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Ab initio study of the spin-orbit coupling between the A1Σ +u and b 3Πu electronic states of Na2

Electronic structure calculations have reached such a level of precision that a totally ab initio treatment can be envisioned to simulate experiments involving several electronic states that may be coupled. The increasing use of laser pulses in chemical physics [1,2,3], in our case to induce transition between electronic states, requires a complete wave packet dynamical treatment of the system in order to fully describe the simulated process. The couplings between electronic states, such as spin-orbit interaction, are often very weak but play an important role in a lot of experiments [4].

Extracting informations on these couplings via analysis of experimental data generally requires a huge amount of work [5,6] while they can be readily obtained from theory.

In this paper, we present such an ab initio "theoretical experiment" that will try to reproduce experimental data from Rutz et al. [4] involving three electronic states of Na 2 . The ground state, X 1 Σ + g , is coupled to the A 1 Σ + u state by a laser pulse interacting with the transition dipole moment between these two states, and the A 1 Σ + u state is coupled to the b 3 Π u state by spin-orbit interaction. The full description of the experiment requires a precise determination of the electronic states, of the transition dipole moment and of the spin-orbit coupling, computed from electronic structure theory and a time dependent simulation of the evolution of the nuclear wave packet from which the observables of interest will be computed. Na 2 has been the subject of numerous experimental and theoretical studies: the electronic potential energy functions have been derived from ab initio studies by several authors [7,8] and Rydberg-Klein-Rees (RKR) type potentials have been built from experimental data [9,10,11]. Transition dipole moments are also available from theoretical [12] and experimental [13] sources. The interaction between the A 1 Σ + u and b 3 Π u states due to the spin-orbit coupling has been deeply studied. Stolyarov et al. [14] observed this interaction in g factors. Dulieu and Julienne [15] predicted and Effantin et al. [5] observed perturbations in the spectra of these coupled states, however we did not find in the literature any coordinate dependent spin-orbit coupling function.

All these references give accurate information concerning our "theoretical experiment" but we chose to compute all the needed electronic structure data in order to ensure the global coherence of our calculations and to determine the complete spin-orbit coupling function. However, we compared our results to all available previous calculation.

For the nuclear motion study, the time dependent wave packet is obtained from the Schrödinger Where the time dependent hamiltonian, Ĥ is the sum

Ĥ = Ĥe + ĤSO + T -ˆ µ. E(t)
In the second section of this article, we will describe the electronic structure calculation and derive representations for the scalar-relativistic electronic hamiltonian, Ĥe , the spin-orbit interaction term ĤSO and the transition dipole moment operator ˆ µ. In the third section we will compute bound vibrational states of these electronic states. They will be used in the last section where the full time dependent Schrödinger equation will be solved to simulate the experiment.

Electronic structure

The electronic energies were computed using the MOLPRO package [16] for internuclear distances in the range of 3 < r < 20 bohr. The 10 core electrons of each Na atom are replaced by the effective core potential (ECP) developed by Fuentealba et al. [17]. The valence electron is represented by 8 s, 6 p and 1 d even tempered basis functions optimized with the ECP. The core-valence correlation is added by the corresponding core polarisation potential (CPP). The energy of each electronic state (X 1 Σ + g , A 1 Σ + u , b 3 Π u ) and the transition dipole moment for the transition X 1 Σ + g -A 1 Σ + u are determined using the internally contracted MRCI [18,19] where the reference comes from a MCSCF [20,21] calculation with a molecular active space formed by all the valence plus the 4s and 4p orbitals of the two Na atoms. In this MCSCF step, the two electronic components of b 3 Π u were averaged together, as well as the X 1 Σ + g and A 1 Σ + u electronic states.

The spin-orbit coupling terms are the matrix elements of the spin-orbit part of the pseudopotentials, ĤSO , evaluated in the basis set formed by the MRCI electronic wavefunctions of A 1 Σ + u and b 3 Π u . As references, the MRCI calculations used the MCSCF wavefunctions determined with an active space built with the valence orbitals. For these calculations, the same ECP as above is used without the CPP part but with inclusion of an accompanying spin-orbit potential that was adjusted.

