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INTRODUCTION

This is the tenth in a series of papers by us on the CH + 2 molecular ion [1][2][3][4][5][6][7][8][9]. The problem of reconciling the experimentally determined Coulomb explosion image of the molecule with our theoretically predicted image was discussed in [4]; collaboration with experimentalists, using our results as a benchmark [5], allowed all systematic errors in the experiment to be removed and good agreement with our predicted image to be obtained (see [7] and the second, third and fourth paragraphs of the Introduction in [10]). In the course of this previous work we have determined the potential energy surface of the ã 4 A 2 excited electronic state of CH + 2 [8]. Our other papers on CH + 2 have been concerned with calculating spin-rovibronic term values, and simulating high resolution spectra, for the purpose of assisting and encouraging the experimental spectroscopic characterization of the Renner-coupled X 2 A 1 and à 2 B 1 electronic states of the molecule. We have described the development of our computer program RENNER [3,11,12], and have reviewed our work on the Renner effect [7]. A general account, with a bibliography, of the Renner effect is given in Chapter 13 of [START_REF] Bunker | Molecular Symmetry and Spectroscopy, 2nd Edition[END_REF].

Significant experimental spectra of the CH + 2 molecule have now been obtained by the groups of Oka [START_REF] Rösslein | [END_REF][15][16][17] and Merkt [18,19]. High resolution data is available for the ground and ν 3 (asymmetric stretching) (l) = 8(1), 8(3), 9(0) and 9(2) levels of the à excited electronic state.

In this paper we report the results of new ab initio calculations of the potential energy surfaces of the X and à states of CH + 2 , and of the spin-orbit coupling surface A SO (r 12 , r 32 , ρ) between the states. We use our computer program RENNER to calculate spin-rovibronic term value differences, and compare with the experimental line positions. We make a small optimization of the ab initio potential surfaces, by varying two parameters, in a fitting to the data. However, we cannot satisfactorily reproduce the position of the à 8(1) vibronic state and it is clearly perturbed by what is almost certainly a high lying X state vibrational level (or levels). To verify this interpretation requires that the X state potential be obtained with greater precision, and this could be achieved if more ground state vibrational energy levels were obtained experimentally.

RESULTS

The ab initio energies were computed at the CCSD(T) level of coupled cluster theory with inclusion of all single and double substitutions from the Hartree-Fock reference determinant [20] augmented by a perturbative treatment of connected triple excitations [21,22] using the MOLPRO2002 computer program [START_REF] Molpro Version | 6, is a package of ab initio programs designed by[END_REF][START_REF] Hampel | [END_REF][25]. We used the augmented correlation-consistent polarized valence basis sets, aug-cc-pVTZ and aug-cc-pVQZ developed by Dunning and coworkers [26,27], in the frozen-core approximation. The energies were extrapolated to the complete basis set limit [28].

For the upper ( Ã) state we calculated the potential at 263 geometries, and for the lower ( X) state we calculated the potential at 429 geometries. For both electronic states, the range of bond lengths covered was from 0.85 to 1.6 Å. The bond angle range was from 110 • to 180 • for the à state, and from 70 • to 180 • for the X state. The geometries were chosen so that energies up to 25 000 cm -1 above the minimum on the X surface were covered with a uniform grid size. The computer program RENNER uses the analytical expressions for the two potential functions as given in Eq. ( 1) of [1], and the optimum values of the parameters in these expressions were determined in one simultaneous least squares fitting (see [12]) to the ab initio energies. The values of the parameters are given in table 1, where r (ref) 12 is the optimum bond length at linearity; the root-mean-square deviation of the fitting was 15 cm -1 . From the fitting we obtain the electronic energy at the minimum of the X state as -38.707335 E h . For the X state the equilibrium bond length is calculated as 1.0934 Å, the equilibrium bond angle as 140.44 • , and the barrier to linearity (with r relaxed) as 1066.3 cm -1 .

