New potential energy surfaces for the \tilde{X} and \tilde{A} states of CH__2 ${ }^{+}$

Philip Bunker, Wolfgang P. Kraemer, Sergei N. Yurchenko, Walter Thiel, Christopher F. Neese, Jennifer L. Gottfried, Per Jensen

- To cite this version:

Philip Bunker, Wolfgang P. Kraemer, Sergei N. Yurchenko, Walter Thiel, Christopher F. Neese, et al.. New potential energy surfaces for the \tilde{X} and \tilde{A} states of $\mathrm{CH} _2^{+}$. Molecular Physics, 2007, 105 (10), pp.1369-1376. 10.1080/00268970701344534. hal-00513093

HAL Id: hal-00513093

https://hal.science/hal-00513093

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

New potential energy surfaces for the $\$\{\backslash$ tilde $X\} \$$ and \$\{\tilde A\}\$ states of CH\$_2^+\$

Journal:	Molecular Physics
Manuscript ID:	TMPH-2007-0059.R1
Manuscript Type:	Full Paper
Date Submitted by the Author:	15-Mar-2007
Complete List of Authors:	Bunker, Philip; The Steacie Institute for Molecular Sciences Kraemer, Wolfgang; Max Planck Institute for Astrophysics Yurchenko, Sergei; TU Dresden Thiel, Walter; Max Planck institute for Coal Research Neese, Christopher; University of Chicago Gottfried, Jennifer; University of Chicago Jensen, Per; Bergische Universität Wuppertal, FB C Theoretical Chemistry
Keywords:	potential energy surfaces, Renner effect, electronic spectra, CH 2
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.	
ch2plus_revised.tex	

New potential energy surfaces for the \tilde{X} and \tilde{A} states of CH_{2}^{+}

P. R. BUNKER
Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ont., Canada K1A 0R6
W. P. KRAEMER
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, Postfach 1523, D-85740 Garching, Germany
S. N. YURCHENKO* and W. THIEL
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
C. F. NEESE and J. L. GOTTFRIED
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, U. S. A.
PER JENSEN ${ }^{\dagger}$
Theoretische Chemie, Bergische Universität, D-42097 Wuppertal, Germany
(Received 00 Month 200x; In final form 00 Month 200x)

Abstract

We report new ab initio calculations of the three-dimensional potential energy surfaces for the Renner-effect coupled $\tilde{X}^{2} A_{1}$ ground electronic state and $\tilde{A}^{2} B_{1}$ first excited electronic state of the CH_{2}^{+}molecule. We also make an ab initio calculation of the spin-orbit coupling surface $A_{\mathrm{SO}}\left(r_{12}, r_{32}, \rho\right)$ between these states. Using these ab initio surfaces in our computer program RENNER, we calculate term values and absorption line intensities, and compare with recently observed high resolution spectra. Adjusting two parameters in the potential surfaces we are able to achieve satisfactory agreement with the experimental results except for those that involve the \tilde{A} state $\left(v_{2}^{\text {linear }}=8, l=1\right)$ vibronic level. The implication of this disagreement is discussed.

1 INTRODUCTION

This is the tenth in a series of papers by us on the CH_{2}^{+}molecular ion [1-9]. The problem of reconciling the experimentally determined Coulomb explosion image of the molecule with our theoretically predicted image was discussed in [4]; collaboration with experimentalists, using our results as a benchmark [5], allowed all systematic errors in the experiment to be removed and good agreement with our predicted image to be obtained (see [7] and the second, third and fourth paragraphs of the Introduction in [10]). In the course of this previous work we have determined the potential energy surface of the $\tilde{a}^{4} A_{2}$ excited electronic state of CH_{2}^{+}[8]. Our other papers on CH_{2}^{+}have been concerned with calculating spin-rovibronic term values, and simulating high resolution spectra, for the purpose of assisting and encouraging the experimental spectroscopic characterization of the Renner-coupled $\tilde{X}^{2} A_{1}$ and $\tilde{A}^{2} B_{1}$ electronic states of the molecule. We have described the development of our computer program RENNER [3,11,12], and have reviewed our work on the Renner effect [7]. A general account, with a bibliography, of the Renner effect is given in Chapter 13 of [13].
Significant experimental spectra of the CH_{2}^{+}molecule have now been obtained by the groups of Oka [1417] and Merkt [18, 19]. High resolution data is available for the ground and ν_{3} (asymmetric stretching)

[^0]levels of the \tilde{X} ground electronic state, and for the $v_{2}^{\text {linear }}(l)=8(1), 8(3), 9(0)$ and $9(2)$ levels of the \tilde{A} excited electronic state.
In this paper we report the results of new $a b$ initio calculations of the potential energy surfaces of the \tilde{X} and \tilde{A} states of CH_{2}^{+}, and of the spin-orbit coupling surface $A_{\mathrm{SO}}\left(r_{12}, r_{32}, \rho\right)$ between the states. We use our computer program RENNER to calculate spin-rovibronic term value differences, and compare with the experimental line positions. We make a small optimization of the $a b$ initio potential surfaces, by varying two parameters, in a fitting to the data. However, we cannot satisfactorily reproduce the position of the $\tilde{A} 8(1)$ vibronic state and it is clearly perturbed by what is almost certainly a high lying \tilde{X} state vibrational level (or levels). To verify this interpretation requires that the \tilde{X} state potential be obtained with greater precision, and this could be achieved if more ground state vibrational energy levels were obtained experimentally.