Since the one-component ECP of Fuentealba et al. was adjusted to experimental energy data, the terms of the spin-orbit ECP were also adjusted to experimental spin-orbit splittings. We used the spin-orbit splittings of the 3p and 3d configuration [START_REF] Ch | Atomic Energy Levels[END_REF] as reference data for the adjustment of the p-and d-term, respectively; both adjustments were done seperately. The spin-orbit terms were adjusted in two-component valence average-level calculations with a formally non-relativistic Hamiltonian (including the ECP) for these configurations; this was done in numerical calculations using the GRASP code [START_REF] Dyall | GRASP: atomic numerical MCDHF package[END_REF]. By this method we generate two-component pseudopotentials V l,l+1/2 and V l,l-1/2 from which the spin-orbit potential V SO can easily be obtained:

V SO = 2 l=1 l 2l + 1 (V l,l+1/2 -V l,l-1/2 )P l l • ŝP l
P l is the projetion operator on the Hilbert subspace of angular symmetry l:

P l = l m l =-l |lm l lm l |
In accordance with the one-component ECP that consists of simple Gaussians, the terms of the spin-orbit potentials ∆V l = V l,l+1/2 -V l,l-1/2 were also chosen to be simple Gaussians; moreover, we fixed the exponents of the spin-orbit terms to the exponents of the respective one-component term and solely optimized the coefficients of the Gaussian functions. Table 1 shows the exponents, B and coefficients, β of both the one-component and the spin-orbit potential.

============================== Table 1 near here

==============================

We consider the following spin-orbit matrix elements

LS x = 1 Σ + u , M S = 0| ĤSO | 3 Π uy , M S = 1 LS y = 1 Σ + u , M S = 0| ĤSO | 3 Π ux , M S = 1 LS z = 3 Π ux , M S = 1| ĤSO | 3 Π uy , M S = 1 with ĤSO = 2 λ=1 V SO λ
where λ denotes one of the two Na atoms. LS x and LS z are pure imaginary terms and LS x = iLS y , the z axis being the internuclear axis.

The electronic energies, the transition dipole moment between X 1 Σ + g and A 1 Σ + u , and the spin-orbit coupling elements LS y and -iLS z were fitted by 14th order polynomial expansions of morse-type coordinate,

Q = 1 -exp[-0.3(r -r e )]
the 0.3 exponent being found suitable for all the functions. r e is the equilibrium internuclear distance of the given electronic state. For the coupling functions, r e is chosen to be the equilibrium internuclear distance of the electronic ground state X 1 Σ + .

The coefficients of the potential fits are given in Table 2. Note that the first coefficient gives the 2 a "shifted" coefficient that was used in all the bound states and dynamical calculations in order to fit the correct experimental transition energies (see below in Table 3). Figure 1 shows the energy of the three electronic states as a function of internuclear distance. The crossing of the A 1 Σ + u and b 3 Π u states occurs at r = 7.02 bohr.

==============================

Table 2 and Figure 1 near here ============================== Equilibrium geometries, r e , of the three electronic functions are given in Table 3, with other spectroscopic data. In order to compare our results to previous RKR potentials, we also derived the harmonic wavenumbers, ω e , and the anharmonic constants, ω e x e [START_REF] Papousek | Molecular vibrational-rotational spectra[END_REF], the equilibrium rotational constants, B e , the dissociation energies D e and the energy differences between the ground state and each excited state equilibrium positions, T e .

