The A $2 \Sigma+-\mathrm{X} 2 \Pi$ transition of SiCl revisited in the near ultraviolet |

Jacques F M Aarts

To cite this version:

Jacques F M Aarts. The A $2 \Sigma+-\mathrm{X} 2 \Pi$ transition of SiCl revisited in the near ultraviolet |. Molecular Physics, 2007, 105 (04), pp.437-439. 10.1080/00268970701244775 . hal-00513084

HAL Id: hal-00513084

https://hal.science/hal-00513084

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The A $\mathbf{2 \Sigma +} \mathbf{- X} \mathbf{2 \Pi}$ transition of SiCl revisited in the near ultraviolet |

Journal:	Molecular Physics		
Manuscript ID:	TMPH-2006-0106.R1		
Manuscript Type:	Full Paper		
Date Submitted by the	25-Jan-2007		
Complete List of Authors:	aarts, jacques; Leiden University, chemistry		
Keywords:	A-X emission of SiCl, C-X emission of SiCl4		

URL: http://mc.manuscriptcentral.com/tandf/tmph

The $\mathrm{A}^{\mathbf{2}} \Sigma^{+}-\mathrm{X}^{\mathbf{2}} \Pi$ transition of SiCl revisited in the near ultraviolet

By J. F. M. AARTS
Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University P.O.Box 9502, 2300 RA Leiden, The Netherlands

High-resolution emission spectra were obtained from a hollow cathode discharge in $\mathrm{SiCl}_{4} / \mathrm{Ar}$ mixtures. In the $360-450 \mathrm{~nm}$ region the emission of the $\tilde{\mathrm{C}}-\tilde{\mathrm{X}}$ transition of $\mathrm{SiCl}_{4}{ }^{+}$ was detected and also the $\mathrm{A}^{2} \Sigma^{+}-\mathrm{X}^{2} \Pi$ transition of SiCl , previously analyzed by Bredohl et al. Some new bands of the A-X system of SiCl were identified and their rotational structure analyzed. Improved molecular constants for the $\mathrm{A}^{2} \Sigma^{+}$state of SiCl have been obtained from the new data and those of Bredohl et al. For the emission of the $\tilde{\mathrm{C}}-\tilde{\mathrm{X}}$ transition of SiCl_{4}^{+}no vibrational or rotational structure could be resolved with a resolution of $10^{-3} \mathrm{~nm}$.
e-mail: j.aarts@chem.leidenuniv.nl
Keywords: A-X emission of $\mathrm{SiCl}, \tilde{\mathrm{C}}-\tilde{\mathrm{X}}$ emission of SiCl4+

1. Introduction

Emission from highly excited electronic states of polyatomic molecules is a rare phenomena. Exceptions are found in the group of tetrafluoro molecular ions, such as $\mathrm{CF}_{4}^{+}[1]$, and tetrachloro molecular ions, such as $\mathrm{SiCl}_{4}{ }^{+}[2]$. The $\tilde{\mathrm{C}}$ state of $\mathrm{SiCl}_{4}{ }^{+}$has been found to fluoresce in a photoion-fluorescence coincidence measurements following photoionzation of SiCl_{4} and the fluorescence was assigned to the $\tilde{\mathrm{C}}^{2} \mathrm{~T}_{2}-\tilde{\mathrm{X}}^{2} \mathrm{~T}_{1}$ and $\tilde{\mathrm{C}}^{2} \mathrm{~T}_{2}-\tilde{\mathrm{A}}^{2} \mathrm{~T}_{2}$ transitions of $\mathrm{SiCl}_{4}{ }^{+}$on the basis of electron and ion impact ionization of SiCl_{4} studied via emission[3]. This assignment was confirmed by dispersion of the fluorescence recorded with a resolution of 4 nm following photoexcitation with monochromatised synchrotron radiation[4], showing two broad bands with a maximum around 410 and 570 nm for the $\tilde{\mathrm{C}}-\tilde{\mathrm{X}}$ and $\tilde{\mathrm{C}}-\tilde{\mathrm{A}}$ transitions, respectively. Because the ground state of the parent ion $\tilde{\mathrm{X}}$ as well as the $\tilde{\mathrm{C}}$ state are bound in contrast tot the repulsive $\tilde{\mathrm{A}}$ state, a continuum is anticipated for the $\tilde{\mathrm{C}}-\tilde{\mathrm{A}}$ transition and at least some discrete part of emission for the $\tilde{\mathrm{C}}-\mathrm{X}$ transition .