2 RESULTS

The ab initio energies were computed at the $\operatorname{CCSD}(\mathrm{T})$ level of coupled cluster theory with inclusion of all single and double substitutions from the Hartree-Fock reference determinant [20] augmented by a perturbative treatment of connected triple excitations [21,22] using the MOLPRO2002 computer program [23-25]. We used the augmented correlation-consistent polarized valence basis sets, aug-cc-pVTZ and aug-cc-pVQZ developed by Dunning and coworkers [26, 27], in the frozen-core approximation. The energies were extrapolated to the complete basis set limit [28].
For the upper (\tilde{A}) state we calculated the potential at 263 geometries, and for the lower (\tilde{X}) state we calculated the potential at 429 geometries. For both electronic states, the range of bond lengths covered was from 0.85 to $1.6 \AA$. The bond angle range was from 110° to 180° for the \tilde{A} state, and from 70° to 180° for the \tilde{X} state. The geometries were chosen so that energies up to $25000 \mathrm{~cm}^{-1}$ above the minimum on the \tilde{X} surface were covered with a uniform grid size. The computer program RENNER uses the analytical expressions for the two potential functions as given in Eq. (1) of [1], and the optimum values of the parameters in these expressions were determined in one simultaneous least squares fitting (see [12]) to the $a b$ initio energies. The values of the parameters are given in table 1 , where $r_{12}^{(\text {ref })}$ is the optimum bond length at linearity; the root-mean-square deviation of the fitting was $15 \mathrm{~cm}^{-1}$. From the fitting we obtain the electronic energy at the minimum of the \tilde{X} state as $-38.707335 E_{\mathrm{h}}$. For the \tilde{X} state the equilibrium bond length is calculated as $1.0934 \AA$, the equilibrium bond angle as 140.44°, and the barrier to linearity (with r relaxed) as $1066.3 \mathrm{~cm}^{-1}$.
In a separate $a b$ initio calculation, employing the computer code MOLPRO2002, we determined the spin-orbit coupling factor $A_{\text {SO }}$ between the \tilde{X} and \tilde{A} states, see Eq.(2) of [11], at 29 geometries with bond lengths from 0.85 to $1.6 \AA$, and bond angles from 80° to 180°. We used the multi-reference configurationinteraction method $[29,30]$ with a contracted [5s3p/3s] basis of triple-zeta quality [31], and an active space comprising five electrons in nine molecular orbitals, where the two core orbitals were frozen. Making a least squares fitting to the ab initio points, with the analytical expression for $A_{\mathrm{SO}}\left(r_{12}, r_{32}, \rho\right)$ as given in Eq. (38) of [11], we obtain the following expression (in cm^{-1}):

$$
\begin{equation*}
A_{\mathrm{SO}}\left(r_{12}, r_{32}, \rho\right)=32.24-5.06(1-\cos \rho)-[0.93+3.24(1-\cos \rho)]\left(\Delta r_{12}+\Delta r_{32}\right), \tag{1}
\end{equation*}
$$

where $\Delta r_{i 2}=r_{i 2}-r_{12}^{(\text {ref })}$, and ρ is the supplement of the bond angle. Using this expression for $A_{\mathrm{SO}}\left(r_{12}, r_{32}, \rho\right)$, and the analytical fit of our new ab initio potential energy surfaces, in the computer program RENNER, we calculated rovibrational energies of the \tilde{X} and \tilde{A} states of the CH_{2}^{+}molecule. The comparison of these results with observed transition wavenumbers (where we restrict attention to transitions between levels for which J is less than $7 / 2$) is given in the column headed (o-c $)^{b}$ in tables 2 and 3. In these two tables we use both the linear molecule bending quantum number $v_{2}^{\text {lin }}$ and the bent molecule bending quantum number $v_{2}^{\text {bent }}$ to label the levels. For these two electronic states of CH_{2}^{+}, the quantum
numbers are related by

$$
\begin{equation*}
v_{2}^{\text {lin }}=2 v_{2}^{\text {bent }}+\left|K_{a} \pm 1\right| \tag{2}
\end{equation*}
$$

where the plus sign applies to the upper (\tilde{A}) state and the minus sign to the lower (\tilde{X}) state. This is a special case (with $\Lambda=1$) of Eq. (13-177) of [13], and it follows because the \tilde{X} and \tilde{A} states of CH_{2}^{+} correlate with a Π state at linearity. The angular momentum quantum numbers are related by

$$
\begin{equation*}
|l|=K_{a} \tag{3}
\end{equation*}
$$

and in linear molecule notation the levels are labeled e or f as $J-(1 / 2)-K_{c}$ is odd or even, respectively; e levels having parity $+(-1)^{J-1 / 2}$, and f levels having parity $-(-1)^{J-1 / 2}$. The correlation between the energy level labels of linear and bent triatomic molecules is discussed in Section 17.5.2 on page 633 of [13].

From the observed minus ab initio calculated residuals (o-c) ${ }^{b}$ in tables 2 and 3, we see that there are four shortcomings in the calculation: The $\tilde{X}(0,0,0)$ state $K_{a}=2 \leftarrow 0$ combination differences are too low by about $4 \mathrm{~cm}^{-1}$ (previously [2] calculated too low by about $5 \mathrm{~cm}^{-1}$, as pointed out in [19]); the \tilde{X} state ν_{3} band wavenumbers are too high by about $1 \mathrm{~cm}^{-1}$; the \tilde{A} state $v_{2}^{\operatorname{lin}}(l)=8(3), 9(2)$ and $9(0)$ vibronic bands are too high by about $30 \mathrm{~cm}^{-1}$; and the $8(1)$ band is too high by about $70 \mathrm{~cm}^{-1}$. We adjusted two of the $a b$ initio parameters in an attempt to rectify the shortcomings. However, the offset of the position of the $8(1)$ band in relation to the $8(3), 9(0)$ and $9(2)$ bands is caused by a perturbation that could not be quantitatively accounted for, and the $8(1)$ band data was given a weight of zero in these further refinements.
Lowering the barrier to linearity in the \tilde{X} state by about $30 \mathrm{~cm}^{-1}$ will largely correct the calculated positions of the \tilde{A} state $8(3), 9(0)$ and $9(2)$ levels. As explained on page 113 of [12], this is most easily achieved by increasing the ground state bending parameter $f_{0}^{(1,-)}$, and thus we first adjusted $f_{0}^{(1,-)}$ in a least squares fitting to the data in tables 2 and 3 . The value obtained for $f_{0}^{(1,-)}$ was $-9888.0(1.9) \mathrm{cm}^{-1}$, where the number in parentheses is the standard error. This adjustment reduces the ground state barrier to linearity by $32 \mathrm{~cm}^{-1}$ to $1034 \mathrm{~cm}^{-1}$, and the equilibrium bond angle is increased by 0.4° to 140.8°. The observed-minus-calculated residuals obtained are given in the column headed (o-c) ${ }^{c}$ in tables 2 and 3 , and we see that as well as improving the agreement for the positions of the $8(3), 9(0)$ and $9(2)$ bands, this adjustment to the ground state bending potential has greatly improved the calculation of the ground state $K_{a}=2 \leftarrow 0$ combination differences. It has, however, moved the ν_{3} band further from its observed position. Thus, in a second least squares refinement, we adjusted both $f_{0}^{(1,-)}$ and $f_{13}^{(0)}$. The values obtained for the parameters were $f_{0}^{(1,-)}=-9883.7(2.8) \mathrm{cm}^{-1}$ and $f_{13}^{(0)}=-1310.7(44.0) \mathrm{cm}^{-1}$. The observed-minus-calculated residuals are given in the column headed (o-c) ${ }^{d}$ in tables 2 and 3 , and we see that the calculated ground state $K_{a}=2 \leftarrow 0$ combination differences, and the calculated ν_{3} band transitions, are significantly closer to experiment. For the final adjusted potentials, the barrier to linearity is $1033.0 \mathrm{~cm}^{-1}$, the equilibrium bond length is $1.0933 \AA$, and the equilibrium bond angle is 140.81° in the ground state.

