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Abstract

The dynamical Jahn-Teller effect including spin-orbit coupling is considered in the coordinate and mo-

mentum representations of the nuclear motion. The momentum representation is used for the asymptotical

solution of the dynamical equations in the quasiclassical Landau-Zener parametric limiting case. Vibronic

energy levels of the E ×E Jahn-Teller effect with spin-orbit coupling are calculated from the quasiclassical

secular equation. They are compared with numerically exact energy levels obtained by the diagonalization

of the Hamiltonian matrix in a harmonic oscillator basis. The comparison reveals reasonable accuracy of the

quasiclassical approximation for a wide range of quantum numbers and system parameters. The quasiclas-

sical analysis provides insight into the nature of the nonadiabatic dynamics of E × E Jahn-Teller systems

with spin-orbit coupling.
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1. INTRODUCTION

In this work, we develop an analytical description of the quantum dynamics of the E × E

Jahn-Teller (JT) effect with inclusion of the spin-orbit (SO) interaction. The SO interaction is of

relativistic origin and causes an energy splitting 2∆ of the potential-energy surfaces (PES) at the

symmetrical configuration of the system. The existence of the SO splitting has a significant impact

on the dynamics of the JT problem. Unlike in the nonrelativistic case (∆ = 0), there are three

nonadiabatic transition centers (where nonadiabatic coupling terms become singular). In addition,

a radial nonadiabatic coupling term appears in the dynamical equations. The radial adiabatic

potentials contain several new terms of SO origin. In this work, the main attention is paid to the

interplay of the SO splitting and the linear vibronic coupling, both of which are responsible for

nonadiabatic transitions in the system.

The Hamiltonian of the E × E JT effect with SO coupling was proposed in previous works,

see Ref. 1–3 and references therein. In methodological sense, the present work is close to the

quasiclassical (QC) analysis of the nonrelativistic E × E JT problem by Osherov and Voronin4.

The history of studies of the energy-level spectrum of the E × E JT effect without SO coupling

includes, among many others, the works of Teller and Jahn5,6, Wigner and Neumann7,8, Longuet-

Higgins9, Osherov and Voronin4,10, and Judd11,12. Many results and useful references can be found

in the books of Bersuker13, Nikitin14, and Domcke, Yarkony, and Köppel15. The literature on the

JT effect including SO coupling is less extensive. Even the linear approximation (in the degenerate

vibrational mode) for the JT-SO Hamiltonian seems to be a rich problem. We consider here the

linear approximation in order to deduce the dynamical equations in the momentum representation,
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define transformations between the coordinate and momentum representations and derive the local

nonadiabatic S-matrix. This S-matrix plays a central role for the formulation of the quantization

condition for the vibronic energy levels of the linear E × E JT Hamiltonian which includes an

isotropic quadratic term. The second-order JT coupling is not taken into account here. As is

well known, this simplification leads to rotationally symmetrical PES and allows us to perform a

separation of the radial and angular variables in the vibronic Schrödinger equation.

Our calculations are of asymptotical character. Several special mathematical techniques (such

as the matched-asymptotic-expansion method, the ordered-exponential-operator method, and the

stationary-phase method) play an essential role in the analysis. We derive a transcendental secular

equation for the vibronic energy levels in terms of transparent QC and nonadiabatic concepts. This

systematic approach is rather general and can therefore be applied to a variety of vibronic-coupling

problems.

In order to verify the validity and accuracy of the asymptotical methodology, we compare with

the results of numerically exact calculations of vibronic energy levels of the JT-SO Hamiltonian.

Comparing the results obtained by this two completely different methods, we find reasonably good

agreement and arrive at a transparent interpretation of the nonadiabatic effects in the JT-SO

problem.

2. THE DYNAMICAL EQUATIONS IN THE COORDINATE REPRESENTATION

Following Koizumi and Sugano1, Schön and Köppel2 and others, we consider the linear E × E

JT-Hamiltonian with SO coupling

ĤJT = − h̄2

2M

(
∂2

∂x2
+

∂2

∂y2

)
+

 ∆ F (x+ iy)

F (x− iy) −∆

+
Mω2

2
(x2 + y2), (1)
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where x and y are the two components of the degenerate normal coordinate of E symmetry, F is

the linear JT coupling constant, 2∆ is the SO splitting of the degenerate electronic state in the

symmetrical configuration, and M is the mass parameter associated with the vibrational mode. In

the following, we will consider the linear E × E JT effect in the absence of a harmonic restoring

potential (the last term on the right-hand side of Eq. (1)). The latter will be introduced in a later

stage of the analysis.

In polar coordinates (ρ, ϕ),

x± iy = ρe±iϕ

we have

Ĥ = ĤJT −
Mω2

2
ρ2 =

− h̄2

2M

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂ϕ2

)
+

 ∆ ρFeiϕ

ρFe−iϕ −∆

 . (2)

The Hamiltonian Ĥ commutes with the symmetry operator

Ĵz = −i ∂
∂ϕ

− σ̂z (3)

where σ̂z is one of the Pauli matrices.

The common eigenfunctions of Ĥ and Ĵz can be written as,

~ψm(ρ, ϕ) =
1
√
ρ

 f
(1)
m (ρ) ei(m+1/2)ϕ

f
(2)
m (ρ) ei(m−1/2)ϕ

 (4)

where m = ±1/2,±3/2 · · · is the half integer vibronic angular momentum quantum number.

The coupled equations for the radial functions f (1)
m (ρ) and f (2)

m (ρ) can be written as

Ĥm
~fm(ρ) = Em

~fm(ρ),

4
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~fm(ρ) = ~f (1)
m (ρ)~e1 + ~f (2)

m (ρ)~e2,

Ĥm = − h̄2

2M
d2

dρ2
+
m2h̄2

2Mρ2
+ 2

(
∆ +

mh̄2

2Mρ2

)
σ̂z + 2ρF σ̂x (5)

where σ̂x and σ̂z are Pauli matrices, ~e1 =

 1

0

 and ~e2 =

 0

1

.