For comparison, non-relativistic CCSD(T) [START_REF] Hampel | [END_REF]26] calculations on the electronic ground state correlating the sub-shells 2s, 2p and 3s of each Na atoms have been carried out using the cc-pCVQZ [27] basis set. The corresponding values of r e = 5.835 bohr and ω e = 158.3 cm -1 are in nice agreement with the ECP + CPP / MRCI results which validates the accuracy of the present ab initio ECP + CPP / MRCI potentials. For these potentials, Table 3 shows that the equilibrium distances are always smaller by 0.01-0.02 bohr than the experimental values, the harmonic wavenumbers larger by 1-2 cm -1 and the energies D e are always smaller by 80-200 cm -1 . The discrepancies are stronger for the spectroscopic constants of the A 1 Σ + u state due the flatness of the potential. The equilibrium transition energies, T e , are 13 cm -1 below the experimental value for b 3 Π u and 78 cm -1 for A 1 Σ + u . The error in T e value is different for each state because the correlation energy treatment is different for single and triplet electronic states in MRCI. However, our results are in better agreement with experimental data than previous accurate ab initio data obtained by Magnier et al. [8] using configuration interaction calculations and pseudopotentials. The energy difference between the X 1 Σ + g and b 3 Π u electronic states at dissociation gives 16872 cm -1 which is in good agreement with the experimental value of 16956 cm -1 determined by Moore [START_REF] Ch | Atomic Energy Levels[END_REF] for the energy difference between X 2 S and A 2 P electronic states of Na. The coefficients for the fits of the coupling functions are given in Table 4. The transition dipole moment between X 1 Σ + g and A 1 Σ + u is plotted for r between 3 and 20 bohr in Figure 2 and is compared with other calculations [12,13]. The three curves present a similar behavior for values of r up to r e and our function is very close to recent ab initio data from Ahmed et al. [13] who calculated the transition dipole moment with the method used by Magnier et al. [8] for the electronic states. For larger values of r the theoretical data of Konowalow et al. [12] obtained at the MCSCF level does not tend towards the experimental atomic limit [12] of -3.56 ± 0.11 a.u. in contrary to the other ab initio functions. The transition dipole moment displays an almost linear behavior in the Franck Condon region of the ground state, around 6 bohr, but this approximation will not remain valid if one chooses to study transitions from an excited vibrational state of the ground electronic state that reaches broader part of the configuration space. ============================== Figure 2 and Table 4 near here ============================== The spin-orbit coupling elements between A 1 Σ + u and b 3 Π u are shown in Figure 3. Their variation in the crossing region of these two electronic states is very small and a linear approximation might again give reasonable results although we used the computed couplings in the calculations of the next sections. Up to now, no geometry dependent coupling was published. However, Dulieu and Julienne [15] used a variable function for the fine structure coupling 2LS y which varies from √ 2/3∆E F S = 8.11 cm -1 for r → ∞ to 5.47 cm -1 for r = 8.5 bohr, where ∆E F S = 17.1963 cm -1

==============================

is the atomic fine structure splitting of the first 2 P state of Na [START_REF] Ch | Atomic Energy Levels[END_REF]. Our ab initio calculations give ∆E F S = 17.21 cm -1 and 2LS y = 8.1 cm -1 at r → ∞, 2LS y = 5.48 cm -1 at r = 8.5 bohr and 2LS y = 6.01 cm -1 at r = 7.02 bohr (the crossing point of the potential electronic curves of A 1 Σ + u and b 3 Π u ). These values are in remarkable agreement due to the fact that the parameters of the pseudopotential (see Table 1) were fitted in orderto reproduce as closely as possible the atomic spin-orbit splitting. These values can also be compared to experimental values extracted from vibrational analysis giving constant couplings of 5.91±0.14 cm -1 , 5.769±0.006 cm -1 and 5.97±0.15 cm -1 [5,14,28]. In the basis of 1 Σ + u , M S = 0 ; 3 Π ux , M S = 1, 0, -1 ; 3 Π uy , M S = 1, 0, -1 , the sum of the scalarrelativistic electronic Hamiltonian, Ĥel and the spin-orbit coupling operator, ĤSO is associated to the matrix :