The present high-resolution study of the emission from the $\tilde{\mathrm{C}}$ state of $\mathrm{SiCl}_{4}{ }^{+}$obtained from a much less defined excitation source of a discharge in $\mathrm{Ar} / \mathrm{SiCl}_{4}$ shows a continuum in the spectral range between 450 and 600 nm and in the $360-450 \mathrm{~nm}$ region another continuum together with a lot of structure. However, in the violet wavelength region also several transitions of the SiCl radical are known, in particular the $\mathrm{A}^{2} \Sigma^{+}-\mathrm{X}^{2} \Pi$ transition[5]. Detailed inspection of the $360-450 \mathrm{~nm}$ region with a resolution of $\approx 10^{-3} \mathrm{~nm}$ shows besides structureless emission also extensive radiation from overlapping bands of the A-X system of SiCl . This band system was studied by Bredohl et al.[5] and previously by Verma el al.[6]. Bredohl et al. analyzed transitions with v^{\prime} values of 0 and from 5 up to 13, but for the 11-0 and 13-1 transitions only one sub-band. In the present examination of the 360-450 nm wavelength region we identify and analyze a few new bands of the $\mathrm{A}-\mathrm{X}$ system of the SiCl radical, which together with a previous analysis of Bredohl et al.[5], yield more precise equilibrium constants for the $\mathrm{A}^{2} \Sigma^{+}$state of SiCl .

2. Experimental

Emission spectra were obtain from a hollow cathode of a dc discharge in a flowing mixture of $\mathrm{Ar} / \mathrm{SiCl}_{4}$ with experimental conditions similar to those described in a earlier study on $\mathrm{CF}_{4}{ }^{+}$emission[1]. Spectra were photographed in 15th or 16th orders of the 4 m CzernyTurner spectrograph at University College London with a resolution better than $10^{-3} \mathrm{~nm}$. Spectral line positions were obtained by means of Adobe Illustrator from digital recordings of the spectra with calibration lines.

3. Results and discussion

The bands of the A-X system of the SiCl radical consist of two sub-bands in which two branches have most of the intensity: R_{11} and Q_{11} of the ${ }^{2} \Sigma^{+}-{ }^{2} \Pi_{1 / 2}$ and Q_{22} and P_{22} of the ${ }^{2} \Sigma^{+}-{ }^{2} \Pi_{3 / 2}$ sub-band. Rotational constants were determined by fitting the lines to the HillVan Vleck formula[7] and by taking Λ-doubling in the $\Pi_{1 / 2}$ multiplet component into account by a term $\pm 1 / 2 p(J+1 / 2)$, where the plus and minus signs refer to the e and f levels. For the new bands and the previously analyzed 7-0 band we used a non-linear least-squares procedure in order to determine the molecular constants. The molecular constants obtained are given in table 1 in which some of the ground-state constants were fixed to values from a previous analysis of the $0-0$ and $0-1$ bands of the $\mathrm{B}^{2} \Sigma-\mathrm{X}^{2} \Pi$ system[5]. Table 2 presents the equilibrium constants of the $\mathrm{A}^{2} \Sigma^{+}$state by combining the B_{v} values of the previously determined values for $v=0,5-10$ and the present values for $v=11$ and 13 , omitting in the fit the less accurate value for $v=12$.