There exists a discrete symmetry operator Ŝm which commutes with the radial Hamiltonian

Ĥm

Ŝm = (∆ → −∆)(m→ −m)σ̂x. (6)

This property of Ĥm guarantees that

Em(∆) = E−m(−∆). (7)

Let us consider the adiabatic representation of the Hamiltonian (2), defined as1–3:

Ĥa
~ψa = E~ψa

Ĥa = Ŵ †ĤŴ ; ~ψa = Ŵ † ~ψ (8)

where

Ŵ =

 cos θ eiϕ/2 sin θ eiϕ/2

− sin θ e−iϕ/2 cos θ e−iϕ/2

 (9)

cos θ =
ρF√

(U −∆)2 + ρ2F 2
> 0

sin θ = − U −∆√
(U −∆)2 + ρ2F 2

< 0

U =
√
ρ2F 2 + ∆2. (10)

The unitary transformation Ŵ is chosen to diagonalize the potential-energy part of the Hamilto-

nian (2). Somewhat lengthy but straightforward calculations give the Hamiltonian in the adiabatic

5
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representation,

Ĥa = − h̄2

2M

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂ϕ2
− θ′2 − 1

4ρ2
+

4iθ′σ̂y
∂

∂ρ
+

2i
ρ2

(cos 2θ · σ̂z + sin 2θ · σ̂x)
∂

∂ϕ
+

2iθ′′σ̂y +
2i
ρ
θ′σ̂y

]
+ 2Uσ̂z (11)

where

θ′ = −∆F
U2

< 0

θ′′ =
ρ∆F 3

U4
≥ 0. (12)

The adiabatic PES are

U±(ρ) = ±U = ±
√
ρ2F 2 + ∆2, (13)

forming a rotationally symmetric double hyperboloid. The SO splitting ∆ gives rise to the existence

of an additional radial nonadiabatic coupling term in Eq. (11)

(2ih̄2∆F/MU2)σ̂y
∂

∂ρ
.

The Hamiltonian Ĥa is characterized by the symmetry operator

l̂z = −i ∂
∂ϕ

. (14)

The common eigenfunctions of Ĥa and l̂z,

Ĥa
~ψ(m)

a = Em
~ψ(m)

a (ρ, ϕ)

l̂z ~ψ
(m)
a = m~ψ(m)

a (ρ, ϕ) (15)

have the form,

~ψ(m)
a =

1
√
ρ

 ~ψ
(1)
m (ρ)

~ψ
(2)
m (ρ)

 eimϕ m = ±1/2,±3/2, · · · (16)

6
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The coupled equations for the radial functions in the adiabatic representation can be written as:

Ĥ(m)
a

~ψ(a)
m (ρ) = Em

~ψ(a)
m (ρ)

~ψ(a)
m (ρ) = ~ψ(1)

m (ρ)~e1 + ~ψ(2)
m (ρ)~e2

Ĥ(m)
a = − h̄2

2M

[
d2

dρ2
− m2

ρ2
− θ′2 + 4iθ′σ̂y

d
dρ
−

2m
ρ2

(cos 2θ · σ̂z + sin 2θ · σ̂x) + 2iθ′′σ̂y

]
+ 2Uσ̂z. (17)

Equation (17) allows us to introduce effective adiabatic radial potentials:

U±
ρ =

h̄2

2M

(
m2

ρ2
+

∆2F 2

4U4
± m∆
ρ2U

)
± U, (18)

which are shown in Fig. 1.

There exists again a discrete symmetry operator Ŝ(m)
a which commutes with Ĥm

a

Ŝ(m)
a = (∆ → −∆)(m→ −m)σ̂z. (19)

Note, that both Ĥm and Ĥ(m)
a are real and thus commute with the operator of complex conjugation.

3. THE DYNAMICAL EQUATIONS IN THE MOMENTUM REPRESENTATION

Following Voronin and Osherov4, we deduce the dynamical equations in the momentum rep-

resentation. We start from Eq. (1) and perform a two-dimensional Fourier transformation of the

diabatic amplitude vector ~ψ(x, y):

~φ(kx, ky) =
1
2π

∫ ∫ ∞

−∞
~ψ(x, y)e−ixkx−iyky dx dy, (20a)

~ψ(x, y) =
1
2π

∫ ∫ ∞

−∞
~φ(kx, ky)eixkx+iyky dkx dky. (20b)

Below we shall suppose that |~ψ| → 0 when x2 + y2 →∞. This guarantees the convergence of the

Fourier integral (20a).

7
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The equation of motion in the momentum representation reads

Ĥ~φ(kx, ky) = E~φ(kx, ky) (21)

where

Ĥ =
h̄2(k2

x + k2
y)

2M
+ 2iF σ̂x

∂

∂kx
− 2iF σ̂y

∂

∂ky
+ 2∆σ̂z (22)

is the Hamiltonian in the diabatic momentum representation.

The symmetry properties of the operator Ĥ are:

[
Ĥ, ĵz

]
= 0

[
Ĥ, τ̂

]
= 0 (23)

where

ĵz = i

(
ky

∂

∂kx
− kx

∂

∂ky

)
− σ̂z

τ̂ = (kx → −kx)(ky → −ky) ˆh.c. (24)

and ˆh.c. denotes the operator of Hermitian conjugation.

Let us introduce polar coordinates in momentum space:

kx ± iky = ke±iα.

The Hamiltonian Ĥ and the symmetry operators then take the form:

Ĥ =
h̄2k2

2M
+ 2iF (σ̂x cosα− σ̂y sinα)

∂

∂k

−2iF
k

(σ̂x sinα+ σ̂y cosα)
∂

∂α
+ 2∆σ̂z (25)

ĵz = −i ∂
∂α

− σ̂z (26)

τ̂ = (α→ α± π) ˆh.c.. (27)

8
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The common eigenfunctions of Ĥ and ĵz in polar coordinates read

~φm(k, α) =

 f (1)
m (k) ei(m+1/2)α

f
(2)
m (k) ei(m−1/2)α

 (28)

and the coupled radial equations of motion are

Ĥm
~fm(k) = Em

~fm(k) (29a)

~fm(k) = ~f (1)
m (k)~e1 + ~f (2)

m (k)~e2 (29b)

Ĥm =
h̄2k2

2M
+ 2iF σ̂x

(
1
2k

+
d
dk

)
+

2mF
k

σ̂y + 2∆σ̂z. (29c)

It is convenient to transform Eqs. (29b) and (29c) such that the differential operator d/dk appears

in the diagonal. Introducing the new vector function

~gm(k) =
√
kÛ−1

f
~fm(k) (30)

where

Ûf = Û−1
f =

1√
2

 1 1

1 −1

 ,
we have:

Ĥ(m)~gm(k) = Em~gm(k)

~gm(k) = ~g(1)
m (k)~e1 + ~g(2)

m (k)~e2

Ĥ(m) =
h̄2k2

2M
+ 2iF σ̂z

d
dk
− 2mF

k
σ̂y + 2∆σ̂x. (31)

The Hamiltonian Ĥ(m) commutes with the following discrete symmetry operator:

τ̂m = (m→ −m)t̂r (32)

9
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where t̂r is the operator of matrix transposition. The coupled radial equations (31) can be written

in the following useful form:

iF
d~gm

dk
=

 − h̄2k2

2M + Em −∆− imF
k

∆− imF
k

h̄2k2

2M − Em

~gm. (33)