==============================

H el + H SO =           V ( 1 Σ + u ) LS y 0 LS y LS x 0 -LS x LS y V ( 3 Π u ) 0 0 LS z 0 0 0 0 V ( 3 Π u ) 0 0 0 0 LS y 0 0 V ( 3 Π u ) 0 0 -LS z -LS x -LS z 0 0 V ( 3 Π u ) 0 0 0 0 0 0 0 V ( 3 Π u ) 0 LS x 0 0 LS z 0 0 V ( 3 Π u )          
The eigenfunctions of Lz , labeled |M L , M S ,

|0, 0 = | 1 Σ + u , M S = 0 | ± 1, j = 1 √ 2 | 3 Π ux , M S = j ± i| 3 Π uy , M S = j with j = 1, 0 or -1, are introduced. In the basis {|0, 0 , |1, -1 , |-1, 1 , |-1, 0 , |1, 0 , |-1, -1 , |1, 1 },
and using the fact that LS x = iLS y , the above matrix becomes:

H ′ el +H ′ SO =           V ( 1 Σ + u ) √ 2LS y √ 2LS y 0 0 0 0 √ 2LS y V ( 3 Π u ) -iLS z 0 0 0 0 0 √ 2LS y 0 V ( 3 Π u ) -iLS z 0 0 0 0 0 0 0 V ( 3 Π u ) 0 0 0 0 0 0 0 V ( 3 Π u ) 0 0 0 0 0 0 0 V ( 3 Π u ) + iLS z 0 0 0 0 0 0 0 V ( 3 Π u ) + iLS z          
This matrix is now block-diagonal and highlights the fact that the b 3 Π u state splits into 6 components labeled Ω = 2, 1, 0, 0, - 

, 0 , 1 √ 2 [|1, -1 + | -1, 1 ] , 1 √ 2 [|1, -1 -| -1, 1 ]}: H ′′ el + H ′′ SO =   V ( 1 Σ + u ) 2LS y 0 2LS y V ( 3 Π u ) -iLS z 0 0 0 V ( 3 Π u ) -iLS z  
This matrix confirms that the only spin electronic component of b 3 Π u which interacts with A 1 Σ + u via spin-orbit coupling is Ω = 0 + corresponding to This interaction creates an avoided crossing between the two states. In order to reduce the number of spin-electronic states involved in the dynamics presented in the next sections, the preceeding matrix is reduced into a two dimensional space containing only the Ω = 0 + component of b 3 Π u and the A 1 Σ + u state. The reduced matrix in the basis of 1 Σ + u (Ω = 0 + ), 3 Π u (Ω = 0 + ) is:

| 3 Π u (Ω = 0 + ) = 1 2 -| 3 Π ux , M S = 1 -| 3 Π ux , M S = -1 + i| 3 Π uy , M S = 1 -i| 3 Π uy , M S = -1
H el + H SO = V ( 1 Σ + u ) 2LS y 2LS y V ( 3 Π u ) -iLS z
This diabatic representation of two coupled states was used in the following wave packet study.

Vibrational states determination

We computed bound vibrational states on the ground 1 Σ + g , the A 1 Σ + u , the b 3 Π u and the b 3 Π u (Ω = 0 + ) states using a Lanczos diagonalisation scheme [START_REF] Cullum | Lanczos algorithm for large symmetric eigenvalue computation[END_REF] on a grid of 512 points between 2.5 and 20 bohr.

Experimental energies of the A 1 Σ + u bound states were compiled by Gerber and Möller [10] and used to create a RKR potential for this electronic state, and a RKR potential for the b 3 Π u state was established by Whang et al. [11]. Table 5 shows the energies determined from our potentials and the RKR energies. The RKR potentials were made from experimental data associated to highly excited rovibrational states, and spin-orbit deperturbated in order to get uncoupled A 1 Σ + u and b 3 Π u states. There is a nice agreement between experimental and theoretical values although the difference tends to slowly increase up to 22 cm -1 at v = 20 for the singlet and up to 11 cm -1 at v = 20 for the triplet showing that our potentials are slightly less anharmonic than the RKR potentials. The energy splitting, A v , in the normal spin-orbit multiplet of a b 3 Π u vibrational state before interaction with the A 1 Σ + u state has been derived by Shimizu and Shimizu [6] in a perturbative expansion as a function of v :

A v = A e + α A (v + 1 2 ) 
where A e = 7.08 ± 0.06 cm -1 and α A = -0.0156 ± 0.0034 cm -1 .