Figure 1 shows the bending cross sections through the final adjusted potential energy surfaces with the bond lengths held fixed at their optimum value at linearity of $1.0889 \AA$. We have also drawn in the calculated positions of all the \tilde{X} state $\left(0, v_{2}^{\text {bent }}, 0\right) 0_{00}(J=1 / 2)$ bending levels up to that with $v_{2}^{\text {bent }}=$ 12 , and the calculated positions of the lowest rovibronic level in each of the \tilde{A} state vibronic levels having $v_{2}^{\text {linear }}(l)=8(3), 8(1), 9(2), 9(0)$ and $10(3)$. In order to refer these term values to the minimum of the bending potential, rather than to the lowest level, we have added the bending zero point energy which we calculate to be $543.96 \mathrm{~cm}^{-1}$. One might infer from the positions of the levels in this figure that, since the lowest rovibronic level of the $\tilde{A} 8(1)$ vibronic state is not far above that of the $0_{00}(J=1 / 2)$ level of the $\tilde{X}(0,8,0)$ vibronic state, a significant perturbation between these states could occur. However, it is the \tilde{X} $(0,8,0) K_{a}=1$ state, not the $\tilde{X}(0,8,0) K_{a}=0$ state, that has the correct symmetry to perturb the $\tilde{A} 8(1)$ vibronic state, and in our calculation the $\tilde{X}(0,8,0) K_{a}=1$ state is nearly $760 \mathrm{~cm}^{-1}$ below the $\tilde{X}(0,8,0)$ $K_{a}=0$ state (see figure $13-10$ in [13]).

To show the density of the \tilde{X} state vibrational levels as a function of their energy, we give the calculated positions of all the $0_{00}(J=1 / 2)$ rovibronic energies for the \tilde{X} state, up to that having $\left(v_{1}, v_{2}^{\text {bent }}, v_{3}\right)=$

Figure 1. Bending cross sections through the final adjusted potential energy surfaces (with $f_{0}^{(1,-)}=-9883.7 \mathrm{~cm}^{-1}$ and $f_{13}^{(0)}=$ $-1310.7 \mathrm{~cm}^{-1}$) with the bond lengths held fixed at $1.0889 \AA$ (the optimum value at linearity). The calculated $\tilde{X}\left(0, v_{2}, 0\right) 0_{00}(J=$ $1 / 2$) levels having $v_{2}^{\text {bent }}=0$ through 12 are drawn in, as are the lowest rovibronic levels of some of the calculated \tilde{A} state levels $v_{2}^{\text {linear }}(l)$ having $v_{2}^{\text {linear }}=8,9$ and 10 . The bending zero point energy of $543.96 \mathrm{~cm}^{-1}$ has been added to all energies so that they are referred to the minimum of the \tilde{X} state bending potential.
$(0,9,0)$, using the final adjusted potential energy surfaces, in table 4.

3 DISCUSSION

Using the ab initio dipole moment and transition moment surfaces, as calculated in [3], with the final adjusted potential surfaces that we have obtained here, we can calculate the positions and absorption intensities of all spectral lines arising from transitions within and between the \tilde{X} and \tilde{A} states of CH_{2}^{+}at any temperature (assuming Boltzmann equilibrium). In table 5 we list the results of a calculation, with $N(\max)=10$, of the positions and absorption intensities of all lines having intensity greater than 0.75 $\mathrm{km} / \mathrm{mol}$ in the region from 10500 to $12500 \mathrm{~cm}^{-1}$ at 400 K . Using these final potentials the $\left(v_{1}, v_{2}^{\text {bent }}, v_{3}\right)$ $=(3,3,0), K_{a}=1$ level of the \tilde{X} state is strongly mixed with the $v_{2}^{\text {linear }}(l)=8(1)$ level of the \tilde{A} state; this latter level has $v_{2}^{\text {bent }}=3$. The mixing is so strong that the eigenfunctions of both levels have the $\tilde{A} 8(1)$ basis state as that with the largest coefficient; in this circumstance, the computer program RENNER labels both levels as being the $\tilde{A} 8(1)$ vibronic state. This is the reason why there are two doublets in table 5 , between 11172 and $11215 \mathrm{~cm}^{-1}$, for which the two members have the same assignment. All lines arising from transitions to the $\tilde{A} 8(1)$ level would be doublets if we lowered the intensity threshold. Making a
similar calculation of line positions and absorption intensities using either our unadjusted ab initio potential energy surfaces, or those with $f_{0}^{(1,-)}$ adjusted to $-9888.0 \mathrm{~cm}^{-1}$, does not lead to the presence of doublets for which the two members have the same assignment, because there is no strong mixing of the $\tilde{X}(3,3,0)$ $K_{a}=1$ and $\tilde{A} 8(1)$ levels for those potentials even though they are both only very slightly different from our final potentials. As an aside, if we lower the intensity threshold, we find that the next most intense band in this region is that involving the $\tilde{A} 9(4)$ state, for which we calculate 25 lines between 11380 and $11500 \mathrm{~cm}^{-1}$ with intensities from 0.1 to $0.6 \mathrm{~km} / \mathrm{mol}$; transitions to this vibronic state have not yet been identified in the observed spectrum.

We have been unable to achieve satisfactory agreement for the position of the $\tilde{A} 8(1)$ vibronic state by adjusting the parameters that define our new $a b$ initio potential surfaces, in a fitting to the experimental term value differences. It is clear that this state is perturbed and pushed down by a high lying level, or levels, of the \tilde{X} state, but in tests we have found that the $\tilde{X}(3,3,0) K_{a}=1$ state alone cannot exert enough of a perturbation. It could be that the $\tilde{X}(2,5,0)$ state also participates in this perturbation via a Fermi resonance with the $\tilde{X}(3,3,0)$ state, or that the bulk of the perturbation is caused by another \tilde{X} state vibrational level.