The dynamical equations (33) are characterized by an exact conservation law4:

I = |g(1)
m (k)|2 − |g(2)

m (k)|2 = const. (34)

Let us define

~gm(k) = Û(k)~gmo (35)

where ~gmo is a constant vector and Û(k) is 2× 2 matrix,

Û(k) =

 u11(k) u12(k)

u21(k) u22(k)

 (36)

The matrix Û(k) has to conserve the integral of motion I. The most general form of Û is given by

hyperbolic unitary matrices:

Û =

 coshα eiχ11 sinhα eiχ11+iδ0

sinhα eiχ22−iδ0 coshα eiχ22

 (37)

which contain one hyperbolic angle α [−∞ < α(k) < +∞] and the three trigonometric angles

χ11, χ22, δ0 [−π ≤ χ11(k), χ22(k), δ0(k) ≤ +π]. Of course, the determination of the functions

α(k), χ11(k), χ22(k), δ0(k) is equivalent to the solution of Eq. (33). Note, that the columns of the

matrix (37) are the fundamental solutions of Eq. (33).

Now we can perform the separation of variables in the two-dimensional Fourier integral trans-

formations (20). As a result, we can directly connect the radial amplitudes (in coordinate and

momentum representations, respectively) by an integral transformation. The substitution of (4)

10
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and (28) into (20a) gives: f
(1)
m (k)

f
(2)
m (k)

 =
1
2π

∫ ∞

0

√
ρ dρ

∫ π

−π
dϕ

 f
(1)
m (ρ)ei(m+1/2)ϕ−ikρ cos ϕ

f
(2)
m (ρ)ei(m−1/2)ϕ−ikρ cos ϕ

 . (38)

The angular integrals on the right-hand side of Eq. (38) can be calculated with the use of the

known integral representation of the Bessel functions16:

1
2π

∫ π

−π
einϕ−iz cos ϕ dϕ = e−inπ/2Jn(z). (39)

We thus have

~fm(k) =
∫ ∞

0
N̂

(m)
d (kρ)~fm(ρ)

√
ρ dρ (40)

where

N̂
(m)
d (kρ) =

 e−i(m+1/2)π/2Jm+1/2(kρ) 0

0 e−i(m−1/2)π/2Jm−1/2(kρ)

 .
Taking into account Eqs. (4), (8), (9), (16), (28), and (30), we arrive at a connection of the

ρ-dependent amplitudes ~ψ
(a)
m (ρ) in the adiabatic coordinate representation with the k-dependent

amplitudes ~gm(k) in the momentum representation:

~gm(k) =
∫ ∞

0
N̂m(k, ρ)~ψ(a)

m (ρ) dρ (41)

where

N̂m(k, ρ) =

√
kρ

2



(−i)m+1/2Jm+1/2(kρ) cos θ(ρ)− (−i)m+1/2Jm+1/2(kρ) sin θ(ρ)+

(−i)m−1/2Jm−1/2(kρ) sin θ(ρ) (−i)m−1/2Jm−1/2(kρ) cos θ(ρ)

(−i)m+1/2Jm+1/2(kρ) cos θ(ρ)+ (−i)m+1/2Jm+1/2(kρ) sin θ(ρ)−

(−i)m−1/2Jm−1/2(kρ) sin θ(ρ) (−i)m−1/2Jm−1/2(kρ) cos θ(ρ)


.

Another useful relation is:

~gm(k) =
∫ ∞

0
N̂ (m)(kρ)~fm(ρ) dρ (42)

11
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where

N̂ (m)(kρ) =

√
kρ

2

 (−i)m+1/2Jm+1/2(kρ) (−i)m−1/2Jm−1/2(kρ)

(−i)m+1/2Jm+1/2(kρ) −(−i)m−1/2Jm−1/2(kρ)

 .
The inverse transformations are:

~fm(ρ) =
√
ρ

∫ ∞

0
N̂

(m)∗
d (kρ)~fm(k)k dk (43a)

~fm(ρ) =
∫ ∞

0
N̂ (m)†(kρ)~gm(k) dk (43b)

~ψ(a)
m (ρ) =

∫ ∞

0
N̂ †

m(k, ρ)~gm(k) dk. (43c)

If we can solve Eq. (33), then we can, using the inverse transformation (43), obtain ~fm(ρ) or ~ψ(a)
m .

The main advantage of the momentum representation is the reduction of the order of the dynam-

ical differential equations from four (in the coordinate representation) to two (in the momentum

representation). This feature essentially facilitates the solution of the dynamical equations.

4. DIMENSIONLESS FORM OF THE DYNAMICAL EQUATIONS IN THE LANDAU-

ZENER LIMITING CASE

Let us introduce the dimensionless independent variable τ in Eq. (33):

τ = ρ∗k; ρ∗ = h̄/p0; p0 =
√

2ME. (44)

Equation (33) then takes the form:

i
d~gm

dτ
=

 E
ρ∗F (1− τ2) − ∆

ρ∗F −
im
τ

∆
ρ∗F −

im
τ − E

ρ∗F (1− τ2)

~gm. (45)

The system (45) of two first-order coupled equations cannot be solved exactly in analytical terms.

The equations contain three independent dimensionless parameters:

m,
E

ρ∗F
=
p0E

h̄F
,

∆
ρ∗F

=
p0∆
h̄F

. (46)
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Approximate asymptotical solutions can be obtained, which depend on the relations between these

dimensionless parameters. Below, we consider the following parametric limit of Eq. (45)

p0E

h̄F
= ε2 →∞ (47a)

m

ε
=
√
ν ∼ 1 (47b)

p0∆
εh̄F

= δ ∼ 1. (47c)

The relations (47a) and (47b) define the so-called Landau-Zener limit case17. Relation (47c) implies

∆ ∼ E1/4 and accounts for the nontrivial role of the SO splitting ∆ in the asymptotical solution.

Using (47 a-c), Eq. (45) becomes:

−1
2

d~g
dτ

=

[
iε2(1− τ2)σ̂z +

ε
√
ν

τ
σ̂x + εδσ̂y

]
~g.

(ε→∞, ν ∼ 1, δ ∼ 1) (48)

The system (48) represents a so-called singularly perturbed equation18,19.

5. ASYMPTOTICAL SOLUTION OF THE DYNAMICAL EQUATION

We apply the matched asymptotic expansion method18,19 for the construction of the asymptotic

solution of the dynamical equation (48). The outer asymptotic expansion is a generalization of the

QC approximation20.