In our case A v can be evaluated from the difference between the numbers in the columns associated with b 3 Π u and b 3 Π u (Ω = 0 + ) of Table 5 since the b 3 Π u is associated with the unperturbed terms b 3 Π u (Ω = ±1). A linear regression of this difference as a function of (v + 1/2) gave values of A e = 7.13 cm -1 and α A = -0.0171 cm -1 in agreement with Shimizu and Shimizu [6] numbers. This nice agreement shows that our LS z function is of good quality in a large part of configuration space, spanned by highly excited vibrational states. The spin-orbit coupling between A 1 Σ + u and b 3 Π u has been experimentally studied with great accuracy by Effantin et al. [5] who obtained state to state spin-orbit interaction parameters, ξ vv ′ , defined by

==============================

ξ vv ′ = 1 Σ + u , v|2LS y | 3 Π u (Ω = 0 + ), v ′ .
Using eigenstates obtained in the previous section and the spin-orbit coupling function of Table 4, we computed ξ vv ′ for v values from v = 0 to v = 17 and v ′ values from v ′ = 0 to v ′ = 50. The largest value is ξ 0,5 = 2.67 cm -1 but it is interesting to note that ξ vv ′ remains non negligible for a broad set of v and v ′ numbers and that the general coupling scheme does not seem to be reduced to the coupling of a particular A 1 Σ + u vibrational state to a particular b 3 Π u vibrational state. For example ξ 0,v ′ > 10 -2 cm -1 for v ′ values up to v ′ = 16 and ξ 17,v ′ > 10 -2 cm -1 for all v ′ < 40. Table 6 shows a selection of ξ vv ′ compared to those obtained by Effantin et 

Time dependent analysis

In order to further check the validity of our electronic calculations, we tried to simulate the time resolved experiment of Rutz et al. [4]. A pump laser pulse excites the molecule from the ground electronic state of Na 2 to the A 1 Σ + u state and a probe pulse identical to the pump ionizes the excited molecule to the ground state of Na + 2 via a two photon process involving the 1 Π g state. The ion signal is measured as a function of the delay between the pump and probe pulses and an oscillatory pattern is obtained, reflecting the oscillating movement of the wave packet on the A 1 Σ + u surface. An analysis of this signal gives information on the position of the vibrational energy levels of the system, and the influence of the spin-orbit coupling on the level positions is detected when the pulse carrier frequency is set to λ = 642 nm but is not seen for λ = 620 nm. These values of excitation energies are associated with resonances of the ionization step when the wave packet is at the outer or inner classical turning point of the A 1 Σ + u state, respectively. We used the Short Iterative Lanczos (SIL) [START_REF] Park | [END_REF] algorithm to propagate the wave packet on the three coupled states. The grid is the same as the one used in bound states determination above and the initial wave packet is the ground vibrational state of the ground electronic state, a reasonable guess since the vibrational temperature in the experiment is between 10 K and 50 K. The pump pulse is the same one as in the experiment and we carried out the evolution for times up to 3 ps. The experimental pump-probe pulse delays of ref [4] varies up to 60 ps, but the few oscillations that we describe with our propagation are sufficient to discuss most of the features observed. The probing part of the experiment was not simulated but the wave packet evolving on the A 1 Σ + u contains all the relevant information.

The theoretical oscillation period was computed from the oscillations of the expectation value of the bond length as a function of time. This value is equal to the measured oscillation period, especially during the first oscillations, when the wave packet spreading has not taken place. We used a pulse identical to the experimental one with a sech 2 envelope (FWHM= 110 fs, peak power 0.5 GW cm -2 ) and a given wavelength, λ. The complete pulse has the form

E(t) = A sech 2 [α(t -t 0 )] cos(2πt/λ)
Table 7 summarizes the pulse parameters used in our calculations and the theoretical and experimental oscillation periods. A good agreement is obtained, indicating that the first step of the process, i.e. the transition from the ground electronic state to the A 1 Σ + u state is well described in our simulation.