In a separate ab initio calculation, employing the computer code MOLPRO2002, we determined the spin-orbit coupling factor A SO between the X and à states, see Eq.( 2) of [11], at 29 geometries with bond lengths from 0.85 to 1.6 Å, and bond angles from 80 • to 180 • . We used the multi-reference configurationinteraction method [29,30] with a contracted [5s3p/3s] basis of triple-zeta quality [31], and an active space comprising five electrons in nine molecular orbitals, where the two core orbitals were frozen. Making a least squares fitting to the ab initio points, with the analytical expression for A SO (r 12 , r 32 , ρ) as given in Eq. ( 38) of [11], we obtain the following expression (in cm -1 ):

A SO (r 12 , r 32 , ρ) = 32.24 -5.06(1 -cosρ) -[0.93 + 3.24(1 -cosρ)](∆r 12 + ∆r 32 ), (1) 
where ∆r i2 = r i2 -r

(ref)
12 , and ρ is the supplement of the bond angle. Using this expression for A SO (r 12 , r 32 , ρ), and the analytical fit of our new ab initio potential energy surfaces, in the computer program RENNER, we calculated rovibrational energies of the X and à states of the CH + 2 molecule. The comparison of these results with observed transition wavenumbers (where we restrict attention to transitions between levels for which J is less than 7/2) is given in the column headed (o-c) b in tables 2 and 3. In these two tables we use both the linear molecule bending quantum number v lin 2 and the bent molecule bending quantum number v bent 2 to label the levels. For these two electronic states of CH numbers are related by

v lin 2 = 2v bent 2 + |K a ± 1|, (2) 
where the plus sign applies to the upper ( Ã) state and the minus sign to the lower ( X) state. This is a special case (with Λ = 1) of Eq. (13-177) of [START_REF] Bunker | Molecular Symmetry and Spectroscopy, 2nd Edition[END_REF], and it follows because the X and à states of CH + 2 correlate with a Π state at linearity. The angular momentum quantum numbers are related by

|l| = K a , (3) 
and in linear molecule notation the levels are labeled e or f as J-(1/2)-K c is odd or even, respectively; e levels having parity +(-1) J-1/2 , and f levels having parity -(-1) J-1/2 . The correlation between the energy level labels of linear and bent triatomic molecules is discussed in Section 17.5.2 on page 633 of [START_REF] Bunker | Molecular Symmetry and Spectroscopy, 2nd Edition[END_REF].

From the observed minus ab initio calculated residuals (o-c) b in tables 2 and 3, we see that there are four shortcomings in the calculation: The X(0,0,0) state K a = 2←0 combination differences are too low by about 4 cm -1 (previously [2] calculated too low by about 5 cm -1 , as pointed out in [19]); the X state ν 3 band wavenumbers are too high by about 1 cm -1 ; the à state v lin 2 (l) = 8(3), 9(2) and 9(0) vibronic bands are too high by about 30 cm -1 ; and the 8(1) band is too high by about 70 cm -1 . We adjusted two of the ab initio parameters in an attempt to rectify the shortcomings. However, the offset of the position of the 8(1) band in relation to the 8(3), 9(0) and 9(2) bands is caused by a perturbation that could not be quantitatively accounted for, and the 8(1) band data was given a weight of zero in these further refinements.

Lowering the barrier to linearity in the X state by about 30 cm -1 will largely correct the calculated positions of the à state 8(3), 9(0) and 9(2) levels. As explained on page 113 of [12], this is most easily achieved by increasing the ground state bending parameter f

(1,-) 0
, and thus we first adjusted f (1,-) 0 in a least squares fitting to the data in tables 2 and 3. The value obtained for f (1,-) 0 was -9888.0(1.9) cm -1 , where the number in parentheses is the standard error. This adjustment reduces the ground state barrier to linearity by 32 cm -1 to 1034 cm -1 , and the equilibrium bond angle is increased by 0.4 • to 140.8 • . The observed-minus-calculated residuals obtained are given in the column headed (o-c) c in tables 2 and 3, and we see that as well as improving the agreement for the positions of the 8(3), 9(0) and 9(2) bands, this adjustment to the ground state bending potential has greatly improved the calculation of the ground state K a = 2←0 combination differences. It has, however, moved the ν 3 band further from its observed position. Thus, in a second least squares refinement, we adjusted both f . The observedminus-calculated residuals are given in the column headed (o-c) d in tables 2 and 3, and we see that the calculated ground state K a = 2←0 combination differences, and the calculated ν 3 band transitions, are significantly closer to experiment. For the final adjusted potentials, the barrier to linearity is 1033.0 cm -1 , the equilibrium bond length is 1.0933 Å, and the equilibrium bond angle is 140.81 • in the ground state.