In the present analysis we did not calculate the J independent term ' o ' as in [5] and we did not include a small J-dependent multiplet-splitting parameter A_{J}, which was also disregarded in the analysis of the B-X transition[8]. The electronic perturbation term ' o ' can be calculated from the value of the Λ-doubling constant p, the spin-orbit coupling constant A_{v} and the rotational constant B_{v} of the Π state in the single perturber approximation. By omitting the ' o ' term, the present value for the band-origin v_{0} and A_{v} contain a small contribution of the ' o ' term. The previous determined values for ' v_{0} ',
' A_{v} ' and ' o ' are related to the present determination of molecular constants by $v_{0}=$ ' v_{0} ' $1 / 2$ ' o ' and $A_{v}=$ ' A_{v} ' -' o '. Taking these relations into account, the present values obtained for the molecular constants of the 7-0 band compare well with the previous determination[5].

The ν_{0} and A_{v} values presently obtained for the 13-1 band are more accurate than those previously obtained[5], because both sub-bands could be used in the analysis. For the molecular constants of the $v^{\prime}=11$ level of the A state, also both sub-bands of the 11-1 band were used instead of one sub-band for the previously reported 11-0 band[5]. In the present study also only one 11-0 sub-band was accessible for analysis due to spectral congestion, while the 11-1 band was a relatively less overlapped. Considerable overlapping of subbands occurred in almost all cases, while emission of the $\mathrm{Si}^{37} \mathrm{Cl}$ isotope produced supplementary congestion.

Close inspection of the spectra yielded also other bands terminating on $\boldsymbol{v} \boldsymbol{"}=\mathbf{1}$: the 9-1 and 12-1 bands. While the 9-1 band did not provide new information due to the known 9-0 band[5], the 12-1 band does. However only a part of the rotational structure of the latter band could be analyzed, because lines with J^{\prime} values lower than 20.5 could not be detected, probably due to perturbations.
It is noted that the molecular constants given in table 1 yield a standard deviation of the $v_{\text {obs }}-v_{\text {cal }}$ differences of about $0.05 \mathrm{~cm}^{-1}$ except for the 12-1 band, considerably better than about $0.1 \mathrm{~cm}^{-1}$ as obtained in the previous analysis for bands with $v^{\prime} \geq 7[5]$.

The currently observed bands provided revised values for the B_{v} rotational constants with $v=11$ and 13 levels of the A state and a new estimate for the $v=12$ level. The improved B_{v} values with $v=11$ and 13 together with the previously determined for the levels $v=0$ and 510 provided the equilibrium molecular constants of the A state given in table 2.

In the spectrum recorded with a resolution of $\approx 10^{-3} \mathrm{~nm}$, an intense continuum was also observed in the investigated wavelength region. This continuum was undoubtly resulting from the $\tilde{\mathrm{C}}-\tilde{\mathrm{X}}$ transition of $\mathrm{SiCl}_{4}{ }^{+}$due to the composition of the mixtures used: a small concentration of SiCl_{4} and an excess of Ar. This ensured an excess of Ar^{+}ions, which in the case of collisions with SiCl_{4} produce with a high probability $\mathrm{SiCl}_{4}{ }^{+}$ions in the $\tilde{\mathrm{C}}$ state via a near resonant charge exchange process. Due to the nonselective nature of the
excitation processes in the discharge, also other and higher electronic states of SiCl_{4} and $\mathrm{SiCl}_{4}{ }^{+}$are produced of which one or more dissociative states yield excited fragments such as the A state of SiCl . Upon using a discharge in He instead of Ar together with traces of $\mathrm{SiCl}_{4}[5]$, certainly yields a somewhat different distribution of excited states of SiCl_{4} and $\mathrm{SiCl}_{4}{ }^{+}$and related fragments in comparison with the present study.