Let us try to construct an outer asymptotic expansion of the solution in the following way:

~g(τ) ' (~V0 +
1
ε
~V1 +

1
ε2
~V2 · · ·)eε

2S2+εS1 (49)

where ~V0, ~V1, ~V2 · · · and S1, S2 are functions of τ . The substitution of (49) into (48) and comparison

of different terms of the same power of ε on the left-hand and right-hand sides of (48) lead to a set
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of equations for S2, S1, ~V0, ~V1, ~V2, · · ·. These equations can be solved without difficulties, leading

to the one-term outer asymptotic expansion (“one term” means that only the ~V0(τ) term is taken

into account; the contributions of ~V1, ~V2 · · · are neglected.)

~gout(τ) = C+
1 ~e1

(
τ + 1
τ − 1

)iµ

e−
iν
2τ e−iε2(τ−τ3/3) +

C+
2 ~e2

(
τ + 1
τ − 1

)−iµ

e
iν
2τ eiε

2(τ−τ3/3) for τ > 1 (50a)

~gout(τ) = C−
1 ~e1

(
1 + τ

1− τ

)iµ

e−
iν
2τ e−iε2(τ−τ3/3) +

C−
2 ~e2

(
1 + τ

1− τ

)−iµ

e
iν
2τ eiε

2(τ−τ3/3) for 0 < τ < 1 (50b)

where µ = (ν + δ2)/4 and C±
1 , C

±
2 are constants. This outer asymptotic expansion contains fast

oscillating exponential factors and slowly varying prefactors. The solutions (50) are not valid in the

so-called inner domains, near τ = ±1 (only τ = 1 is relevant for the present analysis). These inner

domains are generalizations of the turning points of the QC approximation. In the inner domains,

inner asymptotic expansions must be constructed (the solutions of the ethalon equations) and the

outer and inner asymptotic expansions must then be matched along the anti-Stoke lines19,21, where

both fundamental solutions in the outer asymptotic expansion have purely oscillating fast expo-

nentials (along other lines in the complex τ plane, the fast exponential factors exhibit increasing

or decreasing behavior). This concept for the construction of asymptotical solutions of equations

which do not admit exact analytical solutions is known as matched asymptotic expansions method

in singular perturbation theory18.

It now becomes clear why we have introduced two pairs of constants: C+
1,2 for τ > 1 and C−

1,2 for

τ < 1. It is required by the different results of asymptotic matching of inner and outer solutions

on the left-hand and right-hand sides of the point τ = 1. In contrast to the anti-Stoke lines,
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the Stoke lines correspond to purely increasing and decreasing behavior of the fast exponential

factors. If a Stoke line exists between two asymptotic matchings, we expect the Stoke phenomenon

in the solutions of the differential equations. It is the mathematical foundation of the theory of

nonadiabatic transitions.

Analyzing the fast exponential factors in (50) in the complex τ -plane (τ = τr + iτi) we find

equations for anti-Stoke lines,

τi

[
1− 1

3
(3τ2

r − τ2
i )
]

= 0 (51)

and Stoke lines:

τr

[
1− 1

3
(τ2

r − 3τ2
i )
]

= ±2/3. (52)

They cross at the singular points τ = ±1, as shown in Fig. 2. It becomes evident from Fig. 2 and

from the integration path in the inverse Fourier transformation (40) that the asymptotic matching

of the inner (ethalon) solution near τ = ±1 and the outer solution (46) must be performed along

the anti-Stoke lines

τi = 0, 0 < τr < 1, and 1 < τr <∞. (53)

Between these two directions of asymptotic matching (left and right from τ = 1) we can see Stoke

lines and therefore expect the Stoke phenomenon in the solutions. The latter corresponds to a

nonadiabatic effect. Note that the outer asymptotic solution (50) is in agreement with the form

(37), required by Eq. (34): α = 0, χ11 = −χ22, and δ0 is arbitrary.

Let us now consider the inner domain, centered at τ = 1. Following general recommendations

of the matched asymptotic expansions method18, we introduce a new variable t:

t =
τ − 1
ω(ε)

, τ = 1 + ω(ε)t
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ω(ε)→ 0 when ε→∞. (54)

The inner domain is characterized by |τ | � 1, |t| ∼ 1. In terms of the inner independent variable

t, the dynamical equation (48) takes the form:

−1
2

d~g
dt

=
[
−iε2ω2t(2 + ωt)σ̂z + εω

√
ν(1− ωt+ ω2t2 − · · ·)σ̂x + εωδσ̂y

]
~g. (55)

The scale ω(ε) of the inner domain must be chosen such that Eq. (55) has minimal degeneracy. In

other words, a maximum number of terms on the right-hand side of (55) must be of the same (main)

order of magnitude (of the order of unity; this is the so-called principle of minimal degeneracy of

the equation). This principle provides the best possibilities for asymptotic matching. Asymptotic

matching may be carried out when the applicability domains of the outer and inner expansions are

overlapping18. We can obey the minimal degeneracy principle in (55) by choosing

εω(ε) = 1 ω(ε) = 1/ε

t = ε(τ − 1) τ = 1 + t/ε (56)

−1
2

d~g
dt

=
[
−it(2 + t/ε)σ̂z +

√
ν(1− t/ε+ · · ·)σ̂x + δσ̂y

]
~g. (57)

The inner asymptotic expansion can be constructed in the form of the asymptotic series

~g(t) ' ~g0(t) +
1
ε
~g1(t) +

1
ε2
~g2(t) + · · · (58)

In the one-term inner asymptotic expansion, we take into account only ~g0(t), neglecting the other

small contributions. In this approximation, Eq. (57) becomes

−1
2

d~g0
dt

=
[
−2itσ̂z +

√
νσ̂x + δσ̂y

]
~g0. (59)
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An exact solution of Eq. (59) can be obtained by the method of ordered exponential operators17,22.

In this way, we obtain (after relatively long calculations):

~g0(t) = A1
~AI(t) +A2

~AII(t) (60)

where the fundamental solutions ~AI(t) and ~AII(t) have the form

~AI(t) = ~e1e
ε0 − i~e2ε+e−ε0

~AII(t) = −i~e1ε−eε0 + ~e2e
−ε0(1− ε+ε−) (61)

where

ε0(t) = lnD−iµ(kt)

ε−(t) = −(1/2
√

2π)(δ + i
√
ν)eiπ/4Γ(iµ)D−iµ(−kt)/D−iµ(kt)

ε+(t) =
[
−2µeiπ/4/(δ + i

√
ν)
]
D−iµ(kt)D−1−iµ(kt) (62)

and

µ = (ν + δ2)/4; k = 2e−iπ/4. (63)

Diµ(kt) is the parabolic cylinder function and Γ(iµ) is the Gamma function16,23. To finish our

construction of asymptotic solutions of Eq. (48), we have to perform the asymptotic matching of

the inner (ethalon) solution (60)-(63) with the outer solutions (50). To achieve this, we need to

take the asymptotic expressions of ~g0(t) for t → ±∞ and, at the same time, simplify (50) near

τ = 1. In addition, we rewrite the outer solutions in terms of the inner variable t. The asymptotic

matching then results in the following relations among constant coefficients: A1

A2

 = Ĥ+

 C+
1

C+
2

 = Ĥ−

 C−
1

C−
2

 (64)
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 C+
1

C+
2

 = Ĥ0

 C−
1

C−
2

 . (65)

The 2 × 2 matrices Ĥ0, Ĥ± are given in the appendix. Note that Eq. (65) is in accordance with

relation (37), as it should be.