Figure 1 shows the bending cross sections through the final adjusted potential energy surfaces with the bond lengths held fixed at their optimum value at linearity of 1.0889 Å. We have also drawn in the calculated positions of all the X state (0, v bent 2 , 0) 0 00 (J = 1/2) bending levels up to that with v bent 2 = 12, and the calculated positions of the lowest rovibronic level in each of the à state vibronic levels having v linear 2 (l) = 8(3), 8(1), 9(2), 9(0) and 10(3). In order to refer these term values to the minimum of the bending potential, rather than to the lowest level, we have added the bending zero point energy which we calculate to be 543.96 cm -1 . One might infer from the positions of the levels in this figure that, since the lowest rovibronic level of the à 8(1) vibronic state is not far above that of the 0 00 (J = 1/2) level of the X (0,8,0) vibronic state, a significant perturbation between these states could occur. However, it is the X (0,8,0) K a = 1 state, not the X (0,8,0) K a = 0 state, that has the correct symmetry to perturb the à 8(1) vibronic state, and in our calculation the X (0,8,0) K a = 1 state is nearly 760 cm -1 below the X (0,8,0) K a = 0 state (see figure 13-10 in [START_REF] Bunker | Molecular Symmetry and Spectroscopy, 2nd Edition[END_REF]).

To show the density of the X state vibrational levels as a function of their energy, we give the calculated positions of all the 0 00 (J = 1/2) rovibronic energies for the X state, up to that having (v 1 , v bent = -9883.7 cm -1 and f (0) 13 = -1310.7 cm -1 ) with the bond lengths held fixed at 1.0889 Š(the optimum value at linearity). The calculated X (0, v 2 , 0) 0 00 (J = 1/2) levels having v bent 2 = 0 through 12 are drawn in, as are the lowest rovibronic levels of some of the calculated à state levels v linear 2 (l) having v linear 2 = 8, 9 and 10. The bending zero point energy of 543.96 cm -1 has been added to all energies so that they are referred to the minimum of the X state bending potential.

(0,9,0), using the final adjusted potential energy surfaces, in table 4.

DISCUSSION

Using the ab initio dipole moment and transition moment surfaces, as calculated in [3], with the final adjusted potential surfaces that we have obtained here, we can calculate the positions and absorption intensities of all spectral lines arising from transitions within and between the X and à states of CH + 2 at any temperature (assuming Boltzmann equilibrium). In table 5 we list the results of a calculation, with N (max) = 10, of the positions and absorption intensities of all lines having intensity greater than 0.75 km/mol in the region from 10 500 to 12 500 cm -1 at 400 K. Using these final potentials the (v 1 ,v bent 2 ,v 3 ) = (3,3,0), K a = 1 level of the X state is strongly mixed with the v linear 2 (l) = 8(1) level of the à state; this latter level has v bent 2 = 3. The mixing is so strong that the eigenfunctions of both levels have the à 8(1) basis state as that with the largest coefficient; in this circumstance, the computer program RENNER labels both levels as being the à 8(1) vibronic state. This is the reason why there are two doublets in table 5, between 11 172 and 11 215 cm -1 , for which the two members have the same assignment. All lines arising from transitions to the à 8(1) level would be doublets if we lowered the intensity threshold. Making a adjusted to -9888.0 cm -1 , does not lead to the presence of doublets for which the two members have the same assignment, because there is no strong mixing of the X(3,3,0) K a =1 and à 8(1) levels for those potentials even though they are both only very slightly different from our final potentials. As an aside, if we lower the intensity threshold, we find that the next most intense band in this region is that involving the à 9(4) state, for which we calculate 25 lines between 11 380 and 11 500 cm -1 with intensities from 0.1 to 0.6 km/mol; transitions to this vibronic state have not yet been identified in the observed spectrum.