Although CH_{2}^{+}is a simple molecule, and the level of $a b$ initio theory we have used is high, the potentials obtained are not good enough to enable us to calculate accurately \tilde{X} state levels at energies around 11000 cm^{-1} so that we can quantitatively account for the perturbation that the $\tilde{A} 8(1)$ vibronic state suffers. Further, because perturbations are very sensitive to small changes in potential function parameters, in order to achieve a satisfactory fitting to the observed position of the perturbed lines, the initial potentials have to be rather close to optimum, and there should be enough unperturbed data to provide a significant level of constraint for the fitting process. In this latter regard, it would be a great help to have experimental information giving the positions of more vibrational energy levels of \tilde{X}-state CH_{2}^{+}, and to have more bands assigned and analyzed in the the $\tilde{A} \leftarrow \tilde{X}$ electronic band system. With improved initial potentials, and more experimental input data, we would be able to vary more parameters in the least-squares fitting. This would not only improve the agreement with experiment for the perturbed $\tilde{A} 8(1)$ energy levels, but also lower the residuals for the unperturbed energy separations. For these separations, we obtain here typical residuals of a few cm^{-1}. However, the accuracy that could ideally be obtained with our model is probably somewhat better than that, as suggested by the fact that for the electronic ground state of water (which, admittedly, does not exhibit the Renner effect), a fitting to 550 energy level separations, involving rotation-vibration states with $J \leq 2$ in 103 vibrational states of six isotopologues, produced a standard deviation of $0.63 \mathrm{~cm}^{-1}$ [32]; this fitting used a model analogous to that of the present work.

ACKNOWLEDGMENTS

This work was supported by the European Commission through contract no. MRTN-CT-2004-512202 "Quantitative Spectroscopy for Atmospheric and Astrophysical Research" (QUASAAR). The work of P. J. is supported in part by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

[1] W. P. Kraemer, P. Jensen, and P. R. Bunker, Can. J. Phys. 72, 871 (1994).
2] P. Jensen, M. Brumm, W. P. Kraemer, and P. R. Bunker, J. Mol. Spectrosc. 172, 194 (1995).
3] G. Osmann, P. R. Bunker, P. Jensen and W. P. Kraemer, Chem. Phys. 225, 33 (1997).
4] G. Osmann, P. R. Bunker, W. P. Kraemer, and P. Jensen, Chem. Phys. Lett. 309, 299 (1999).
5 G. Osmann, P. R. Bunker, W. P. Kraemer, and P. Jensen, Chem. Phys. Lett. 318, 597 (2000).
[6] P. R. Bunker, M. C. Chan, W. P. Kraemer, and P. Jensen, Chem. Phys. Lett. 341, 358 (2001).
7] P. Jensen, T. E. Odaka, W. P. Kraemer, T. Hirano, and P. R. Bunker, Spectrochimica Acta Part A 58, 763 (2002).
[8] P. Jensen, S. S. Wesolowski, N. R. Brinkmann, N. A. Richardson, Y. Yamaguchi, H. F. Schaefer III, and P. R. Bunker, J. Mol. Spectrosc. 211, 254 (2002).
[9] P. R. Bunker, W. P. Kraemer, P. Jensen, Y-C. Lee, and Y-P. Lee, J. Mol. Spectrosc. 216, 419 (2002).
[10] S. N. Yurchenko, P. R. Bunker, and P. Jensen, J. Mol. Struc. 742, 43 (2005).
[11] P. Jensen, M. Brumm, W. P. Kraemer, and P. R. Bunker, J. Mol. Spectrosc. 171, 31 (1995).
[12] M. Kolbuszewski, P. R. Bunker, W. P. Kraemer, G. Osmann, and P. Jensen, Mol. Phys. 88, 105 (1996).
[13] P. R. Bunker and P. Jensen. Molecular Symmetry and Spectroscopy, 2nd Edition, NRC Research Press, Ottawa, Canada (2006).
[14] M. Rösslein, C. M. Gabrys, M.-F. Jagod, and T. Oka, J. Mol. Spectrosc. 153, 738 (1992).
[15] J. L. Gottfried and T. Oka, J. Chem. Phys. 121, 11527 (2004).
[16] C. M. Gabrys, D. Uy, M.-F. Jagod, and T. Oka, private communication. See table IV of [2].
[17] C. F. Neese, J. L. Gottfried, C. P. Morong, and T. Oka, to be published.
[18] S. Willitsch, L. L. Imbach, and F. Merkt, J. Chem. Phys. 117, 1939 (2002).
[19] S. Willitsch and F. Merkt, J. Chem. Phys. 118, 2235 (2003).
[20] G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
[21] M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett, J. Chem. Phys. 83, 4041 (1985).
[22] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
[23] MOLPRO version 2002.6, is a package of ab initio programs designed by H.-J. Werner and P. J. Knowles. It is based on previous versions by R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P. J. Knowles, T. Korona, R. Lindh, A.W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and H.-J. Werner.
[24] C. Hampel, K. Peterson, and H.-J. Werner, Chem. Phys. Lett. 190, 1 (1992).
[25] M. J. O. Deegan and P. J. Knowles, Chem. Phys. Lett. 227, 321 (1994).
[26] T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
[27] R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
[28] D. Feller, J. Chem. Phys. 96, 6104 (1992).
[29] H.-J. Werner and P.J. Knowles, J. Chem. Phys. 89, 5803 (1988).
[30] P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
[31] T. H. Dunning, J. Chem. Phys. 55, 716 (1971).
[32] P. Jensen, J. Mol. Spectrosc. 133, 438 (1989).

Table 1. The $a b$ initio potential energy parameters. The analytical expression for the potential functions is given in Eq. (1) of [1].