==============================

Table 7 near here ============================== The next step is the analysis of the populations of the vibrational levels of the A 1 Σ + u and b 3 Π u (Ω = 0 + ) states, done by projecting the time dependent wave packet |ψ(t) on the previously computed

eigenstates |ψ v |c v (t)| 2 = | ψ(t)|ψ v | 2
In the λ = 620 nm experiment, the most populated states are in the v = 12 to v = 14 range in the A 1 Σ + u electronic state and no effect of the spin-orbit coupling was detected. This is in agreement with our calculations (see figure 4). These levels are populated during the pulse duration (roughly 250 fs) and the population of all the triplet vibrational states are below 5 • 10 -4 , even after 3 ps when the wave packet has reached the coupling region several times in its oscillating movement.

In the λ = 642 nm experiment, the most populated states are in the v = 7 to v = 9 range and small deviations in the position of the lines were attributed to the spin-orbit coupling with triplet vibrational states around v ′ = 14. The plot of vibrational states population of the singlet (figure 5)

shows an important increase of the population of v = 7 to v = 9 states during the pulse excitation The first order perturbation term of two states coupled via spin-orbit interaction is

P vv ′ = ξ 2 vv ′ E v -E v ′ .
From Table 5, we can see that the energy difference between v = 13 and v ′ = 18 is less than 3 cm -1

and that the energy difference between v = 8 and v ′ = 14 is less than 6 cm -1 , indicating in both case a possibility of resonance. However, the ξ vv ′ coupling element from Table 6 is an order of magnitude stronger in the case of the v = 8 v ′ = 14 interaction which explains the larger population of this state in the λ = 642 nm experiment.

============================== Figure 4 and figure 5 near here

==============================

The largest experimental energy shift [4] of a vibrational level on the A 1 Σ + u due to spin-orbit coupling was observed for v = 8. The value of the shift was evaluated at δ 8 = 0.8 cm -1 . To obtain this shift, we must add the contribution of all the v ′ states to the perturbation of a given v state.

δ v = v ′ P vv ′
As noted above, states which are not in close energetic resonance may still contribute to the global shift of the level because the ξ vv ′ coupling terms remain non negligible for a large set of v and v ′ values. We obtain a global shift of δ 8 = 0.3 cm -1 . A probable reason of the difference between this value and the experimental one is molecular rotation that was not taken into account in our dynamical approach. Experimental data shows that rovibrational states up to J=25 are involved in the process and the summation in the preceeding equation should be on rovibrational states rather than only vibrational states.

Conclusion

The ab initio potential, transition dipole moment and spin-orbit coupling for the electronic states were computed with high accuracy and form a coherent package of data that can be used to simulate dynamical processes involving these states. We were able to reproduce experimental results from Rutz et al [4] concerning the oscillating period of the wave packet on the A 1 Σ + u state for two different excitation frequencies from the ground electronic state and the pattern of coupling between [13] and Konowalow et al. [12]. 3. The reference geometry, r e for each fit comes from Table 3. 
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 1 Figure 1: Variation of the potential energy of the X 1 Σ + g , A 1 Σ + u and b 3 Π u (Ω = 0 + ) electronic states of Na 2 with the internuclear distance.
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 2 Figure 2: Variation of the transition dipole moment between the X 1 Σ + g and A 1 Σ + u electronic states of Na 2 with the internuclear distance r, compared to previous ab-initio data from by Ahmed et al.
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 3 Figure 3: Variation of the spin-orbit coupling elements between the A 1 Σ + u and b 3 Π u electronic states of Na 2 with the internuclear distance.
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 4 Figure 4: Population of the most populated vibrational levels on a) A 1 Σ + u and b) b 3 Π u after excitation at λ = 620 nm.