6. TRANSFORMATION TO THE COORDINATE REPRESENTATION

The inverse transformation ~gm(k) → ~ψ
(a)
m (ρ), defined by Eq. (43), gives the radial amplitude

~ψ
(a)
m (ρ) in the coordinate representation. The integration over τ = ρ∗k extends from τ = 0 to

τ =∞. As we want to calculate the S-matrix for nonadiabatic transitions, the distances ρ̄ = ρ/ρ∗

must be of the order of several inner turning points:

ρ̄ ≥ ρ̄in = m = ε
√
ν � 1,

corresponding to the classically allowed domain of motion. This implies that the Bessel functions

in the matrix N̂+
m(k, ρ) have large orders as well as large arguments. In this case, we can use the

QC asymptotic form of the Bessel function24,25:

Jλ(z) ≈
√

2
πz

(
1− λ2

z2

)−1/4

cos

∫ z

λ

√
1− λ2

ξ2
dξ − π

4

.
|z| ≥ |λ| � 1 (66)

In the case under consideration, λ = m± 1
2 � 1 and z = kρ = τ ρ̄� 1, if τ ∼ 1. Note that under

the mentioned asymptotic conditions, the Bessel functions are rapidly oscillating functions of τ .

The nonvanishing contributions to the integrals of the inverse transformation arise from the points

of stationary phase. This method of evaluation of integrals with rapidly oscillating integrands is

known as the stationary-phase method26,27. The oscillating parts of the integrands in Eq. (43c)
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are given by the exponentials:

exp

±i ∫ τ ρ̄

m±1/2

√
1− (m± 1/2)2

ξ2
dξ ∓ iε2(τ − τ3/3)

 = exp [iφ(λ1, λ2, λ3)] (67)

where λ1, λ2, λ3 = ±1.

All combinations of signs on Eq. (67) are independent; Eq. (67) thus contains eight types of

rapidly oscillating factors. The stationary-phase points τk are determined by the equation

dφ
dτ

= ±

√
ρ̄2 − (m± 1/2)2

τ2
∓ ε2(1− τ2) = 0

which is equivalent to:

ρ̄2 − (m± 1/2)2

τ2
= ε4(1− τ2)2. (68)

Equation (68) is a cubic equation for τ2. There are two stationary points, τ1(ρ̄) and τ2(ρ̄), which

give contributions to the integral. Below, we do not distinguish between m+ 1/2 and m− 1/2 in

the determination of the stationary phase points τ1,2(ρ̄), that is, we substitute m ± 1/2 → m in

Eq. (68). This is a good approximation, since m� 1.

The integral transformation ~gm(k) → ~ψ
(a)
m (ρ) according to Eq. (43) includes many terms. In

each term, the contribution to the integral (for fixed ρ̄) arises from τ1 or from τ2, depending on

the combination of signs in the oscillating factors (67). These contributions are of the type

δ̄ =
∫ ∞

0
M(τ)eiφ dτ (69)

whereM(τ) is a slowly varying function and exp(iφ) is the rapidly oscillating factor. In the vicinity

of a stationary-phase point we expand

exp (iφ) ' exp
[
iφ(τk) + (i/2)φ′′(τk)(τ − τk)2

]
= exp

[
iφ(τk)± (i/2)|φ′′(τk)|(τ − τk)2

]
(70)
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where we have k = 1 or 2, φ′(τk) = 0, φ′′(τk) = ±|φ′′(τk)| are real numbers and |φ′′(τk)| � 1. The

expression for δ̄, given by Eq. (69), becomes

δ̄ ≈ M(τk)eiφ(τk)
∫ ∞

0
exp

[
± i

2
|φ′′(τk)|(τ − τk)2

]
dτ

=
(

2π
|φ′′(τk)|

)1/2

M(τk)eiφ(τk)±iπ/4 (k = 1 or 2). (71)

After somewhat lengthy calculations, taking into account the contributions of all stationary-phase

points, we obtain (m� ρ̄� ε2):

~ψ(a)
m (ρ̄) ≈ C−

1 e
−iχ/2 ~ψ

(1)
out + iC−

2 e
iχ/2 ~ψ

(1)
in +

C+
1 e

−iχ/2 ~ψ
(2)
in + iC+

2 e
iχ/2 ~ψ

(2)
out (72)

where

~ψ
(1)
in = exp [(iζ/2) + iµ ln (ρ̄/ε)− iρ̄+ imπ/2]~e1

~ψ
(2)
in = exp [(−iζ/2)− iµ ln (ρ̄/ε)− iρ̄+ imπ/2]~e2 (73)

are incoming waves,

~ψ
(1)
out = exp [(−iζ/2)− iµ ln (ρ̄/ε) + iρ̄− imπ/2]~e1

~ψ
(2)
out = exp [(iζ/2) + iµ ln (ρ̄/ε) + iρ̄− imπ/2]~e2 (74)

are outgoing waves and

χ = ν + (4/3)ε2 − 2µ ln 4ε− µ+ µ lnµ− arg
(
1 + iδ/

√
ν
)

ζ = µ− µ lnµ+ arg (1 + iδ/
√
ν). (75)

The asymptotic solution (72) is completed by the relation (65), which connects C+
1,2 and C−

1,2.

These results allow us to calculate the local S-matrix for nonadiabatic transitions.

20

Page 20 of 47

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

7. THE S-MATRIX FOR NONADIABATIC TRANSITIONS

We assume that the quadratic term in the JT-SO Hamiltonian (1) (which is necessary for quan-

tization) does not significantly influence the nonadiabatic part of the problem. The nonadiabatic

local S-matrix can thus be calculated in the linear-vibronic coupling approximation, that is, the

Hamiltonian (2). The S-matrix calculated in this way is used (near the inner turning points) as “in-

ner” boundary condition in the quantization problem, while the “outer” boundary condition (used

near outer turning points) guarantees decreasing behavior of wave amplitudes in under-barrier

domains when ρ tends to infinity. A similar method was used in Ref. 28 for the quantization in

the Σ-Π-Σ four-state dynamical problem. Below, we discuss the conditions of applicability of this

approximation.

