as the boundary conditions are analytic. Consequently, the functions f , g and α are analytic functions of the energy. At any r, the zeros of the functions f and g do not coincide because the wronskian W (f, g) = 1. Consequently, φ(r) given by eq. ( 2) is an analytic function of the energy.

Secondly, we examine the asymptotically convergent function P (r). A branch cut for the square root is needed. The most convenient choice is the real positive half-axis which is the singularity of the Green's operator : for any complex z = ρe iφ , 0 ≤ φ < 2π and Im √ z ≥ 0 corresponds to the physical sheet. Asymptotically P (r) behaves like e i √ zr (from now 2 2µ = 1) which converges if E is not real and positive. If z = E + iη and E = k 2 real, η infinitesimal and positive, P (r) behaves like e ikr-ηr , if z = E -iη like e -ikr-ηr and at real negative energy like e -κr . The P (r) function is regular at the infinity at any complex energy plane cut as previously discussed. This function is an analytic function of the energy in this domain. At the limit η → 0 + P (r) converges towards the functions P + and P -. As demonstrated by Titchmarsh [START_REF] Titchmarsh | Eigenfunctions expansions associated with second order differential equations[END_REF], for any choice of the functions f and g it can be found a linear combination of these functions which is asymptotically convergent and analytic. The accumulated phase could be defined from this theory known in the litterature as the Weyl-Titchmarsh or WTK theory, see for instance [23].

Finally, we show a simple procedure which allows to obtain the accumulated phase in the complex domain and its analytic continuation in the second Riemann sheet. The definition of cot β(z) can be read from eqs. ( 4), ( 5)

where denotes the derivative d dr . We have chosen to calculate the wronskian in eq. ( 5) at r c for simplicity. The analytic form of the function f , g and the derivative at r c are previously discussed. The logarithmic derivative is evaluated at r ∞ from the Hankel functions krh ± (kr) and their exact series development [START_REF] Messiah | [END_REF] :

where k = √ z and p , q are -1th and th degree polynomials : p 0 = 0, p 2 = -6 + 3ikr, q 2 = 3 -3ikr + (ikr) 2 , etc • • • This equation is valid for any complex k. At very low energy << 1µK, r ∞ becomes very large and it should be better to use the functions which take into account of the long range part of the potential [35]. In the case of a -γ 2r s tail with s even, we have to replace the last part of eq. (A2) with the help of the asymptotic development of the hankel functions corresponding to an index ν = + 1 2 + cµγk s-2 , where c is a constant defined by an implicit equation, see [35] and references therein. The inverse of the logarithmic derivative of the convergent function is obtained from its value at r = r ∞ by a R-matrix procedure. Although the numerical procedure is adapted from [START_REF] Baluja | [END_REF] with a well chosen Bsplines basis, we present here the R-matrix in the form given by Wigner [46]. Two Bloch operators are 

). The eigenfunctions of this hamiltonian are denoted ψ λ , the eigenvalues E λ are real. We calculate three R-matrices R ij (z) with i ≤ j and i, j = 1, 2 :

where r 1,2 stand for r c and r ∞ . The R-matrices are meromorphic functions of the energy, i.e. analytic functions with isolated poles on the real axis. The poles are unimportant because P P appear in both the numerator and the denominator of (A1). We have the system :

We deduce

From eq.(A2) and eq. (A4) it is now obvious that P (rc) P (rc) and consequently cot β(z) can be calculated at any complex energy and in the second Riemann sheet. As usually done eq. ( A2) is analytically continued in the second Riemann sheet through the branch cut 'from above', i.e. k + iη → k -iη and Rek ≥ 0. The other analytic continuation 'from below' is not considered.

Appendix B: normalisation factor

The residue of a pole p is dβ dk | p -1 , k is complex and β expressed as a function of k. p can be in the first sheet (p = r below for a bound state), or in the second sheet (p = v for a virtual state). For bound and virtual state it can be convenient to define a real κ by k = iκ.

A relation between the normalisation factor calculated from the residue of a pole of cot β and the overlap integral of the associated wave function is obtained with the help of simple arguments. At the energy of a pole E p = k 2 p (we take 2 2µ = 1) the regular function f p (r), i.e. f (r) at the energy E p , coincides with P (r) taken at this energy. With a well-chosen proportionality factor P (r) = α(r)sin(φ -β) where α and φ are given by Eqs. (1,2). That factor is unimportant because it disappears in Eqs. (3,5),or (A1). We calculate the overlap integral r∞ rc f p P dr, P (r) being taken at k in the neighbourhood of k p , r c is in the inner part of the potential and r ∞ in its asymptotic part. It is easy to show that :