Despite the high intensity of the radiation from the $\tilde{\mathrm{C}}$ state of $\mathrm{SiCl}_{4}{ }^{+}$in the current study, no discrete structure from the $\tilde{\mathrm{C}}$ state of $\mathrm{SiCl}_{4}{ }^{+}$could be found besides the continuum. Although not all discrete structure could be identified in the $360-450 \mathrm{~nm}$ range, it is believed that most if not all may be attributed to the $\mathrm{A}-\mathrm{X}$ system of SiCl . The principal rotational constant \mathbf{B} for the $\tilde{\mathbf{C}}$ and $\tilde{\mathbf{X}}$ states of $\mathrm{SiCl}_{4}{ }^{+}$will differ considerably from those obtained for the diatomic radical SiCl . Those for the $\mathrm{SiCl}_{4}{ }^{+}$parent ion can be estimated when one disregards the difference in equilibrium bond length $\mathrm{Si}-\mathrm{Cl}$ of SiCl_{4} and $\mathrm{SiCl}_{4}{ }^{+}$. Using $\mathrm{r}_{\mathrm{e}}=2.019 \AA[9]$ for SiCl_{4} yields then an estimate of ≈ 0.044 $\mathbf{c m}^{-1}$ for the \mathbf{B} value of the $\mathrm{SiCl}_{4}{ }^{+}$ion states. In view of this small value only a partly resolved rotational structure for the $\tilde{\mathbf{C}}-\tilde{\mathbf{X}}$ transition might be expected at the resolution presently available.

It is noted that in the photoelectron spectrum of $\mathrm{SiCl}_{4}[2]$ only vibrational structure could be resolved for the $\tilde{\mathrm{D}}^{2} \mathrm{~A}_{1}$ state but not for either the $\tilde{\mathrm{C}}{ }^{2} \mathrm{~T}_{2}$ state or $\tilde{\mathrm{X}}^{2} \mathrm{~T}_{1}$ states of $\mathrm{SiCl}_{4}{ }^{+}$at a resolution of $\mathbf{4 8} \mathbf{~ c m}^{-1}$ and $\mathbf{2 4} \mathrm{cm}^{-1}$ for the $\tilde{\mathbf{C}}$ respectively $\tilde{\mathbf{X}}$ state, or considerably smaller than the fundamental frequencies anticipated for the parent ion. The lack of structure of the $\tilde{\mathrm{C}}$ and $\tilde{\mathrm{X}}$ bands in the photoelectron spectrum as well as in the $\tilde{\mathrm{C}}-\tilde{\mathrm{X}}$ emission presently studied with a resolution of $\approx \mathbf{0 . 0 6} \mathrm{cm}^{-1}$ might indicate the presence of spectral congestion by several vibrational modes, spin-orbit coupling and/or Jahn -Teller distortion of the tetrahedral symmetry in the $\tilde{\mathrm{C}}$ as well as the $\tilde{\mathrm{X}}$ state of $\mathrm{SiCl}_{4}{ }^{+}$. For the $\tilde{\mathrm{C}}$ triply-degenerate state a spin spitting of $+285 \mathrm{~cm}^{-1}$ has been calculated[10]. This calculated splitting, however, might well be reduced by the Ham effect, as in the case of the $\tilde{\mathrm{C}}$ state of $\mathrm{CF}_{4}{ }^{+}$[11].

For a detailed study of the $\tilde{\mathrm{C}}$ state as well as the $\tilde{\mathrm{X}}$ state of $\mathrm{SiCl}_{4}{ }^{+}$, a higher resolution study of the $\tilde{\mathbf{C}}-\tilde{\mathbf{X}}$ emission would be of interest.

I am indebted to Professor M.C. van Hemert for stimulating discussions.