According to definition, the S-matrix gives the amplitudes of the outgoing waves, acting on the

amplitudes of the incoming waves. This S-matrix applies for distances ρ̄in = m ≤ ρ̄ � ε2, which

are much closer to the inner turning points than to the outer turning points. Using Eq. (72), we

write:  C−
1 e

−iχ/2

iC+
2 e

iχ/2

 = Ŝqc

 iC−
2 e

iχ/2

C+
1 e

−iχ/2

 (76)

We now use the coupling relation (65) and express the coefficients C+
1,2 in terms of the coefficients

C−
1,2:  C−

1 e
−iχ/2

ieiχ/2
(
eπµ
√

1− e−2πµe−iηC−
1 + eπµC−

2

)


= Ŝqc

 iC−
2 e

iχ/2

e−iχ/2
(
eπµC−

1 + eπµ
√

1− e−2πµeiηC−
2

)
 (77)

The phase η is given in the appendix.
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The relation (77) must be identically fulfilled for arbitrary C−
1 and C−

2 . Ŝqc should be unitary

and symmetrical. These requirements allow us to determine the QC S-matrix in the following form:

Ŝqc = −

 i
√

1− e−2πµei(η−χ) e−πµ

e−πµ i
√

1− e−2πµe−i(η−χ)

 (78)

where

η − χ = arg Γ(iµ) + µ− µ lnµ+ π/4 (79)

It follows from Eq. (78) that the nonadiabatic transition probability W is

W = e−2πµ. (80)

It is interesting to compare the QC S-matrix Ŝqc, given by Eq. (78), with the semiclassical S-matrix,

Ŝsc, obtained in29. Note that Ŝqc, obtained from time-independent quantum dynamical equations,

is destinated for the quantum treatment of vibronic energy levels or resonances, while Ŝsc, obtained

from the time-dependent semiclassical equations, is suitable for trajectory surface-hopping studies.

The difference between Ŝqc and Ŝsc is in the phases of the diagonal elements. Being obtained for

a specific parametric limit, the matrix Ŝqc contains only one parameter µ ∼ 1, while Ŝsc depends

on two parameters (ν and σ in the notations of Ref. 29).

8. QUANTIZATION OF THE E × E JT PROBLEM WITH SO COUPLING

We consider here the linear E × E JT Hamiltonian (1) with SO coupling1–3. Omitting pure

quantum terms, we can write the adiabatic radial potentials of the Hamiltonian (1) in the form:

Ū±
ρ =

m2h̄2

2Mρ2
±
√
ρ2F 2 + ∆2 +

Mω2ρ2

2
. (81)
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Let us introduce inner and outer turning points, which define the domain of classically allowed

motion:

ρ
(1)
in ≈ ρ

(2)
in ≈ mρ∗ (82)

ρ
(1,2)
out ≈ F

Mω2

√ω2p2
0

F 2
+ 1∓ 1

 . (83)

We also need the left-counted (S1,2), right-counted (φ1,2), and complete action integrals (Ω1,2):

S1,2 =
∫ ρ

ρin

√
2M(E − Ū±

ρ ) dρ (84)

φ1,2 =
∫ ρ

ρ
(1,2)
out

√
2M(E − Ū±

ρ ) dρ (85)

Ω1,2 =
∫ ρ

(1,2)
out

ρin

√
2M(E − Ū±

ρ ) dρ. (86)

When ρ belongs to the classically allowed domain (ρin < ρ < ρ1,2
out), we can write the QC solutions

for ~ψ(a)
m (ρ) in the following form

~ψ(a)
m (ρ) =

B+
1 ~e1√
P1(ρ)

e
i
h̄

S1 +
B−

1 ~e1√
P1(ρ)

e−
i
h̄

S1

+
B+

2 ~e2√
P2(ρ)

e
i
h̄

S2 +
B−

2 ~e2√
P2(ρ)

e−
i
h̄

S2 (87)

=
D+

1 ~e1√
P1(ρ)

e
i
h̄

φ1 +
D−

1 ~e1√
P1(ρ)

e−
i
h̄

φ1

+
D+

2 ~e2√
P2(ρ)

e
i
h̄

φ2 +
D−

2 ~e2√
P2(ρ)

e−
i
h̄

φ2 (88)

where

P1,2(ρ) =
√

2M(E − Ū±
ρ ). (89)

The QC solution (88) is exponentially decreasing for ρ > ρ1,2
out, if for ρ < ρ1,2

out it has the form30:

~ψ(a)
m (ρ) =

D+
1 ~e1√
P1(ρ)

cos
(

1
h̄
φ1(ρ) +

π

4

)

+
D+

2 ~e2√
P2(ρ)

cos
(

1
h̄
φ2(ρ) +

π

4

)
. (90)
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It follows from (90) that  D+
1

D+
2

 = i

 D−
1

D−
2

 . (91)

The relations (84)-(88) lead to the following couplings between coefficients D+
1

D+
2

 =

 eiΩ1/h̄ 0

0 eiΩ2/h̄


 B+

1

B+
2


 D−

1

D−
2

 =

 e−iΩ1/h̄ 0

0 e−iΩ2/h̄


 B−

1

B−
2

 . (92)

Taking into account relations (91) and (92), we have B+
1

B+
2

 = i

 e−2iΩ1/h̄ 0

0 e−2iΩ2/h̄


 B−

1

B−
2

 . (93)

A second relation between B+
1,2 and B−

1,2 is given by the nonadiabatic QC S-matrix B+
1

B+
2

 = Ŝqc

 B−
1

B−
2

 (94)

where Ŝqc is defined by (78)-(79). The combination of (93) and (94) leads to the secular equation

cos (Ω̃1 + Ω̃2) +
√

1− e−2πµ cos (Ω̃1 − Ω̃2) = 0 (95)

Ω̃1,2 = Ω1,2/h̄± (η − χ)/2. (96)

Note that in the special case ∆ = 0 the secular equation (95)-(96) becomes identical to the secular

equation derived in Ref. 10.