$r_{12}^{(\text {(ref) }} / \AA^{\circ}$	$1.088939(3)^{a}$	
a_{1} / A^{-1}	2.0	
$f_{1}^{(0)} / \mathrm{cm}^{-1}$	0.0	
$f_{11}^{(0)} / \mathrm{cm}^{-1}$	34591.3(16)	
$f_{13}^{(0)} / \mathrm{cm}^{-1}$	-1401.6(19)	
$f_{111}^{(0)} / \mathrm{cm}^{-1}$	2463.3(12)	
$f_{113}^{(0)} / \mathrm{cm}^{-1}$	-849.3(12)	
$f_{1111}^{(0)} / \mathrm{cm}^{-1}$	4287.4(33)	
$f_{113}^{(0)} / \mathrm{cm}^{-1}$	-726.3(43)	
$f_{1133}^{(0)} / \mathrm{cm}^{-1}$	-1008.7(59)	
	$\widetilde{X}^{2} A_{1}(\sigma=-)$	$\widetilde{A}^{2} B_{1}(\sigma=+)$
$f_{0}^{(1, \sigma)} / \mathrm{cm}^{-1}$	-10030.6(40)	22747.4(61)
$f_{0}^{(2, \sigma)} / \mathrm{cm}^{-1}$	27525.5(315)	4909.8(412)
$f_{0}^{(3, \sigma)} / \mathrm{cm}^{-1}$	-21202.3(1009)	2687.9(955)
$f_{0}^{(4, \sigma)} / \mathrm{cm}^{-1}$	19079.2(1494)	369.8(709)
$f_{0}^{(5, \sigma)} / \mathrm{cm}^{-1}$	-9007.0(1026)	
$f_{0}^{(6, \sigma)} / \mathrm{cm}^{-1}$	2175.5(265)	
$f_{1}^{(1, \sigma)} / \mathrm{cm}^{-1}$	-3013.2(40)	-4484.7(96)
$f_{1}^{(2, \sigma)} / \mathrm{cm}^{-1}$	2712.1(129)	-1626.8(373)
$f_{1}^{(3, \sigma)} / \mathrm{cm}^{-1}$	-4380.5(177)	43.2(367)
$f_{1}^{(4, \sigma)} / \mathrm{cm}^{-1}$	1220.7(78)	
$f_{11}^{(1, \sigma)} / \mathrm{cm}^{-1}$	-585.1(79)	-3670.3(235)
$f_{11}^{(2, \sigma)} / \mathrm{cm}^{-1}$	72.5(170)	-329.8(866)
$f_{11}^{(3, \sigma)} / \mathrm{cm}^{-1}$	-1688.8(108)	-3098.3(1099)
$f_{13}^{(1, \sigma)} / \mathrm{cm}^{-1}$	$332.0(94)$	$2715.5(276)$
$f_{13}^{(2, \sigma)} / \mathrm{cm}^{-1}$	1244.5(201)	1410.4(1083)
$f_{13}^{(3, \sigma)} / \mathrm{cm}^{-1}$	1083.8(128)	1706.4(1447)
$f_{111}^{(1, \sigma)} / \mathrm{cm}^{-1}$	-101.1(90)	-4937.9(269)
$f_{111}^{(2, \sigma)} / \mathrm{cm}^{-1}$	-1865.8(102)	-933.0(640)
$f_{113}^{(1, \sigma)} / \mathrm{cm}^{-1}$	-328.2(99)	1569.4(303)
$f_{113}^{(2, \sigma)} / \mathrm{cm}^{-1}$	1593.2(113)	2454.2(791)
$f_{1111}^{(1, \sigma)} / \mathrm{cm}^{-1}$	-2051.5(99)	-5167.4(389)
$f_{1113}^{(1, \sigma)} / \mathrm{cm}^{-1}$	430.1(125)	1735.4(478)
$f_{1133}^{(1, \sigma)} / \mathrm{cm}^{-1}$	1230.3(173)	2352.3(662)

${ }^{a}$ Quantities in parentheses are standard errors in units of the last digit quoted for the parameter.

Table 2. Experimentally derived term value differences $\Delta E_{\text {obs }}=E\left(\tilde{X}, v_{1}^{\prime},\left(v_{2}^{\text {bent }}\right)^{\prime}, v_{3}^{\prime}, J^{\prime}, N_{K_{a}^{\prime} K_{c}^{\prime}}^{\prime}\right)-E\left(\tilde{X}, v_{1}^{\prime \prime},\left(v_{2}^{\text {bent }}\right)^{\prime \prime}, v_{3}^{\prime \prime}, J^{\prime \prime}, N_{K_{a}^{\prime \prime} K_{c}^{\prime \prime}}^{\prime \prime}\right)$ for CH_{2}^{+}(in cm^{-1}) and residuals (observed - calculated) from RENNER calculations. $\Gamma_{\text {rve }}$ is the rovibronic symmetry of the level. In this table all term value differences have $v_{1}^{\prime}=\left(v_{2}^{\text {bent }}\right)^{\prime}=v_{1}^{\prime \prime}=\left(v_{2}^{\text {bent }}\right)^{\prime \prime}=v_{3}^{\prime \prime}=0$.

$\left(v_{2}^{\operatorname{lin}}\right)^{\prime}$	v_{3}^{\prime}	J^{\prime}	$N_{K_{a}^{\prime} K_{c}^{\prime}}^{\prime} \Gamma_{\mathrm{rve}}^{\prime}$	$\left(v_{2}^{\operatorname{lin}}\right)^{\prime \prime}$	$J^{\prime \prime}$	$N_{K_{a}^{\prime \prime} K_{c}^{\prime \prime}}^{\prime \prime}$	$\Gamma_{\mathrm{rve}}^{\prime \prime}$	$\Delta E_{\mathrm{obs}}^{a}$	$(\mathrm{o}-\mathrm{c})^{b}$	$(\mathrm{o}-\mathrm{c})^{c}$	$(\mathrm{o}-\mathrm{c})^{d}$	
1	0	$5 / 2$	2_{21}	B_{1}	1	$3 / 2$	1_{01}	B_{1}	304.61	4.18	0.29	0.15
1	0	$5 / 2$	2_{20}	A_{1}	1	$5 / 2$	2_{02}	A_{1}	275.11	4.18	0.27	0.13
1	0	$5 / 2$	2_{20}	A_{1}	1	$1 / 2$	0_{00}	A_{1}	319.38	4.18	0.30	0.17
1	0	$3 / 2$	2_{20}	A_{1}	1	$3 / 2$	2_{02}	A_{1}	271.76	3.94	0.13	0.00
1	0	$3 / 2$	2_{21}	B_{1}	1	$1 / 2$	1_{01}	B_{1}	301.28	3.96	0.17	0.04
1	0	$5 / 2$	3_{22}	A_{1}	1	$3 / 2$	2_{02}	A_{1}	317.01	4.05	0.26	0.13
1	0	$5 / 2$	3_{21}	B_{1}	1	$5 / 2$	3_{03}	B_{1}	272.81	4.05	0.22	0.09
1	0	$3 / 2$	2_{21}	B_{1}	1	$5 / 2$	3_{03}	B_{1}	227.52	3.94	0.09	-0.05
1	1	$5 / 2$	2_{02}	B_{2}	1	$3 / 2$	1_{01}	B_{1}	3160.169	-1.008	-2.009	-0.235
1	1	$3 / 2$	1_{01}	A_{2}	1	$1 / 2$	0_{00}	A_{1}	3145.881	-1.020	-2.039	-0.263
1	1	$1 / 2$	0_{00}	B_{2}	1	$3 / 2$	1_{01}	B_{1}	3116.613	-0.996	-2.047	-0.271
0	1	$5 / 2$	3_{13}	B_{1}	0	$3 / 2$	2_{12}	B_{2}	3172.195	-0.893	-2.109	-0.399
0	1	$1 / 2$	1_{11}	B_{1}	0	$3 / 2$	2_{12}	B_{2}	3100.305	-1.068	-2.252	-0.482
0	1	$3 / 2$	2_{11}	B_{1}	0	$5 / 2$	3_{12}	B_{2}	3083.199^{e}	-1.719	-2.985	-1.236