Figure 5 :

 5 Figure 5: Population of the most populated vibrational levels on a) A 1 Σ + u and b) b 3 Π u after excitation at λ = 642 nm.
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Table 1 :

 1 Coefficients B and exponents β of the one-component ( V SDF ,[17]) and spin-orbit ( V SO )

	pseudopotential for Na.		
	l	B	β
	V SDF	
	0 10.839000 1.378000
	1	2.303000 0.663900
	2 -1.777000 0.924900
	V SO		
	1	0.015867 0.663900
	2 -0.001224 0.924900

Table 2 :

 2 Polynomial expansion coefficients of the electronic energies (in hartree) of the X 1 Σ + g , A 1 Σ + u , b 3 Π u electronic states of Na 2 . The C ′ 0 value shifts the surfaces in agreement with experimental transition energies of Table

Table 3 :

 3 Equilibrium geometries (/bohr) and spectroscopic constants (/cm -1 ) of the X 1 Σ + g , A 1 Σ + u , b 3 Π u electronic states of Na 2 .

	State		r e	ω e	ω e x e	B e	D e	T e
	X 1 Σ + g	RKR a Theo. A b	5.818631* 159.17732 0.760159 0.1546855 6022.6 5.83 156.8 5892
		Theo. B b	5.77	159.3			5725
		ECP+CPP/MRCI	5.7995	159.893	0.7487	0.1557	5950
	A 1 Σ + u	RKR c Theo. A b	6.87474 6.86	117.2703 117.5	0.3534801 0.1108142	8310 14680.682 8284 14575
		Theo. B b	6.85	119.5			8118	14581
		ECP+CPP/MRCI	6.8593	119.147	0.3810	0.1113	8068	14602
	b 3 Π u	RKR d	5.87075	154.209	0.47682	0.15195	9475.3 13520.946
		Theo. A b	5.87	154.6			9411	13447
		Theo. B b	5.81	153.0			9396	13304
		ECP+CPP/MRCI	5.8561	154.946	0.4722	0.1527	9316	13507

a Ref.

[9]

, b Ref.

[8] 

c Ref.

[10]

, d Ref.

[11]

.

* calculated from B e .

Table 4 :

 4 Polynomial expansion coefficients of the transition dipole moment between the X 1 Σ + g , A 1 Σ + u electronic states and of the spin-orbit coupling between the A 1 Σ + u and b 3 Π u electronic states of Na 2 .

	Coefficients Dipole moment (a.u.) LS y (/10 -5 ) (a.u.) -iLS z (/10 -5 ) (a.u.)
	C 0	-3.662650	1.635586	-2.286497
	C 1	-1.005127	-1.012301	2.009225
	C 2	-0.685894	0.350559	-0.908788
	C 3	-0.172353	0.748145	-0.006000
	C 4	1.694909	-0.649386	-0.344029
	C 5	4.232320	-4.163085	-2.639413
	C 6	-3.950725	3.259819	1.915624
	C 7	-12.639680	16.838510	9.289735
	C 8	11.693785	-4.351840	-3.316573
	C 9	29.699469	-31.730642	-18.524042
	C 10	-8.743500	-1.191377	-0.961422
	C 11	-33.603118	29.706639	16.776839
	C 12	-4.957655	7.978938	5.141925
	C 13	13.275650	-10.805054	-5.429050
	C 14	5.234212	-4.774218	-2.496550
	RMS error	0.00084	9.92×10 -9	4.11×10 -9

Table 5 :

 5 Vibrational states energies (/cm -1 ) of the X 1

Table 6 :

 6 State to state spin-orbit interaction parameters, ξ vv ′ (/cm -1 ).

	.52 14741.89 14739.24 13597.70 13597.92	13590.57
	1	

Table 7 :

 7 Pulse parameters and oscillation period of the wave packet.

	fs)

λ (/nm)

A (/a.u.) α (/(fs -1 )) t 0 (/fs) T calc (/fs) T exp (/URL: http://mc.manuscriptcentral.com/tandf/tmph