Let us consider two limiting cases: µ� 1 and µ� 1. In diabatic limiting case, µ� 1, we have

cos (Ω̃1 + Ω̃2) = 0, (97)
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which describes quantization in an united well. In the adiabatic limiting case, µ � 1, we have

independent quantization in two radial adiabatic potentials Ū±
ρ :

cos Ω̃1 · cos Ω̃2 = 0

(η − χ)→ 0 when µ→∞. (98)

In the adiabatic limit, there are two series of vibronic energy levels, one increasing with F , the

other decreasing with increasing F . As is well known for the JT problem without SO coupling,

there exist avoided crossings between both series of levels10,13. The energy splitting at the avoided

crossing points is equal to:

∆E = (h̄/π)
√
ω1ω2e

−πµ (99)

where

ω1,2 = π

∫ ρ
(1,2)
out

ρin

M dρ√
2M(E − Ū±

ρ )

−1

E=E0

(100)

are the frequencies of periodic classical motion in potentials Ū±
ρ and E0 is vibronic energy in the

crossing point10. It is useful to represent relation (99) in the following form

∆E = Z(E,m,F,∆)× exp

[
−π

4

(
h̄Fm2

E
√

2ME
+

∆2
√

2M/E

h̄F

)]
, (101)

where Z(E,m,F,∆) is a slowly varying function of its arguments.

We need to formulate also a requirement on the quadratic term in (81). The quadratic term

must be relatively small near the inner turning point. This requirement is necessary to justify the

use of the nonadiabatic S-matrix, Ŝqc, obtained in the linear approximation. In the case under

consideration the restriction

ω ≤
√
εF/p0 (102)
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is sufficient to guarantee the correctness of the theory.

9. NUMERICAL CALCULATIONS OF ENERGY LEVELS

9.1. Matrix-diagonalization method

Using the spin-vibronic Hamiltonian of Eq. (1), the Schrödinger equation

ĤJTΨν = EνΨν (103)

is solved, using an expansion of the diabatic state function Ψν in a complete basis, which is

constructed as the product of electronic (|φe〉) and vibrational (|nl〉) basis functions31. The |nl〉,

n = 0, 1, 2 · · ·, l = −n,−n+ 2, · · ·n− 2, n, are the eigenfunctions of the two-dimensional isotropic

harmonic oscillator32.

The real symmetric Hamiltonian matrix is constructed and diagonalized for a given value of

m, which is an exact quantum number of the problem. The vibrational basis is increased until

convergence of the eigenvalues of interest has been achieved. A standard diagonalization method

for real symmetric matrices has been used. The eigenvalues represent the vibronic energy levels

E
(m)
ν with vibronic angular momentum quantum number m. These calculations are very efficient

since the matrix elements of the Hamiltonian are known in analytical form31.

9.2. Quasiclassical Method

The numerical solution of the secular equation, Eq. (95), has been achieved using the following

strategy. For a given set of values of m, ω, f, and ∆, the solutions of Eq. (95) are obtained by

increasing E in small intervals and using the bisection method for the determination of the solution

up to the desired level of accuracy. The lower boundary of the search procedure is the minimum
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of the upper PES Ū+
ρ of Eq. (81). For any given value of the energy, the inner and the outer

turning points of both surfaces are determined numerically using the bisection method, where Eqs.

(82) and (83) provide good starting guesses. The numerical integration (Eq. (86)) is performed

using Simpson’s rule33. The size of the subintervals is reduced until convergence of the integral is

achieved. The Γ function, used in Eq. (79) is calculated via the following series expansion34:

1
Γ(z)

=
∞∑

k=1

ckzk (|z| <∞), (104)

The coefficients ck (k = 1, · · · 26) are given in Ref. 34.

9.3. Comparative analysis of quasiclassical and numerically exact energy levels

In this section, we compare the vibronic energy levels obtained from two different methodologies,

i.e., the matrix-diagonalization (MD) method and the QC approximation, for the E×E JT problem

with SO coupling. While the MD method provides all energy levels, the energy levels lying below

the minimum energy of Ū+
ρ cannot be determined by the QC method. The QC approximation

is known to produce the most accurate results for large vibronic angular momenta and in the

high-energy limit.

Figure 3 shows the comparison of the MD and QC methods for m = 20.5 and ∆/h̄ω = 0.

The vibronic energy levels are plotted as a function of the JT coupling constant (F ). The vibronic

energy levels obtained from the MD method are shown by solid lines, while those of the QC method

are shown by dotted lines in the Figs. 3, 4, 5, and 6. The agreement between the two methods

is rather good for all values of F . The agreement is excellent, in particular, in the moderate

JT coupling regime. For weak JT coupling, the accuracy of the QC approximation improves for

high-lying vibronic energy levels, see Fig. 3.
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The comparison between the QC and exact energy levels for a moderate value of ∆/h̄ω (= 0.8)

is depicted in Fig. 4. The QC method does not describe the vibronic levels with great accuracy

for weak JT coupling, but remains qualitatively correct. The reason is the violation of the limiting

condition (47) for very weak JT coupling (and moderate SO coupling). For moderate and strong

JT coupling, however, the agreement is excellent, even for the low-lying vibronic levels.

Having obtained a satisfactory prediction of the vibronic levels for large vibronic angular mo-

menta, we investigate the performance of the QC approximation for low values of vibronic angular

quantum number (m = 1.5) in Fig. 5 for ∆/ω = 0. With the exception of the strong coupling

region, F/(h̄1/2M1/2ω3/2) � 1, the QC method agrees very well with the MD method and this

agreement gets better for high energies. For strong JT coupling and low energy levels, the QC

approximation fails (due to violation of the limiting condition (47a)).

The comparison of QC and exact results for a moderate value of SO coupling, (∆/h̄ω = 0.8)

and a small value of m (=1.5) is shown in Fig. 6. For low values of F , the QC approximation is

poor, which is again the consequence of the violation of the limiting condition (47c). For larger

value of F , the agreement is very good, see Fig. 6.

An additional explanation of some deviations between the QC and exact results in Figs. 4 and

6 for small F is the violation of the condition (101). Rigorously speaking, the good agreement

between QC and exact results in Figs. 3 and 5 is unexpected: The relation (47c) is violated for

∆ = 0. To explain this finding we note that in the particular case ∆ = 0 our QC and exact

numerical results are identical to those one obtained in Ref. 10 for the JT problem without SO

coupling.
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10. CONCLUSIONS

The SO interaction manifests itself in the energy splitting 2∆ of the electronic adiabatic terms

at the symmetrical configuration. It modifies the symmetry properties of the radial Hamiltonian,

which arises as a result of the separation of variables in the Schrödinger equation for the nuclear

wave amplitudes. The corresponding symmetry operator includes a change of sign of the SO

parameter ∆. The radial adiabatic potentials U±
ρ include new terms which arise from the SO

coupling. The radial nonadiabatic dynamical coupling in the adiabatic representation (11) is of

pure SO origin. There are three centers of nonadiabatic transitions

r00 = 0, r±0 = ±i∆/F,

where nonadiabatic coupling terms become singular. The centers r±0 are absent in the nonrelativis-

tic limit ∆ = 0.