${ }^{a}$ The $K_{a}=2 \leftarrow 0$ combination differences are from [17], and the ν_{3} data are from [14] and [16].
${ }^{b}$ Residuals (in cm^{-1}) obtained from the ab initio calculation.
${ }^{c}$ Residuals (in cm^{-1}) from the fitting in which $f_{0}^{(1,-)}$ is adjusted (to $-9888.0 \mathrm{~cm}^{-1}$).
${ }^{d}$ Residuals (in cm^{-1}) from the fitting in which $f_{0}^{(1,-)}$ and $f_{13}^{(0)}$ are adjusted (to -9883.7 and $-1310.7 \mathrm{~cm}^{-1}$, respectively) .
${ }^{e}$ Given zero weight in least squares fitting because this level is perturbed (see [2]).

Table 3. Experimentally derived term value differences $\Delta E_{\mathrm{obs}}=E\left(\tilde{A}, v_{1}^{\prime},\left(v_{2}^{\text {lin }}\right)^{\prime}, v_{3}^{\prime}, J^{\prime}, N_{K_{a}^{\prime} K_{c}^{\prime}}^{\prime}\right)-E\left(\tilde{X}, v_{1}^{\prime \prime},\left(v_{2}^{\text {bent }}\right)^{\prime \prime}, v_{3}^{\prime \prime}, J^{\prime \prime}, N_{K_{a}^{\prime \prime} K_{c}^{\prime \prime}}^{\prime \prime}\right)$ for CH_{2}^{+} (in cm^{-1}) and residuals (observed - calculated) from RENNER calculations. $\Gamma_{\text {rve }}$ is the rovibronic symmetry of the level. In this table all term value differences have $v_{1}^{\prime}=v_{3}^{\prime}=v_{1}^{\prime \prime}=\left(v_{2}^{\text {bent }}\right)^{\prime \prime}=v_{3}^{\prime \prime}=0$.