We have been unable to achieve satisfactory agreement for the position of the à 8(1) vibronic state by adjusting the parameters that define our new ab initio potential surfaces, in a fitting to the experimental term value differences. It is clear that this state is perturbed and pushed down by a high lying level, or levels, of the X state, but in tests we have found that the X(3,3,0) K a =1 state alone cannot exert enough of a perturbation. It could be that the X(2,5,0) state also participates in this perturbation via a Fermi resonance with the X(3,3,0) state, or that the bulk of the perturbation is caused by another X state vibrational level.

Although CH + 2 is a simple molecule, and the level of ab initio theory we have used is high, the potentials obtained are not good enough to enable us to calculate accurately X state levels at energies around 11 000 cm -1 so that we can quantitatively account for the perturbation that the à 8(1) vibronic state suffers. Further, because perturbations are very sensitive to small changes in potential function parameters, in order to achieve a satisfactory fitting to the observed position of the perturbed lines, the initial potentials have to be rather close to optimum, and there should be enough unperturbed data to provide a significant level of constraint for the fitting process. In this latter regard, it would be a great help to have experimental information giving the positions of more vibrational energy levels of X-state CH + 2 , and to have more bands assigned and analyzed in the the Ã← X electronic band system. With improved initial potentials, and more experimental input data, we would be able to vary more parameters in the least-squares fitting. This would not only improve the agreement with experiment for the perturbed à 8(1) energy levels, but also lower the residuals for the unperturbed energy separations. For these separations, we obtain here typical residuals of a few cm -1 . However, the accuracy that could ideally be obtained with our model is probably somewhat better than that, as suggested by the fact that for the electronic ground state of water (which, admittedly, does not exhibit the Renner effect), a fitting to 550 energy level separations, involving rotation-vibration states with J ≤ 2 in 103 vibrational states of six isotopologues, produced a standard deviation of 0.63 cm -1 [32]; this fitting used a model analogous to that of the present work. 

F

Table 1. The ab initio potential energy parameters. The analytical expression for the potential functions is given in Eq. ( 1) of [1].

r (ref) 12 / Å 1.088939(3) a a 1 / Å-1 2.0 f (0) 1 /cm -1 0.0 f (0) 11 /cm -1 34591.3(16) f (0) 13 /cm -1 -1401.6(19) f (0) 111 /cm -1 2463.3(12) f (0) 113 /cm -1 -849.3(12) f (0) 1111 /cm -1 4287.4(33) f (0) 1113 /cm -1 -726.3(43) f (0) 1133 /cm -1
-1008.7(59) 

X 2 A 1 (σ = -) A 2 B 1 (σ = +) f (1,σ) 0 /cm -
= E( X, v 1 , (v bent 2 ) , v 3 , J , N K a K c ) -E( X, v 1 , (v bent 2 ) , v 3 , J , N K a K c ) for CH + 2 (in cm -1
) and residuals (observedcalculated) from RENNER calculations. Γrve is the rovibronic symmetry of the level. In this table all term value differences have a The K a = 2←0 combination differences are from [17], and the ν 3 data are from [START_REF] Rösslein | [END_REF] and [16].

v 1 = (v bent 2 ) = v 1 = (v bent 2 ) = v 3 = 0. (v lin 2 ) v 3 J N K a K c Γ rve (v lin 2 ) J N K a K c Γ rve ∆E obs a (o-c) b (o-c) c (o-c) d 1 0 5/2
b Residuals (in cm -1 ) obtained from the ab initio calculation. c Residuals (in cm -1 ) from the fitting in which f

(1,-) 0

is adjusted (to -9888.0 cm -1 ). d Residuals (in cm -1 ) from the fitting in which f

(1,-) 0 and f (0) 13 are adjusted (to -9883.7 and -1310.7 cm -1 , respectively) . e Given zero weight in least squares fitting because this level is perturbed (see [2]). 