References

[1] J.F.M. Aarts, J.H. Callomon, Mol.Phys., 81,1383(1994).
[2] D.M.Smith, R.P.Tuckett, K.R.Yoxall, K.Codling, P.A.Hatherly, J.F.M.Aarts, M.Stankiewicz, J. Chem. Phys. 101, 10559 (1994).
[3] I.R.Lambert, S.M.Mason, R.P.Tuckett, A.Hopkirk, J. Chem.Phys., 89, 2675(1988).
[4] H.Biehl, K.J.Boyle, D.P.Seccombe, D.M.Smith, R.P. Tuckett, H.Baumgärtel, H.W.Jochims, J. Elec. Spectr. Rel. Phenomena, 97, 89(1998).
[5] H.Bredohl, I. Dubois, Y. Houbrechts, H. Leclercq, J. Phys. B, 11, L137(1978).
[6] N Sanii, R.D.Verma, Can. J. Phys., 43, 960(1965); S.R.Singhal, R.D.Verma, Can.J.Phys., 49,407(1971).
[7] G.Herzberg, Spectra of Diatomic Molecules, p.232, Van Nostrand(1950).
[8] H.Bredohl, Ph. Demoulin, Y. Houbrechts, F. Mélen, J.Phys. B,14, 1771(1981).
[9] R.R.Ryan, K.Hedberg, J Chem.Phys., 50, 4986(1969).
[10] R.N.Dixon, R.P.Tuckett, Chem.Phys.Lett., 140, 553(1987).
[11] H.Sommerdijk, M.C. van Hemert, J Chem.Phys., 112, 4124(2000).

Table 1. Molecular constants $\left(\mathrm{cm}^{-1}\right)$ from band fits of the $\mathrm{A}^{2} \Sigma^{+}-\mathrm{X}^{2} \Pi$ transition of $\mathrm{Si}^{35} \mathrm{Cl}$.

v^{\prime}	$v^{\prime \prime}$	ν_{0}	B^{\prime}	$D^{\prime} \times 10^{7}$	$B^{\prime \prime}$	$D^{\prime \prime} \times 10^{7}$	$A^{\prime \prime}$	$p \times 10^{3}$	$J_{\max }$ obs	N^{0} lines	σ fit
9	1	$24956.75(2)$	$0.19237(8)$	$3.0(7)$	0.25375^{a}	2.5^{a}	$206.82(11)$	$4.8(14)$	34.5	89	0.051
11	1	$25515.90(1)$	$0.19090(2)$	$3.8(1)$	0.25375^{a}	2.5^{a}	$206.77(5)$	$2.0(8)$	44.5	144	0.039
12^{b}	1	$25792.06(7)$	$0.19077(11)$	$5.9(4)$	0.25375^{a}	2.5^{a}			50.5	72	0.15
13	1	$26068.44(1)$	$0.18912(4)$	$3.3(2)$	0.25375^{a}	2.5^{a}	$206.82(6)$	$3(2)$	41.5	129	0.058
7	0	$24921.89(1)$	$0.19396(1)$	$3.74(4)$	0.25544^{a}	2.4^{a}	$207.14(2)$	$3.7(5)$	54.5	164	0.045

Values in parenthesis are one standard deviation in units of the last digits.
${ }^{\text {a }}$ Constants fixed and obtained from the $0-0$ and 0-1 B-X bands [5]
${ }^{\mathrm{b}}$ Only rotational levels with $J^{\prime} \geq 20.5$ observed
${ }^{c}$ From [5]; the values of the band origin v_{0} and the spin-orbit coupling constant A " have been corrected for omitting the term ' o '(see text); a term A_{J} has been disregarded[8]

Table 2. Equilibrium constants $\left(\mathrm{cm}^{-1}\right)$ for the $\mathrm{A}^{2} \Sigma^{+}$state of $\mathrm{Si}^{35} \mathrm{Cl}$.

B_{e}	$0.19861(15)$
α_{e}	$0.50(4) \times 10^{-3}$
γ_{e}	$-0.14(3) \times 10^{-5}$
$r_{e}(\AA)$	$2.3343(9)$

Values in parenthesis are one standard deviation in units of the last digits.