$\left(v_{2}^{\text {bent }}\right)^{\prime}$	$\left(v_{2}^{\text {lin }}\right)^{\prime}\left(l^{\prime}\right)$	J^{\prime}	$N_{K_{a}^{\prime} K_{c}^{\prime}}^{\prime}$	$\Gamma_{\text {rve }}^{\prime}$	$\left(v_{2}^{\text {lin }}\right)^{\prime \prime}$	$J^{\prime \prime}$	$N_{K_{a}^{\prime \prime} K_{c}^{\prime \prime}}^{\prime \prime}$	$\Gamma_{\text {rve }}^{\prime \prime}$	$\Delta E_{\text {obs }}{ }^{\text {a }}$	$(\mathrm{o}-\mathrm{c})^{b}$	$(\mathrm{o}-\mathrm{c})^{c}$	$(\mathrm{o}-\mathrm{c})^{d}$
2	$8\left(3^{\text {f }}\right)$	5/2	330	A_{2}	1	5/2	322	A_{1}	10697.5477	-29.7635	-1.3428	-1.3228
2	$8\left(3^{\text {e }}\right.$)	5/2	331	B_{2}	1	3/2	221	B_{1}	10742.8314	-29.6276	-1.1827	-1.1641
2	$8\left(3^{\text {f }}\right)$	5/2	330	A_{2}	1	3/2	220	A_{1}	10742.8314	-29.6208	-1.1759	-1.1570
3	$8\left(1^{\text {f }}\right)$	3/2	1_{11}	B_{2}	1	5/2	221	B_{1}	10834.4647^{e}	-73.2775	-46.4222	
3	$8\left(1^{\text {e }}\right.$)	3/2	1_{10}	A_{2}	1	5/2	220	A_{1}	10835.4819^{e}	-72.5196	-44.8073	
3	$8\left(1^{\text {e }}\right.$)	3/2	110	A_{2}	1	3/2	202	A_{1}	11110.5960^{e}	-68.3322	-44.5386	
3	$8\left(1^{\text {f }}\right.$)	$3 / 2$	111	B_{2}	1	3/2	101	B_{1}	11139.0775^{e}	-69.0983	-46.1310	
3	$8\left(1^{\text {e }}\right.$)	3/2	1_{10}	A_{2}	1	1/2	000	A_{1}	$11154.8654{ }^{e}$	-68.3410	-44.5007	
3	$8\left(1^{\mathrm{e}}\right)$	1/2	111	B_{2}	1	3/2	221	B_{1}	10838.8883^{e}	-73.1962	-45.3045	
3	$8\left(1^{\text {f }}\right.$)	1/2	110	A_{2}	1	3/2	220	A_{1}	10839.8482^{e}	-72.5421	-43.9174	
3	$8\left(1^{\text {f }}\right.$)	1/2	1_{10}	A_{2}	1	3/2	202	A_{1}	$11111.6050{ }^{e}$	-68.6030	-43.7907	
3	$8\left(1^{\mathrm{e}}\right)$	1/2	111	B_{2}	1	3/2	101	B_{1}	$11140.1702{ }^{e}$	-69.2388	-45.1288	
3	$8\left(1^{\mathrm{e}}\right)$	5/2	211	B_{2}	1	5/2	221	B_{1}	10864.0665^{e}	-72.7054	-44.4874	
3	$8\left(1^{\text {f }}\right)$	5/2	212	A_{2}	1	5/2	$2{ }_{02}$	A_{1}	11136.0852^{e}	-70.7454	-49.1742	
3	$8\left(1^{\text {e }}\right.$)	5/2	211	B_{2}	1	3/2	101	B_{1}	11168.6830^{e}	-68.5225	-44.1926	
3	$8\left(1^{\text {e }}\right.$)	3/2	212	A_{2}	1	5/2	322	A_{1}	10819.6877^{e}	-74.8336	-48.7221	
3	$8\left(1^{\text {f }}\right.$)	$3 / 2$	211	B_{2}	1	5/2	321	B_{1}	10822.6385^{e}	-72.7816	-44.1630	
3	$8\left(1^{\text {f }}\right.$)	3/2	211	B_{2}	1	3/2	221	B_{1}	10867.9238^{e}	-72.6786	-44.0336	
3	$8\left(1^{\text {f }}\right.$)	3/2	211	B_{2}	1	5/2	303	B_{1}	$11095.4486{ }^{e}$	-68.7291	-43.9422	
3	$8\left(1^{\text {e }}\right.$)	3/2	212	A_{2}	1	3/2	202	A_{1}	11136.7001^{e}	-70.7799	-48.4566	
3	$8\left(1^{\text {f }}\right)$	3/2	211	B_{2}	1	1/2	101	B_{1}	$11169.1970{ }^{e}$	-68.7304	-43.8671	
3	$8\left(1^{\text {e }}\right.$)	5/2	313	B_{2}	1	5/2	321	B_{1}	10859.0846^{e}	-77.2066	-53.9099	
3	$8\left(1^{\text {f }}\right)$	5/2	312	A_{2}	1	5/2	322	A_{1}	10866.2110^{e}	-72.0310	-43.1393	
3	$8\left(1^{\text {e }}\right.$)	5/2	313	B_{2}	1	5/2	303	B_{1}	11131.8905^{e}	-73.1583	-53.6934	
3	$8\left(1^{\text {f }}\right.$)	5/2	312	A_{2}	1	3/2	202	A_{1}	11183.2266^{e}	-67.9741	-42.8706	
3	$9\left(2^{\text {e }}\right.$)	5/2	221	A_{1}	0	5/2	211	A_{2}	12145.7577	-25.4644	-3.8328	-3.9521
3	$9\left(2^{\text {f }}\right)$	5/2	220	B_{1}	0	5/2	212	B_{2}	12148.1639	-25.5687	-3.8687	-4.0278
3	$9\left(2^{\text {f }}\right.$)	5/2	220	B_{1}	0	3/2	110	B_{2}	12175.7841	-25.5354	-3.8194	-3.9790
3	$9\left(2^{\text {e }}\right.$)	5/2	$2{ }_{21}$	A_{1}	0	3/2	111	A_{2}	12176.6273	-25.5255	-3.8136	-3.9316
3	$9\left(2^{\text {f }}\right)$	3/2	221	A_{1}	0	3/2	211	A_{2}	12152.1844	-25.3450	-2.2750	-2.4389
3	$9\left(2^{\text {e }}\right.$)	3/2	220	B_{1}	0	3/2	212	B_{2}	12154.1943	-25.8342	-2.7008	-2.8635
3	$9\left(2^{\text {e }}\right.$)	3/2	220	B_{1}	0	1/2	1_{10}	B_{2}	12183.0590	-25.6645	-2.5753	-2.7406
3	$9\left(2^{\text {f }}\right)$	$3 / 2$	221	A_{1}	0	1/2	111	A_{2}	12183.9023	-25.6645	-2.5749	-2.7395
3	$9\left(2^{\text {f }}\right.$)	$5 / 2$	322	B_{1}	0	5/2	312	B_{2}	12146.8561	-26.3490	-3.2313	-3.3932
3	$9\left(2^{\text {e }}\right.$)	5/2	321	A_{1}	0	5/2	313	A_{2}	12151.5452	-26.6371	-3.3500	-3.5104
3	$9\left(2^{\text {e }}\right.$)	5/2	321	A_{1}	0	3/2	211	A_{2}	12192.4202	-26.4911	-3.2333	-3.3962
3	$9\left(2^{\text {f }}\right)$	5/2	322	B_{1}	0	3/2	212	B_{2}	12195.0335	-26.4140	-3.1824	-3.3427
4	$9\left(0^{\text {f }}\right)$	1/2	0_{00}	B_{1}	0	3/2	110	B_{2}	12241.8269	-29.3207	3.8088	3.9057
4	$9\left(0^{\text {f }}\right)$	3/2	1_{01}	A_{1}	0	5/2	211	A_{2}	12225.4328	-29.7947	3.2125	3.3068
4	$9\left(0^{\text {f }}\right)$	3/2	1_{01}	A_{1}	0	3/2	1_{11}	A_{2}	12256.3106	-29.8476	3.2399	3.3355
4	$9\left(0^{\text {e }}\right.$)	1/2	1_{01}	A_{1}	0	3/2	211	A_{2}	12227.1347	-29.2836	3.6605	3.7529
4	$9\left(0^{\text {e }}\right.$)	1/2	1_{01}	A_{1}	0	1/2	1_{11}	A_{2}	12258.8577	-29.5981	3.3657	3.4573
4	$9\left(0^{\text {f }}\right.$)	5/2	202	B_{1}	0	5/2	212	B_{2}	12255.2564	-30.8488	2.0820	2.1741
4	$9\left(0^{\text {f }}\right)$	5/2	$2{ }_{02}$	B_{1}	0	3/2	1_{10}	B_{2}	12282.8655	-30.8267	2.1203	2.2118
4	$9\left(0^{\text {e }}\right.$)	3/2	202	B_{1}	0	5/2	312	B_{2}	12208.3769	-30.6594	2.0900	2.1776
4	$9\left(0^{\text {e }}\right.$)	$3 / 2$	202	B_{1}	0	3/2	212	B_{2}	12256.5514	-30.7274	2.1360	2.2252
4	$9\left(0^{\text {e }}\right.$)	3/2	202	B_{1}	0	1/2	110	B_{2}	12285.4015	-30.5723	2.2468	2.3335
4	$9\left(0^{\text {e }}\right.$)	5/2	3_{03}	A_{1}	0	5/2	3_{13}	A_{2}	12254.3826	-32.2500	0.3937	0.4790
4	$9\left(0^{\text {e }}\right)$	5/2	303	A_{1}	0	3/2	211	A_{2}	12295.2414	-32.1202	0.4942	0.5770

${ }^{a}$ From [17].
${ }^{b}$ Residuals (in cm^{-1}) obtained from the ab initio calculation.
${ }^{c}$ Residuals (in cm^{-1}) from the fitting in which $f_{0}^{(1,-)}$ is adjusted (to $-9888.0 \mathrm{~cm}^{-1}$).
${ }^{d}$ Residuals (in cm^{-1}) from the fitting in which $f_{0}^{(1,-)}$ and $f_{13}^{(0)}$ are adjusted (to -9883.7 and $-1310.7 \mathrm{~cm}^{-1}$, respectively) . No entries given for the $8(1)$ vibronic state because of heavy mixing, see text.
${ }^{e}$ Given zero weight in the least-squares fittings because this level is perturbed.