= E( Ã, v 1 , (v lin 2 ) , v 3 , J , N K a K c ) -E( X, v 1 , (v bent 2 ) , v 3 , J , N K a K c ) for CH + 2
(in cm -1 ) and residuals (observedcalculated) from RENNER calculations. Γrve is the rovibronic symmetry of the level. In this table all term value differences have 

v 1 = v 3 = v 1 = (v bent 2 ) = v 3 = 0. (v bent 2 ) (v lin 2 ) (l ) J N K a K c Γ rve (v lin 2 ) J N K a K c Γ rve ∆E obs a (o-c) b (o-c) c (o-c) d 2 8(3 f ) 5/2 330 A2 1 
= v 3 = v 1 = v 3 = 0. (v bent 2 ) (v lin 2 ) (l ) J N K a K c Γ rve (v lin 2 ) J N K a K c Γ rve E ν S I 2 

  X ground electronic state, and for the v linear 2

=

  -9883.7(2.8) cm -1 and f (0) 13 = -1310.7(44.0) cm -1

4 Figure 1 .

 41 Figure 1. Bending cross sections through the final adjusted potential energy surfaces (with f (1,-) 0

  line positions and absorption intensities using either our unadjusted ab initio potential energy surfaces, or those with f (1,-) 0

Table 2 .

 2 Quantities in parentheses are standard errors in units of the last digit quoted for the parameter. Experimentally derived term value differences ∆E obs

		1 -10030.6(40)	22747.4(61)
	f f f f f f f f f f f f f f f f f f f f f f	(2,σ) 0 (3,σ) 0 (4,σ) 0 (5,σ) 0 (6,σ) 0 (1,σ) 1 (2,σ) 1 (3,σ) 1 (4,σ) 1 (1,σ) 11 /cm -1 /cm -1 /cm -1 -21202.3(1009) 27525.5(315) /cm -1 19079.2(1494) /cm -1 -9007.0(1026) /cm -1 2175.5(265) /cm -1 -3013.2(40) /cm -1 2712.1(129) /cm -1 -4380.5(177) /cm -1 1220.7(78) -585.1(79) (2,σ) 72.5(170) 11 /cm -1 (3,σ) -1688.8(108) 11 /cm -1 (1,σ) 332.0(94) 13 /cm -1 (2,σ) 1244.5(201) 13 /cm -1 (3,σ) 1083.8(128) 13 /cm -1 (1,σ) -101.1(90) 111 /cm -1 (2,σ) -1865.8(102) 111 /cm -1 (1,σ) -328.2(99) 113 /cm -1 (2,σ) 1593.2(113) 113 /cm -1 (1,σ) -2051.5(99) 1111 /cm -1 (1,σ) 430.1(125) 1113 /cm -1 (1,σ) 1133 /cm -1 1230.3(173)	4909.8(412) 2687.9(955) 369.8(709) -4484.7(96) -1626.8(373) 43.2(367) -3670.3(235) -329.8(866) -3098.3(1099) 2715.5(276) 1410.4(1083) 1706.4(1447) -4937.9(269) -933.0(640) 1569.4(303) 2454.2(791) -5167.4(389) 1735.4(478) 2352.3(662)

a

Table 3 .

 3 Experimentally derived term value differences ∆E obs

Table 5 .

 5 Residuals (in cm -1 ) obtained from the ab initio calculation. c Residuals (in cm -1 ) from the fitting in which f Residuals (in cm -1 ) from the fitting in which f Given zero weight in the least-squares fittings because this level is perturbed. Calculated lower term values E (in cm -1 ), transition wavenumbers ν (in cm -1 ), line strengths S (in D 2 ), and intensities I (in km/mol) for selected CH + 2 transitions with v 1

	5/2	322	A1	10697.5477	-29.7635	-1.3428 -1.3228

b d e
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Table 4. The term values E (in cm -1 ) for X-state J=1/2 000 rovibronic levels calculated using the adjusted potential surfaces with f (1,-) 0 = -9883.7 cm -1 and f (0) 13 = -1310.7 cm -1 . Γrve is the rovibronic symmetry of the level and (0,0,3) 9208.6 A 1 (0,9,0) 12591.1

a Full three-dimensional zero point energy = 3637.4 cm -1 relative to the Born-Oppenheimer minimum.

b These levels are in strong Fermi resonance and both gain the label (3,3,0) in the output of RENNER.