In the linear JT coupling approximation, the momentum representation reduces the general

order of the differential dynamical equations from four to two. While the continuous symmetry

of the Hamiltonian in the momentum representation is identical to the continuous symmetry of

the Hamiltonian in the coordinate representation, the discrete symmetries are different in these

representations. The conservation law for the dynamical equations in the momentum representation

is of essentially non-hermitian character. The corresponding evolution operator obeys hyperbolic

unitary conditions.

The two-dimensional Fourier transformation from coordinate to momentum representation in

Cartesian variables is equivalent to a matrix-integral transformation of Bessel type for the radial

wave amplitudes in polar variables. In the QC Landau-Zener limit, the linear JT-SO problem
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admits a complete analytical solution in terms of elementary and special functions. The latter are

the Gamma function, Bessel functions, and parabolic-cylinder functions.

The linear JT-SO problem contains four dimensionless parameters (ε, ν, δ, E/h̄ω); only one

of them (δ) is caused by the SO interaction. The nonadiabatic transitions arise as the Stoke

phenomenon in the asymptotical solution of the dynamical equations. The asymptotical solution

in the coordinate representation has the form of a pair of incoming and a pair of outgoing waves;

these pairs are connected by the nonadiabatic 2 × 2 S-matrix, which is unitary and symmetrical.

The nonadiabatic transition probability (given by the square of the nondiagonal element of the S-

matrix) is W = exp(−2πµ), where µ may be interpreted as a generalized Landau-Zener parameter.

The role of the quadratic term in Hamiltonian is to restrict the classically available domain of

motion and to transform the continuous spectrum to a discrete (bound-state) spectrum. The secu-

lar equation for the vibronic energy levels includes adiabatic action integrals (Ω1,2), the generalized

Landau-Zener parameter (µ) and a nonadiabatic phase (ν − χ). In the diabatic limit (µ → 0) we

have quantization in an united potential well.

In the adiabatic limit (µ→∞), there are two independent quantizations in the radial adiabatic

potentials Ū±
ρ . In the near-adiabatic limit, we have avoided crossings of vibronic energy levels

depending on the coupling constants F and the SO splitting ∆. These avoided crossings are due to

the nonadiabatic transitions present in the system. In general, the existence of the SO splitting ∆

increases the value of the Landau-Zener parameter µ, shifts the dynamical regime to the adiabatic

limit, and reduces the vibronic-energy splittings in the avoided crossing points.

The numerically exact calculation of energy levels confirms in general the validity of the QC

results. Limitations of the QC approximation can be observed for large and small values of the
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JT coupling constant F . They arise as a consequence of the violation of the limiting relations (47)

(generalized Landau-Zener limit) and the violation of condition (101) (validity of the nonadiabatic

S-matrix, obtained in the linear approximation). The dependence of the characteristic avoided

crossings of the vibronic energy levels on the JT coupling constant, the SO coupling constant,

and the vibronic angular momentum have been analyzed in detail on the basis of the analytic

expressions. From Eq. (101) it is clear that the dependence of the vibronic-energy splitting on the

parameters m and ∆ are essentially given by Gaussian functions.

In this work, we have been concerned with the calculation of bound vibronic energy levels, which

can efficiently be calculated numerically by the diagonalization of large sparse matrices. The QC

analysis is not restricted to the bound-state problem. It may be employed, for example, for the

calculation of the positions and widths of resonances associated with the upper well of the purely

linear E × E JT Hamiltonian with SO coupling [Eq. (2)]. The numerical calculation of these

resonances requires coupled-channel scattering calculations which are considerably more involved

than the numerical calculations of bound vibronic states.

The applicability of the systematic asymptotic expansion methods outlined in the present work

is not restricted to the E × E JT problem. Other, more general, vibronic-coupling problems such

as the pseudo-JT effect and Σ-Π coupling in linear molecules may be treated with these methods.

The advantage of the analytical QC methods is that they provide explicit insight into the nature

of the nonadiabatic effects in such systems which cannot be obtained from the purely numerical

calculation of energy levels.
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The matrices Ĥ±, Ĥ0, resulting from asymptotic matching procedures, are

Ĥ+ =



exp
(

πµ
4 −

iν
2 −

2iε2

3 + iµ ln 4ε
) [

(δ + i
√
ν)Γ(iµ)/(2

√
2π)

]
×

exp
(
−iµ ln 4ε+ iν

2 + 2iε2

3 − iπ
4 + 3πµ

4

)

0 exp
(
−iµ ln 4ε− πµ

4 + iν
2 + 2iε2

3

)


(.1)

Ĥ− =



0
[
(δ + i

√
ν)Γ(iµ)/(2

√
2π)

]
×

exp
(
−iµ ln 4ε− iπ

4 −
πµ
4 + iν

2 + 2iε2

3

)
[
(−2

√
2π)/ ((δ + i

√
ν)Γ(iµ))

]
× exp

(
−iµ ln 4ε+ iν

2 + 2iε2

3 + 3πµ
4

)
exp

(
iµ ln 4ε+ iπ

4 + πµ
4 −

iν
2 −

2iε2

3

)


(.2)

Ĥ0 =

 eπµ eπµ
√

1− e−2πµeiη

eπµ
√

1− e−2πµe−iη eπµ

 (.3)

where

η = arg Γ(iµ) + arg (δ + i
√
ν)− 2µ ln 4ε+ ν − π

4
+

4ε2

3
. (.4)
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FIG. 1: Qualitative view of the radial adiabatic terms U±ρ (solid lines) and adiabatic terms ±U(dashed

lines). The minimum of U+
ρ is ρ̄ = (h̄m)2/3/(FM)1/3.
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FIG. 2: Anti-Stoke lines (solid lines), Stoke lines (dashed lines), and ethalon domains (inner domains)

(circles). The domains of solution (50a) and (50b) are indicated by the (+) and (-) symbols.
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FIG. 3: Vibronic energy levels as a function of the vibronic coupling constant F , for m=20.5, ∆/h̄ω=0;

quasiclassical results are given as dotted lines, matrix diagonalization results as solid lines.
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FIG. 4: Vibronic energy levels as a function of the vibronic coupling constant F , for m=20.5, ∆/h̄ω=0.8;

quasiclassical results are given as dotted lines, matrix diagonalization results as solid lines.
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FIG. 5: Vibronic energy levels as a function of the vibronic coupling constant F , for m=1.5, ∆/h̄ω=0;

quasiclassical results are given as dotted lines, matrix diagonalization results as solid lines.
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FIG. 6: Vibronic energy levels as a function of the vibronic coupling constant F , for m=1.5, ∆/h̄ω=0.8;

quasiclassical results are given as dotted lines, matrix diagonalization results as solid lines.
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