Table 4. The term values E (in cm^{-1}) for \tilde{X}-state $J=1 / 20_{00}$ rovibronic levels calculated using the adjusted potential surfaces with $f_{0}^{(1,-)}=$ $-9883.7 \mathrm{~cm}^{-1}$ and $f_{13}^{(0)}=-1310.7 \mathrm{~cm}^{-1}$. $\Gamma_{\text {rve }}$ is the rovibronic symmetry of the level and v_{2} is $v_{2}^{\text {bent }}$.

$\Gamma_{\text {rve }}$	$\left(v_{1}, v_{2}, v_{3}\right)$	E		$\Gamma_{\text {rve }}$	$\left(v_{1}, v_{2}, v_{3}\right)$	E
A_{1}	$(0,0,0)$	0.0^{a}		A_{1}	$(0,7,0)$	9297.6
A_{1}	$(0,1,0)$	997.0		A_{1}	$(0,3,2)$	9391.0
A_{1}	$(0,2,0)$	2102.2		A_{1}	$(3,1,0)$	9476.8
A_{1}	$(1,0,0)$	2899.5		B_{2}	$(2,1,1)$	9603.3
B_{2}	$(0,0,1)$	3131.6		A_{1}	$(1,1,2)$	9856.7
A_{1}	$(0,3,0)$	3346.4		B_{2}	$(0,1,3)$	10157.9
A_{1}	$(1,1,0)$	3888.6		A_{1}	$(2,4,0)$	10247.1
B_{2}	$(0,1,1)$	4111.9		B_{2}	$(1,4,1)$	10405.4
A_{1}	$(0,4,0)$	4701.0		A_{1}	$(1,6,0)$	10492.5
A_{1}	$(1,2,0)$	4986.8		A_{1}	$(3,2,0)$	10573.6
B_{2}	$(0,2,1)$	5187.7		B_{2}	$(0,6,1)$	10632.8
A_{1}	$(2,0,0)$	5736.4		A_{1}	$(0,4,2)$	10672.9
B_{2}	$(1,0,1)$	5923.4		B_{2}	$(2,2,1)$	10679.0
A_{1}	$(0,5.0)$	6114.7		A_{1}	$(1,2,2)$	10898.6
A_{1}	$(0,0,2)$	6202.4		A_{1}	$(0,8,0)$	10923.9
A_{1}	$(1,3,0)$	6251.6		B_{2}	$(0,2,3)$	11178.2
B_{2}	$(0,3,1)$	6397.2		A_{1}	$(4,0,0)$	11194.7
A_{1}	$(2,1,0)$	6717.1		B_{2}	$(3,0,1)$	11275.7
B_{2}	$(1,1,1)$	6894.9		A_{1}	$(2,0,2)$	11531.0
A_{1}	$(0,1,2)$	7166.9		B_{2}	$(2,3,1)$	11730.0
A_{1}	$(1,4,0)$	7501.2		A_{1}	$(2,5,0)^{b}$	11598.5
A_{1}	$(0,6,0)$	7714.4		A_{1}	$(3,3,0)^{b}$	11796.2
B_{2}	$(0,4,1)$	7714.5		B_{2}	$(1,0,3)$	11814.6
A_{1}	$(2,2,0)$	7811.6		B_{2}	$(1,5,1)$	11897.3
B_{2}	$(1,2,1)$	7962.8		A_{1}	$(1,3,2)$	11988.5
A_{1}	$(0,2,2)$	8214.7		A_{1}	$(1,7,0)$	12064.6
A_{1}	$(3,0,0)$	8505.4		A_{1}	$(0,5,2)$	12128.6
B_{2}	$(2,0,1)$	8641.1		A_{1}	$(0,0,4)$	12147.6
A_{1}	$(1,5,0)$	8887.1		A_{1}	$(4,1,0)$	12155.8
A_{1}	$(1,0,2)$	8900.5		B_{2}	$(0,7,1)$	12191.9
A_{1}	$(2,3,0)$	9062.6		B_{2}	$(3,1,1)$	12228.1
B_{2}	$(1,3,1)$	9077.2		B_{2}	$(0,3,3)$	12321.0
B_{2}	$(0,5,1)$	9203.9		A_{1}	$(2,1,2)$	12480.4
B_{2}	$(0,0,3)$	9208.6		A_{1}	$(0,9,0)$	12591.1

${ }^{a}$ Full three-dimensional zero point energy $=3637.4 \mathrm{~cm}^{-1}$ relative to the Born-Oppenheimer minimum.
${ }^{b}$ These levels are in strong Fermi resonance and both gain the label ($3,3,0$) in the output of RENNER.

Table 5. Calculated lower term values $E^{\prime \prime}\left(\right.$ in cm^{-1}), transition wavenumbers $\nu\left(\mathrm{in} \mathrm{cm}{ }^{-1}\right.$), line strengths S (in D^{2}), and intensities I (in $\mathrm{km} / \mathrm{mol}$) for selected CH_{2}^{+}transitions with $v_{1}^{\prime}=v_{3}^{\prime}=v_{1}^{\prime \prime}=v_{3}^{\prime \prime}=0$.

$\left(v_{2}^{\text {bent }}\right)^{\prime}$	$\left(v_{2}^{\text {lin }}\right)^{\prime}\left(l^{\prime}\right)$	J^{\prime}	$N_{K_{a}^{\prime} K_{c}^{\prime}}^{\prime}$	$\Gamma_{\text {rve }}^{\prime}$	$\left(v_{2}^{\text {lin }}\right)^{\prime \prime}$	$J^{\prime \prime}$	$N_{K_{a}^{\prime \prime} K_{c}^{\prime \prime}}^{\prime \prime}$	$\Gamma_{\text {rve }}^{\prime \prime}$	$E^{\prime \prime}$			
					$\left.3^{\mathrm{f}}\right)$	$7 / 2$	3_{31}	B_{2}	1	$5 / 2$	2_{21}	B_{1}

30000
Molecular Physics

[^0]: *Present address: Institut fur Physikalische Chemie und Elektrochemie, TU Dresden, D-01062 Dresden, Germany
 ${ }^{\dagger}$ Corresponding author. Tel: +49 202439 2468; Fax: +49 202439 2509; E-mail: jensen@uni-wuppertal.de
 Molecular Physics
 ISSN 0026-8976 print/ ISSN 1362-3028 online © 2006 Taylor \& Francis Ltd
 http://www.tandf.co.uk/journals DOI: 10.1080/002689700xxxxxxxxxxxx

